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Abstract
Data replication and task scheduling are two strategies to enhance the performance of data-intensive applications. One of 
the main issues in the Internet of Things (IoT)-Cloud scenario is uploading data from the sensor gateways and replicating it 
across multiple cloud data centres (DCs) for high availability. To avoid such problems, there is a need to adaptively determine 
the number of replicas and their optimum locations. Although data replication ensures availability and reliability, keeping 
many copies of each data will increase storage space use. To overcome this problem, a minimal number of replicas need to be 
maintained for these files. Most of the existing works consider the system as non-faulty, but in real-time, various faults may 
occur at every data centre (DC). Hence, the main objectives of this research work are to adaptively determine the number 
of replicas and their optimum locations, as well as to design a fault-tolerant scheduling algorithm for IoT-based Cloud. This 
paper deals with the design of dynamic data replication and scheduling framework using the Hybrid Fuzzy-CSO algorithm for 
the IoT-Cloud. It uses the Cat Swarm Optimization (CSO) algorithm to find the optimal locations for replications. The fitness 
function is derived from the distance between the main DC and the other DCs. A Fuzzy logic decision model was designed 
to determine the optimal number of replicas. During task scheduling, data replication was performed in the selected replica-
tion points and scheduled accordingly. The experimental results have indicated that the proposed Fuzzy-CSO framework 
attains minimum data transfer time, minimum response delay, and higher bandwidth utilization than the existing algorithms.
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Abbreviations
IoT  Internet of Things
GW  Gateway
DC  Data center
CSO  Cat swarm optimization
FLD  Fuzzy logic decision
CC  Cloud computing
DR  Data replication
QoS  Quality of service
PSO  Particle swarm optimization
FOP  Fault occurrence probability
TEC  Total energy cost
TSC  Total storage capacity

ABO  Artificial butterfly optimization
VM  Virtual machine

1 Introduction

IoT occurrence is making a domain of billions of associ-
ated devices producing massive quantities of data stuff. IoT, 
which comprises devices like sensors, actuators, and GWs, 
is capable of a variety of novel applications by permitting 
several devices for association and communication through 
the Internet deprived of human interference. The IoTs have 
provided certain extended uses and chances that comprise 
smart grids for augmenting the dependability and efficacy of 
power supplies [1]. Since IoT devices are not fortified with 
widespread storage, their data needs to be stowed outside 
them. Given that transmitting all of this data to one location 
would make data analysis difficult, dispersed data storage 
over numerous geographically dispersed clouds was chosen. 
Cloud computing (CC) and Big data play important roles 
in data storage and the scope of the study. CC has made 
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an additional novel method of executing and deploying the 
applications identified on the Internet [2].

In IoT-cloud infrastructure, data eruption is predictable to 
ensure the capability of cloud DCs. Besides, the transmis-
sion of the entire data to an integrated place would make 
condensing data examination problematic. Hence, dissemi-
nated data storage is done amongst numerous geographically 
disseminated mini-DCs [3]. One of the principal investiga-
tion issues in IoT-Cloud is uploading data from the GWs and 
replicating such data in manifold DCs for providing high 
accessibility. For the determination of high accessibility, 
replication of this data requires proficient application [4]. 
Replication involves the procedure of offering diverse mod-
els of similar ability at diverse nodes. The data replication 
scheme prudently permits access to data and provides earlier 
access to the records needed by cloud jobs. It also ends in 
condensed bandwidth depletion [5].

An effective task scheduling method is needed for boost-
ing the execution time. Current task scheduling algorithms 
are primarily concerned with task-resource specifications, 
Memory access resources, runtime, and operating costs. 
Data replication (DR) and scheduling are two production 
methods that can augment data-based applications. In one 
way, programming eliminates replication of the data records 
essential for them with remote access to the records. Tenu-
ous retrieval of these data records needs more time than 
retrieving directly, hence doing programming devoid of rep-
lication involves overhead of data access time. Conversely, 
replication involves devoid of programming the tasks crash 
to augment the system productively [6, 7].

