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Abstract
The safe operation of the power grid system depends partly on regular inspections of transmission lines, in which the insula-
tor is one of the most important inspections objects. The manual inspection of transmission lines is a chaotic process that is 
both time and cost-consuming since it involves an accurate manual inspection by an expert. For insulator defect detection, 
an improved YOLOv4 algorithm is proposed. First, a new data augmentation method is proposed to solve the problem of 
insufficient sample size. Then, the size of the anchor boxes is redesigned base on the K-means algorithm to further improve 
the detection precision. Finally, an insulator defects detection network is constructed based on YOLOv4. Experimental 
results show that the detection precision of the improved network is 37.2% higher after data enhancement and anchor boxes 
redesign. In addition, the detection method proposed in this paper is superior to other popularity detection algorithms, 
including the single shot detector, region-convolutional neural networks (Faster-RCNN) and released version of you only 
look once (YOLO). The value of mean average precision is 99.08% and frame per second is 56. The robustness test results 
demonstrate that our proposed algorithm performs well under different light intensities and complex environmental back-
grounds, and can accurately detect all targets, which is significantly better than other comparative algorithms. In terms of 
detection accuracy, test speed and robustness, our proposed algorithm meets the requirements of industrial field applications 
of insulator defect detection.
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1  Introduction

The safe and stable operation of transmission lines is the 
most basic demand of society, and insulators are an impor-
tant part of transmission lines. Insulators in outdoor environ-
ment for a long time are prone to breakage, self-explosion, 
string falling and other defects. These insulator defects will 
lead to a series of serious problems such as the interrup-
tion of transmission lines and the collapse of power sys-
tems. Therefore, insulator defect detection is very important 
for the stability of the transmission system, and it is also a 

challenging task [1, 2]. Therefore, automatic processing of 
insulator defects detection base on aerial images is a preva-
lent choice. The inspection methods for insulator defects 
mainly include manual inspection, helicopter inspection [3], 
robot inspection [4], and drone inspection [5]. The aerial 
images are taken by helicopters or unmanned aerial vehi-
cle (UAVs), which are sent back to the computer for image 
processing to assist the detection of technical personnel [6]. 
Manual detecting of insulator defects is low efficiency, high 
costs, and prone to fatigue errors. In recent years, with the 
rapid improvement of machine vision, technologies of object 
detection base on machine learning have been used exten-
sively in the fields of biological images, agriculture, and 
human-computer interaction [7–10].

The insulator defect detection algorithms can be divided 
into two categories: the traditional machine learning algo-
rithms and the deep learning algorithms. Generally, the 
traditional machine learning algorithms extracted features 
based on image processing techniques, connected a machine 
learning-based detection algorithm, such as support vector 
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machines, template matching, and adaptive thresholds. Com-
bining the color features with spatial features, an insulator 
defects detection algorithmic based on spatial morphologi-
cal features is proposed in [11]. A laser online monitoring 
method s proposed in [12] to detect insulator conditions and 
predict the occurrence of flashover. A fusion algorithm is 
proposed in [13], which combines shed contour features and 
ray similarity matching. A composite insulator defect detec-
tion method based on Hough transform ellipse detection is 
proposed in [14], the Canny operator is used to extract the 
edge of the insulator, and after elliptic curve fitting, it is 
compared with the edge curve of the real insulator to detect 
the contour of the insulator. The above detection methods 
are based on traditional machine learning algorithms and 
belong to the category of shallow learning architectures. It is 
difficult to detect defects using traditional machine learning 
algorithms under poor quality images, which will affect the 
accuracy and robustness of detection.

In the area of detection, deep learning-based object detec-
tion algorithms have been at the center of attention in numer-
ous machine vision tasks [15, 16]. In general, deep learning 
algorithms are composed of a multilayer neural network that 
learns features directly from the highly nonlinear data without 
any manual feature extraction., Region-convolutional neural 
networks (Faster-RCNN) [17], single shot detector (SSD) 
[18], and you only look once (YOLO) [19] are the most 
popular deep learning networks used in the insulator defect 
detection tasks. The Faster R-Transformer model is proposed 
in [20], which combines a self-attention mechanism and a 
convolutional neural network for insulator detection.

In [21], the residual neural network (Resnet) network is 
combined with the Faster R-CNN network and connect to a 
fully convolutional network (FCN) to inspected the insulator. 
However, the false detection rate will increase in the above 
methods, due to the greatly varied in the surrounding detec-
tion environment. In [22], a detection network combining 
the MobileNet light network and YOLOv4 network was pro-
posed, and the detected mAP value reaches 93.81%. In this 
paper, the following problems will be solved to realize the 
insulators defect detection: (1) The generalization capability of 

algorithms should be improved to overcome the interference of 
the complexity of aerial images; (2) Try to improve the detec-
tion accuracy and the detection speed together. An improved 
method base on you only look once vision4 (YOLOv4) [23] 
network is proposed for insulator defect detection of the aerial 
images in highly diverse outdoor environments.