Proper scheduling of resources is always needed [22]. 
Cloud has many challenges such as it is susceptible to high 
latency and network congestions [23]. Load balancing and 
service brokering are the two main topics which ensure relia-
bility, scalability, reduced response time, increased through-
put in cloud environment [24]. Designing deep learning 
based techniques plays a major role for human based com-
puting in Fog and mobile edge networks [25].

Determination of the number of essential replicas and their 
position on the cloud is a challenging issue. Adaptive repeti-
tion of the regularly utilized data files, decisions on the num-
ber of data models, and the data nodes' positions are essential 
for fixing novel models based on the present cloud atmos-
pheric situations. The repetition of data ensures accessibility 
and dependability, earmarking a huge model for every data, 
and getting a large storage space usage. A minimal number 
of replicas need maintenance for these files for avoiding this 
problem. The current cloud systems commonly employ a 
variety of fault detection and recovery techniques to improve 
system accessibility. Besides necessities currently seen, fault 
tolerance is a substantial property of cloud computing. It 
offers the assurance of appropriateness and security for the 
present systems in the event of a fiasco. Most of the existing 

works consider the system as non-faulty, but various faults 
may occur at every DC in real-time. To avoid such problems, 
there is a need to adaptively determine the number of replicas 
and their optimum locations, design a scheduling algorithm 
that should be fault-tolerant and integrate task scheduling 
and dynamic data replication strategies into one framework 
to reduce data access time and bandwidth consumption.

This paper designs a dynamic data replication framework 
using the Hybrid Fuzzy-CSO algorithm for the IoT-Cloud. 
We claim that the proposed framework is a novel model 
which applies an optimization algorithm for estimating 
the replica positions and FLD for determining the optimal 
number of replicas, when compared to other works on data 
replication in the cloud.

The main contributions of this work are.

• Developing algorithms to determine the optimal number 
of replicas

• Creating a Fuzzy-CSO model that provides fault toler-
ance, faster data access, and lower storage capacity due 
to replication.

The remainder of the paper is organised as follows. Sec-
tion 2 presents the related works on the topic of data repli-
cation. Section 3 presents the detailed methodology of the 
framework. Section 4 presents experimental results and 
Sect. 5 presents their discussion. Finally, Sects. 6, 7 contain 
the conclusion and future work of the paper, respectively.

2  Related Works

Yan Wang et al. [8] have suggested a replica catalog strategy 
and the information retrieval technique. They have specified 
the deputy catalog acquisition technique for planning and 
duplication of the data. The nodes with the universal model 
of the information, replicate data sources that have huge 
access and elongated retort periods. Later, the Markov chain 
model was designed, and a matrix geometric solution was 
utilized. Various performance factors have been provided for 
enhancement of the number of models in the storage system.

DejeneBoru et al. [9] have offered models for energy 
drain and bandwidth requests of data access in the CC DC. 
They have suggested an energy effectual replication scheme 
based on the suggested models, which enhanced Quality of 
Service (QoS) with abridged communication deferments. 
The assessment outcomes attained with widespread imita-
tion reveal performance and energy efficacy trade-offs and 
lead to the upcoming data replication resolutions strategy.

DejeneBoru et al. [10] did work on DR in CC DCs. Con-
sequently, the abridged communication deferments and the 
improved QoS deliberated both energy efficacy and bandwidth 
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depletion of the system, unlike other methods seen in the lit-
erature. The assessment outcomes got widespread replication 
said to reveal performance and energy efficacy rate-offs and 
lead the upcoming data replication resolutions strategy.

Jenn-Wei Lin et al. [11] have suggested two QoS-aware 
data replication procedures in the CC systems. The princi-
pal procedure agrees with the intuitive notion of high-QoS 
first-replication (HQFR) for making data replication. On the 
other hand, this covetous procedure does not have the ability 
to curtail data replication charge, and the amount of QoS 
disrupted data replicas. Using the prevailing minimum-cost 
maximum-flow procedure, the second procedure creates the 
ideal solution but consumes a large processing time than the 
first procedure. They also suggested node combination meth-
ods for reducing the probably huge data replication period.

Suji Gopinath et al. [12] have suggested an effective data 
replication scheme that vigorously repeats data based on its 
access reputation. This approach categorizes the data as hot, 
warm and cold considering the access form of the data and 
vigorous handling of each group replication. The replication 
aspect of hot and warm data is sustained based on the neces-
sity of its accessibility.

Yalda Ebadi et al. [13] have presented a hybrid metaheuris-
tic procedure that utilizes the universal huntability of the Par-
ticle Swarm Optimization (PSO) procedure and the indig-
enous hunt ability of the Tabu Search (TS) to get excellent 
resolutions. The outcomes indicate that the technique outper-
forms all of them regarding spent energy and cost.

MyunghoonJeon et al. [14] have suggested a procedure that 
involves variations in the user’s data access form and ener-
getically puts on an ideal replication approach. The suggested 
procedure has the benefit of preserving an idealist by resorting 
to numerous data access forms. They have done verification of 
the suggested procedure and legalized its efficiency.

Bo Yin et al. [15] have investigated the problem of con-
structing an aggregation tree for complex queries with the 
minimum communication cost. As complex queries have a 
dynamic size of intermediate results, existing Steiner tree-
based approaches for traditional query operators, e.g., MIN 
and top-k, cannot be directly applied. They have formalized 
the aggregation gain by jointly considering the data pruning 
power (the size of data points that can be pruned during the 
aggregation for complex queries) and aggregation cost (the 
size of data points transmitted for the aggregation).

Shiming He et al. [16] have proposed a distributed joint 
source, routing, and channel selection scheme. The source 
selection issue can be concurrently solved via multipath find-
ing. There are three sub-algorithms in this scheme, namely, 
interference-aware routing algorithm, channel assignment 
algorithm, and local routing adjustment algorithm. The 
interference-aware routing algorithm is used to find paths 
sequentially and is jointly executed with the channel assign-
ment algorithm. After finding a new path, the local routing 

adjustment algorithm may be executed to locally adjust the 
selected paths so as to further reduce wireless interference.

Dun Cao et al. [17] have proposed a robust distance-based 
relay selection by optimizing the exponent-based partition-
ing broadcast protocol and incorporating a proposed mini-
black-burst-assisted mechanism. Moreover, they developed 
analytic models for robust approach performances in terms 
of contention latency and packet delivery ratio.

ZisangXu et al. [18] have proposed a secure and compu-
tationally efficient authentication and key agreement scheme 
for the Internet of Vehicles (IoV), where the Road Side Units 
can authenticate with the vehicle. Under the analysis of the 
Real-Or-Random model and the simulation tool ProVerif, 
the proposed scheme is proved to be secure. Compared with 
existing schemes, the proposed scheme improves authentica-
tion efficiency and reduces energy consumption.

2.1  Research Gaps

From the above discussion of literature review, the following 
research gaps are identified:

• The existing approaches fail to determine the optimum 
number of replicas required for data replication.

• The exact locations for replica placement are randomly 
determined.

• The existing works assume that the system as non-faulty

Our proposed methodology fills these gaps by designing 
a dynamic data replication technique which determines the 
number of replicas and their optimum locations along with 
a fault-tolerant scheduling algorithm.

3  Proposed Methodology

3.1  System Model

This paper deals with data replication and task scheduling in 
IoT-clouds. This paper describes the device architecture that 
satisfies the hardware and software specifications for data 
collection networks and provides a prototype of its imple-
mentation on the Fuzzy-CSO algorithm's common frame-
work for IoT-Cloud. In this paper, a Fuzzy-CSO algorithm 
has been proposed for designing dynamic data replication 
framework for IoT-Cloud network. The flow diagram of the 
framework is depicted in Fig. 1.

It uses the CSO algorithm to find the optimal locations 
for replication. The fitness function is derived in terms of the 
distance between the main DC and the other DCs. Then the 
DCs with a minimum distance to the main DC are selected 
as replication locations for the data. A new FLD model 
has been designed for estimating the required number of 
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replicas. The input parameters considered for the FLD model 
are Fault Occurrence Probability (FoP), Total Energy Cost 
(TEC) and the total storage capacity (TSC) of the servers. 
During task scheduling, data replication is performed in the 
selected replication points and scheduled accordingly. The 
uncompromised data is eventually isolated, and the entire 
setting is uploaded to the cloud into a predefined directory 
structure. This user interface allows the user the use of the 
request-response technique, to request for data, which can be 
a report of all the data, gathered that day or an average of all 
the data gathered that day. The system model of IoT-Cloud 
architecture is shown in Fig. 2. It shows a collection of sen-
sors transmitting data to a GW, which is then responsible 
for uploading the together data to the DCs or Mini-Clouds.