The remainder of this paper is arranged as follows. The 
proposed insulator defects detection method is elaborated in 
Sect. 2. The experimental details and results compared with 
other algorithms are shown in Sect. 3.2. In Sect. 5, we dis-
cuss the training strategy of the network model and analyze 
the detection effect in various scenarios. Finally, Sect. 5 is 
devoted to the conclusion.

2 � Materials and Methods

2.1 � Proposed Approaches

The China power line insulator data set (CPLID) [24] used 
in this paper is provided by the state grid corporation of 
China, and the dataset has been published online. There are 
848 high-resolution images, each with a resolution of 1152 × 
864 pixels. The data set consists of two categories, 600 ordi-
nary insulator images and 248 defective insulator images. 
These images were taken by UAVs from different angles. 
Figure 1 shows some images from CPLID. In Fig. 1, from 
left to right, there are different insulators on power pylons 
erected on water, in forests and in villages.

However, the CPLID has contained numerous actual 
power transmission systems scenes, the number of defects 
images is insufficient for defect detection. In this section, 
a new data augmentation method composed of the affine 
transformation and the mosaic is proposed. The CPLID is 
expanded, the original images are set as the test set, and the 
data-enhanced images are set as the training set. The opera-
tion details are described below.

The dataset could be augmented directly through gen-
erally affine transformations, such as translation, scal-
ing, and rotation. In CPLID, the location of insulators is 

Fig. 1   Typical images in the CPLID



3289Journal of Electrical Engineering & Technology (2023) 18:3287–3300	

1 3

mainly distributed at the center of the aerial image and 
occupying a large area. Therefore, only rotation opera-
tion is adopted to construct a new dataset to avoid losing 
objects during other operations. The image rotates at a 
random angle around its center point. The rotation opera-
tion can be calculated as:

where the location of a pixel for the original image and 
the transformed image is defined as ‘(x, y)’ and ‘(u, v)’, 
respectively, the θ represents the rotation angle. The image 
after random angle rotation is shown in Fig. 2. For example, 
Fig. 2a is an image with θ = 0°, and Fig. 2b shows another 
image with θ = 330°.

After that, the transformed images are processed through 
the mosaic method, a data augmentation method proposed by 
YOLOv4. That mixes four images to enrich the background 
of the detected object. As elaborated in Fig. 3, the four trans-
formed images are cropped, scale, randomly spliced into one 
image, and reshaped to a specific size. In this Fig, the white 
frames indicate the objects of insulators to be detected.

There are various limitations to training the network 
under the default size of the anchor boxes, such as the low-
performance detection and predict boxes size mismatched 
with the actual object. The anchor box determined by prior 
knowledge can significantly improve the detection perfor-
mance. Thereby, the size of the anchor boxes is redesigned 
base on the K-means, an algorithm for clustering analysis by 
the iterative solution.

The size of training images has been reshaped to 416 
×416. Three feature maps are extracted, which are 13× 
13, 26× 26, and 52× 52, each feature map set three anchor 
boxes. The ratio of width to height is regarded as cluster 
object. All the ratio data are divided into nine groups to 
selecting the cluster center for each group by multiple clus-
tering. The average of all clustering results is set as the final 
value of the anchor box size for the network training. The 
values of the anchor box size are set to (23,22), (86,21), 
(112,35), (186,46), (251,180), (279,87), (291,47), (293,65), 
and (294,121), respectively.
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2.2 � Insulator Defect Detection Method

The YOLO network is an end-to-end object detection algo-
rithm proposed in 2016 that can directly regard the detection 
task as the regression task. The advantage of the algorithm 
is that the context information of images can be extracted, 
which will effectively promote the accuracy and detection 
speed. The schematic diagram of insulator defects detec-
tion using YOLO network is shown in Fig. 4. As shown 
in Fig. 4a, the input insulator image is divided into a 7 × 7 
grid, and we need to detect 9 bounding boxes for each small 
grid. Furthermore, each bounding box contains 5 values: 
x, y, w, h and confidence score. Specifically, x, y, w and 
h represent the coordinates of the central position of the 
target to be detected and its height and width, respectively, 
and the confidence score denotes the probability that the 
detected target belongs to the defect or insulator. Figure 4b 
draws all the priori boxes (7 × 7 × 9) of the insulator image. 
Some of these boxes are thicker, and some are thinner, which 
is an indication of different confidence levels, with thicker 
borders for higher confidence and thinner borders for lower 
confidence. Figure 4c depicts the target classes to which 
the different grids belong, with purple indicating the image 
background, yellow indicating insulator string, and red 

Fig. 2   Affine transformation for different images

Fig. 3   Example of images with data augmentation
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indicating insulator defect. Finally, the location of the defect 
target is found by the maximum suppression and confidence 
comparison, and it is framed in the input insulator image as 
shown in Fig. 4d.