3.2  Estimation of Energy Cost

The solution is enabled by the availability of data obtained 
at each node, the query workload, and the resource con-
straint of any node, as discussed below. The local DC and 
the storage IoT-clouds require internet indices for minimiz-
ing overhead responses to query data in the network sensor. 
Assume a cloud system containing A DCs. Let  Si be the 
storage capacity of DC i, (1 ≤ i ≤ A). Let  CDi and  CDj be 
two DCs. Let C (i,j) and E (i,j) be the communication cost 
and energy for the storage and transmission of cloud data. 

The goal of the replication strategy is to reduce the TEC and 
TSC of servers. Every data  dk has a principal facsimile in the 
main cloud DC  cdbk.

Let RP = {RP1,  RP2… RPB} denotes replication models 
of all the data.

Every  cdbk has data relating to the replication model  RPk, 
for every data  dk.

Let  Xi,k is a binary matrix of order (A x B) such that 
 Xi,k = 1 if the data is stored in  CDi and  Xi,k = 0, otherwise.

Equation (1) states that the aggregate of the dimensions 
of all the data simulated at DC should not surpass  Si of cdbi.

Let  ri,k be the number of read operations at i passing 
through the cloud center.

Let CR (RP) and CW (RP) denote the cost of read and 
write operations under RP, respectively, which can be 
derived using Eqs. (2)–(7) [13]:

Every read request is retorted by dcdbi,k that leads to the 
least cost and energy.

The TEC (RP) for the reads and write operations is com-
puted as

3.3  Estimation of Fault Occurrence Probability (FoP)

The probability of successful completion during the time 
Δt, [19] is given by

Let Tc be the calculation time for a task executed on a 
Virtual Machine (VM) and φ be the calculation interval 
between two recovery points.

(1)
B∑

k=1

xi,k dk ≤ si for all 1 ≤ i ≤ A

(2)CostR =

A∑

i=1

B∑

i=1

ri,k dk C(i, dcdbi, k)

(3)EnergyR = kdkE(i, dcdbi, k)

(4)CR(RP) = w1. cos tR + w2.EnergyR

(5)CostW = kdkC(i, dcdbi, k),∀j ∈ wRSKj ≠ iC(dcdbk, j)

(6)EnergyW = kdkE(i, dcdbi, k)∀j ∈ wRSKj ≠ iE(cdbk, j)

(7)CW(RP) = w3. cos tW + w4.EnergyW

(8)TEC(RP) = CR(RP) + CW(RP)

(9)P(t > Δt) = 1 − P(t ≤ Δt) = e
−Δt∕m

Fig. 1  Flow diagram of proposed Fuzz-CSO framework
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Then, the mean number of attempts (NoA) required to 
finish Tc [20] is given by

The number of success (NoS) is given by

(10)NoA =
Tc
/
𝜙

P(t > Δt)
=

Tc e
Δt∕M

𝜙

The number of failures (NoF), during Δt is given by

Hence

(11)NoS =
Tc

�

(12)NoF = NoA−NoS

Fig. 2  IoT cloud network
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3.4  CSO Algorithm

CSO is a robust and efficient method of metaheuristic swarm 
optimization that has obtained very positive reviews from the 
moment it was created. It solved several issues of optimization 
and added a lot of variants. The CSO algorithm was used for 
various test functions and focused on the normal behaviour of 
the cat. Compared to the PSO results obtained by the use of the 
algorithm with the weighting factor, the CSO algorithm has 
shown improved efficiency in the pursuit of the right global 
solutions. A number of cats are generated in CSO to start with. 
Each cat has its location, velocities for each dimension and 
fitness value. It contains a flag for the recognition of whether 
the cat is in a seeking mode  (Smode) or tracing mode  (Tmode). 
The last resolution is the finest location in one of the cats as 
CSO retains the finest resolution till it attains the finish of 
reiterations [20, 21].

Table 1 shows the list of parameters used in the algorithm.

3.4.1  Seeking Mode  (Smode)

The  Smode is utilized for their presentation of the cat's circum-
stances, which include relaxing, looking around, and seeking 
the succeeding location to move to.  Smode provides a descrip-
tion of four vital aspects: seeking memory pool (SMP), seek-
ing a range of the selected dimension (SRD), counts of dimen-
sion to change (CDC), and self-position considering (SPC). 
SMP is utilized for a description of the dimensions of seeking 
memory for every cat, which specifies the cat's points. The 
cat may choose a point from SMP based on the instructions 
defined later.

The  Smode can be described as follows,

(13)
FoP =NoF∕Tc,

=
1

�
(eΔt∕M − 1)

(14)Pi =
||FSi − FSb

||
FSmax − FSmin

, where, 0 < i < j

When the objective of the fitness function is to discover 
the least solution,FSb = FSmax , else FSb = FSmin . SRD 
announces the mutative proportion for the chosen sizes. In 
 Smode, the variance between the novel value and the previous 
one will not be out of reach, as described by SRD when a 
measurement for a change is chosen. CDC reveals the num-
ber of sizes that are different. SPC chooses the cat's previous 
point, which is one of the applicants to transfer to.

3.4.2  Tracing Mode  (Tmode)

It is the sub-model for denoting the position of the cat in 
tracing certain objectives. Once a cat enters  Tmode, it makes 
a transfer based on its velocity for each measurement.

Tmode can be defined as given below

Xbest,d is the location of the cat, with the finest fitness 
value; Xk,d is the location of cat k. c1 is a constant and r1 is 
an arbitrary value in the series of [0, 1].

3.4.3  Fitness Function

In finding the optimum locations of the replications, the fit-
ness function of CSO derived is in terms of the distance 
between the main DC and the other DCs such that the server 
with minimum distance to the main DC is selected.

The fitness function FS (RP)i of a DC  CDi for replicating 
the data is given by

where  Dds (k,i) be the distance between  cdbk and the  CDi.

3.4.4  Process of CSO Algorithm

Mixture ratio (MR) is described by linking the  Smode along 
with  Tmode. Perception of a cat's actions suggests that it uses 
this time to the fullest extent possible to be aware of rest-
ing, changing locations gingerly and slowly, and occasion-
ally even remaining in one particular place. The  Smode is 
utilized for signifying the use of the behaviour with CSO. 
The deed of running after the goals of the cat is used in 
 Tmode. Hence, it is evident that MR should be a small value 
to ensure the cats use maximum time in  Smode, just as that 
of the real world.

The procedure of CSO can be defined in 6 steps as given:
Step 1 Generation of N cats, which is utilized for updat-

ing the location.
Step 2 Arbitrarily sprinkle the cats into the M-D solu-

tion space and arbitrarily choose values close to the maxi-
mum velocity to every cat's velocities. Then randomly pick 

(15)
Vk,d = Vk,d + r1 × c1 ×

(

Xbest,d − Xk,d
)

where d = 1, 2,… .M

(16)FS(RP)i = Dds(k, i).C
(
i, dcdbi,k

)

Table 1  Parameters used in 
algorithm

Parameter Meaning

Smode Seeking Mode
Tmode Tracing Mode
Xbest,d Location of the cat
C Constant
R Arbitrary Value
dk Data
FS(RR) Fitness Function
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some cats and fix them into  Tmode based on MR, and get 
the others fixed into  Smode.

Step 3 Calculate the fitness function FS (RP) for every 
replication form of data  dk, using Eq. (16).

Step 4 Calculate the fitness value of every cat using the 
locations of cats, which signifies the norms of the objec-
tive, and retain the best cat in memory. A point to note is 

that the objective is only to recall the optimum cat's loca-
tion (xbest) as it signifies the finest resolution hitherto.

Step 5 Transfer the cats based on their flags. If cat k is 
in  Smode, use the cat for the  Smode procedure; else use it for 
the  Tmode procedure.

Step 6 Re-choose the cats and fix them into  Tmode based 
on MR, and then fix the other cats into  Smode.

Step 7 Verify the end situation, if the required iterations 
are completed, dismiss the program, or else redo step 3 
to step 5.

3.5  FLD Model

In CC, energy depletion and the charge of preserving novel 
replicas are also liable to enhance when the volume of 
data replicas is augmented. FLD model is used for the 
determination of the optimum number of replicas through 
consideration of the FOP, TEC and TSC metrics as input 
variables. It returns the optimal number of replicas from 
the outputs of FLD.

Figure 3 shows the system architecture of the FLD 
model which shows the FOP, TEC, and TSC treated 
as input parameters for the FLD model. The inference 
system consists of fuzzification, rule evaluation, and 
defuzzification.

Fig. 3  System architecture of FLD

Fig. 4  MF of FOP

Fig. 5  MF of TEC

Fig. 6  MF of TSC

Fig. 7  MF of suspected node
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3.5.1  Fuzzification

Figures 4, 5, 6, and 7 show the membership functions of 
the input and output variables. A Low Value denotes a 
fuzzy variable that is close to its lowest limit, and a High 
Value denotes a variable that is close to its upper limit. A 
Medium value indicates the situation in which the compo-
nent is close to the average (e.g., around 0.5). Triangular 
membership functions are taken into account for the sake of 
convenience seeing their adoption in literature. Therefore, 
the suggested architecture is general enough, and therefore 
any membership functionality that best fits the application 
domain can be implemented. Determination of the type of 
Membership Function (MF) feature of primary affiliations 
is made since interval sets are the secondary MF.

3.5.2  Fuzzy Rules

In Table 2, fuzzy rules for the input functions and the cor-
responding output are shown.

As per the rules of Table 1, a maximum (High) number of 
replicas can be deployed when the FOP is high and TEC and 
TSC are low. On the other hand, when the FOP is low, there 
is no need for replication. Hence only a minimum (Low) 
number of replicas is required. A medium number of repli-
cas are deployed in all other cases.

3.5.3  Defuzzification

It is a process in which a single number is gathered from the 
aggregated fuzzy set production. It is used for shifting fuzzy 
results into a crisp output. In other words, a decision-making 
algorithm that chooses the right flash value based on a flashy 
range is used for defuzzification. This technique defines the 
middle of the fused region and provides the corresponding 
crisp value.

In this method, a crisp value is returned from the 
fuzzy output set. Here, the centroid of the area scheme is 
considered.

Equation (17) gives a crisp value using the defuzzifier 
method.

where  fi refers to all rules and variables and � (fi) is their 
membership function.

(17)Crisp value =
[∑

allrules
fi ∗ �

(
fi
)]
∕

[
∑

allrules

�(fi)

]

Table 2  Fuzzy rules table

S.No FOP TEC TSC Optimal num-
ber of replicas 
(%)

1 Low High High Low
2 Low Low High Low
3 Low High Low Low
4 Low Low Low Medium
5 High Low Low High
6 High Low High Medium
7 High High Low Medium
8 High High High Low
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The final stage is a defuzzification process in which 
the fuzzy outcome is converted to the level of the mem-
bership values into a single crisp value, like the fuzzifi-
cation process. The defuzzification process is an inverse 
transition relative to the flushing process when the fuzzy 
output is transformed into the crisp values of the device.

3.6  Dynamic Data Replication and Scheduling

A key research challenge for investigators has been the 
dynamic replication technique, which can handle different 
changes and automatically build, remove, and maintain 
replicas in stochastically fluctuating distributed data stor-
age. Therefore, only the complex approach is considered 
for this article. When there is not enough storage space, 
the algorithm specifies and determines the replica value 
and deletes it with the least replica life value. The fol-
lowing algorithm summarizes the steps involved in the 
dynamic replication and distributed scheduling process.

Table 3  Experimental settings

No. of GWs 50

No. of mini-cloud storages 30
No. of uplinks or downlinks 2
GC link BW 1–5 Mbps
CC link BW 25–100 Mbps
Read delay at the gateway 25-50 MB/sec
Read delay at cloud 50–125 MB/sec
Write delay at the storage 10–25 MB/sec
Data size 100–2000 bits
No. of data items 500 to 15,000

Table 4  Data size of 64 kb and 1 Mbps bandwidth

Number of 
data items

Time (ms) 
Fuzzy-CSO

Time (ms) PSO Time ms (ABO)

500 8250 10,625 11,644
750 9340 12,349 14,153
1000 10,225 14,627 15,181
1250 10,784 15,641 17,937
1500 12,340 17,755 19,573
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In Algorithm 2, when the user requests are submitted 
to the main server, it forwards the respective gateway's 
request. The gateway then collects the data from the con-
nected sensors and transmits them to the main server. On 
receipt of the gateway data, the main server estimates the 
total size of the data and determines the optimum num-
ber of replicas required using Algorithm 1. The optimal 
places or DCs for the replication of the data are selected by 
executing the CSO algorithm. Once the DCs are selected, 
the main server stores the replicated data into the corre-
sponding DCs. It then schedules the request for execution 
and returns the executed results to the user.

4  Results

This section deals with the experimental setup and results for 
implementing the Fuzzy-CSO framework. The replication 
locations are determined using PSO and Artificial Butterfly 
Optimization (ABO) algorithms. Simulation experiments are 
conducted by varying the number of data items, their data 
Size and bandwidth. CloudSim Simulator has been used to 
obtain the simulation results. Table 2 shows the experimen-
tal settings.

Different data files are uploaded to the cloud storage envi-
ronment, with each size in the range of [0.1, 10] GB. Each 
file is stored in fixed size storage unit called a block. Blocks 
of the same data file are scattered across different VMs. Ini-
tially, the number of replicas of each data file is 2 which are 
placed randomly (Table 3).

4.1  Results of Replication Times

Tables 4, 5 and 6 show the time involved in replication of 
various data items to the DCs are measured for Fuzzy-CSO, 
PSO and ABO algorithms.

From the tables, it can be observed that the proposed 
Fuzzy-CSO involves lesser replication times than the other 
two techniques, since it adaptively determines the number 
of replicas.

4.2  Comparison of Performance Results

This section presents the performance corresponding to 
response delay, percentage of fault occurrence, bandwidth 
utilization (BU) and storage overhead for all the three 
algorithms.

Response delay The response delay R(d) is represented 
according to Eq. (18) as

(18)
R(d) =

Reqans∑

j=1

Wj

Reqrep

Table 5  Fixed data size of 64 kb and 8 Mbps bandwidth

Number of 
data items

Time (ms) 
Fuzzy-CSO

Time (ms) PSO Time (ms) ABO

500 6750 7330 8850
750 7125 9527 10,127
1000 8400 10,348 12,587
1250 9600 11,599 14,392
1500 10,150 12,509 15,260

Table 6  Fixed data size of 128 kb and 1 Mbps bandwidth

Number of 
data items

Time (ms) 
Fuzzy-CSO

Time (ms) PSO Time (ms) ABO

500 9350 11,355 12,844
750 9720 13,441 15,257
1000 10,825 15,125 17,383
1250 11,281 17,342 19,127
1500 13,150 18,925 21,540

Fig. 8  Response delay for varying data items

Fig. 9  Percentage of fault occurrence for varying data items
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where  Reqans is the number of replied requests,  Wj is the 
waiting time of each replied requests given by

where FT, AT and ST are the finish time, arrival time and 
service time.

As illustrated in the following equation, the percentage of 
fault occurrence is defined as

BU It represents the mean percentage of the BU by cal-
culating the average of all VMs utilization.

Here, AVM is the number of Assigned VMs and U(VMj) 
is the utilization of  VMj.

(19)Wj =
(
FTj−ATj

)
. STj

(20)
% of Fault occurrence = (No of failures∕task completion time) ∗ 100

(21)BU =

∑AVM

j=1
U(VMj)

AVM

5  Discussion

Figure 8 is the graph of the response delay results for vary-
ing the data items. As derived in Eq. (18), it is obtained by 
summing the weighting times of all scheduled requests and 
then dividing it by the number of replied services. When 
the number of data items increases, the response delay of 
all the approaches increases linearly, as shown in the figure. 
It depicts that the delay of Fuzzy-CSO ranging from 1.4 
to 2.8 s, the delay of PSO ranging from 1.7 to 3.1 s, and 
the response delay of ABO ranges from 2.1 to 3.5 s. Since 
Fuzzy-CSO determines the optimum number of replicators, 
unnecessary replication decisions are avoided, resulting in a 
reduced response delay. Thus, the response delay of Fuzzy-
CSO is 13% less than PSO and 12% less than ABO.

Figure 9 is the graph showing the results of fault occur-
rence for varying the data items. As defined in Eq. (20), it is 
obtained by the ratio of number of failures occurred to the 
task completion times. In our work, it is assumed that the 
faults are single faults occurring at the physical devices. The 
figure depicts that the fault occurrence of Fuzzy-CSO rang-
ing from 8 to 21, the fault occurrence of PSO ranges from 
11 to 25, and the fault occurrence of ABO ranging from 14 
to 29. Since the FLD model of Fuzzy-CSO considers FoP 
in determining the replicas, the number of fault occurrences 
has been reduced. Thus, Fuzzy-CSO's fault occurrence is 
20% less than PSO and 33% less than ABO.

Figure 10 is the graph showing the results of bandwidth 
Utilization for varying the data items. As derived in Eq. (21), 
it is obtained by summing the bandwidth utilizations of all 
assigned VMs and then dividing it by the number of assigned 
VMs. Obviously, when more number of data items are 
requested, the utilization decreases linearly. The figure depicts 
that the bandwidth Utilization of Fuzzy-CSO ranging from 
57 to 41. The bandwidth Utilization of PSO ranges from 47 
to 33.2, while the bandwidth Utilization of ABO ranges from 
43 to 30.6. Since Fuzzy-CSO reduces the response delay and 
faults, the bandwidth utilization becomes higher. Thus, the 
bandwidth Utilizing Fuzzy-CSO is 19% high as compared to 
PSO and 24% higher than ABO.

Figure 11 is the graph showing the results of storage over-
head for varying the data items. It isontained by the estimating 
the total storage space required (in KB) for each data items. 
The figure depicts that the storage overhead of Fuzzy-CSO 
ranging from 150 to 470 and the storage overhead of PSO 
ranging from 270 to 613, and the storage overhead of ABO 
ranging from 287 to 742. Since the deployed replicas in Fuzzy-
CSO reduces the energy cost and storage cost, its storage over-
head is 37% less than that of PSO and 43% less than that of 
ABO.

Fig. 10  Bandwidth utilization for varying data items

Fig. 11  Storage overhead for varying data items
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6  Conclusion

The vast number of sensor GW seen across the network 
and sensor data from various sensors, are compressed by 
utilising their similarities. These compressed data are 
found suitable for the purpose. This article has suggested 
the combination of a sensor gateway, and an IoT-cloud 
to the sensor gateway using the FLD. It can handle any 
unfortunate event in the case of continuous and long-term 
management of the results. FLD enables easier replication 
and is ideal for the compression of numerical data. It is 
designed specifically for valued numerical sensor data and 
supports the effective collection of data in large volumes. 
This paper indicates a design for dynamic data replication 
and scheduling framework using the Hybrid Fuzzy-CSO 
algorithm for the IoT-Cloud. It uses the CSO algorithm to 
find the optimal locations for replications. An FLD model 
has been designed to determine the optimal number of 
replicas. During task scheduling, data replication is per-
formed in the selected replication points and scheduled 
accordingly. The experimental results indicate the pro-
posed Fuzzy-CSO framework attains minimum data trans-
fer time, shortest response delay and higher bandwidth 
utilization compared to the PSO and ABO algorithms. It 
also has a smaller storage overhead and the least chance 
of developing a malfunction.

7  Future Work

The proposed technique can be useful in IoT applications 
like smart inpatient systems, where IoT devices and sensor 
nodes need to transfer a huge number of detected data reg-
ularly to the gateway in a petite period of time. Therefore, 
the gateway needs to validate the collaborating devices 
in every assembly regularly. But the main limitation of 
this work is how the data generated by IoT devices are 
transformed into information that can be used to establish 
a reliable and safe line of communication. Hence future 
work aims to enable gateway nodes, end-users and sensor 
nodes to authenticate each other.
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