The network structure of YOLOv4 is shown in Fig. 5. 
When YOLOv4 is used to detect insulator defects, the image 
is first input into YOLOv4's backbone network cross-stage-
partial-connections (CSP) Darknet53, which is improved on 

the basis of YOLOv3 backbone network [25]. The struc-
ture of CSPnet [26] is added to enrich the insulator image 
characteristics and improve the detection accuracy of the 
network. Secondly, the feature map of the insulator image 
is generated by the convolution block of multi-layer CBL, 
which consists of convolution (Conv) layer, batch normaliza-
tion (BN) layer, and Leaky Relu layer. Thirdly, the feature 
map passes through the spatial pyramid pooling network 

Fig. 4   Schematic diagram of insulator defects detection using YOLO network

Fig. 5   Schematic diagram of YOLOv4 network
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(SPP-Net), which increases the receptive field of the image 
[27]. Then, the top-down feature pyramid network (FPN) 
[28] is used to convey semantic features, and the bottom-up 
path aggregation network (PAN) [29] is used to convey posi-
tioning features, so as to enhance the ability of the network 
to extract insulator features. Finally, the prediction results 
of YOLOv4 are output.

Next, this section introduces the framework of the power 
line insulator defect detection procedure. The flow chart is 
shown in Fig. 6.

First, the original dataset is processed through data 
enhancement, the size of anchor boxes has been redesigned 

base on k-means arithmetic. Second, the training set is input 
into the network to update the optimal model. The effect of the 
trained model is evaluated by testing set. Finally, the images 
are input into the trained model for detection. Moreover, to 
verify whether the defects obtained from the model are labe-
ling correctly in the image, the defect should be located in the 
area of the insulator object. If the location of the defect is out-
side of the insulator area, it is considered as the error-detection 
result. A warning message will be sent and the image will be 
examined manually.

The pseudo code of the feature extraction algorithm in 
this paper is as follows:

Fig. 6   The flowchart of the 
insulator defect detection
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2.3 � Evaluation Metrics

Five common indices, precision, recall, F1 score, mean 
average precision (mAP), and frame per second (FPS) are 
used to evaluate our defect detection method. The criterion 
for object detection prediction is that the coincidence rate 
between the bounding box and the actual box is greater than 
the threshold, namely, the value of intersection-over-union 
(IoU) is greater than the threshold. The intersection-over-
union (IoU) represents the coincidence rate between the pre-
dicted box and the actual box The formulas for calculating 
the accuracy and recall rate are as follows:

where TP is the number of objects detected correctly, FP is 
the number of objects detected incorrectly, FN is the number 
of objects for leak detection. The precision and the recall are 
a pair of contradictory indicators, one of which increases 
and the other decreases. Therefore, the F1 score is used to 
balance the two parameters. The calculation formula of F1 
is as follows:

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

The AP value is the area under the precision-recall curve. 
Generally, models with good detection performance have 
higher AP value. The mAP is the average AP of all detected 
objects, which measures the performance of the model in all 
categories. The formula can be described as:

The FPS denotes the number of frames per second. The 
FPS is affected by hardware conditions, so it is generally 
tested under the same hardware conditions.

3 � Experiment and Results

The data enhancement method is used to expand the CPLID 
from 848 to 2544 images, including 1800 normal insulator 
images and 744 defect images. The deep learning framework 
is TensorFlow. Other configurations of the system include 
the NVIDIA Quadro P2200 GPU, Inter Core i9-9900K 

(4)F1 =
2 × P × R

P + R

(5)AP = ∫
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P(R)dR
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n
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CPU 3.6 GHz, GPU acceleration library 10.1, and Oper-
ating system Windows 10. In the paper of YOLOv4, the 
accuracy is improved by introducing the features included 
mosaic data augmentation, cosine annealing scheduler, and 
label smoothing. By studying the impact of different features 
during training (detailed information is described in the sec-
tion of the discussion), only the mosaic data enhancement is 
adopted in this task.

The features extracted in the backbone layer are univer-
sal. At the beginning of training, freeze the backbone net-
work layer so that more memory will be used to train deeper 
layers. The training speed of the model will decrease. It is 
inspired by transfer learning, the training phase is divided 
into two-stage, namely the freezing stage and the thawing 
stage. During the freezing stage, the initial learning rate is 
set to 0.001 and the maximum learning rate is set to 0.01. 
During the thawing stage, the initial learning rate is 0.0001 
and the maximum learning rate is 0.001. During network 
training, the model iterates for 25 epochs respectively, and 
the batch size is set to 2.

3.1 � Comparison with Other Defect Detection 
Methods

This section verifies the performance of the model in terms 
of detection accuracy, calculation, and detection speed. The 
proposed method and other models are detected under the 
same data set, including SSD, Faster-RCNN, YOLOv3 [30], 
YOLOv4-tiny and YOLOv5× [31]. The SSD is a typical 
one-stage target detection algorithm, which adopts an end-
to-end detection method. The Faster-RCNN is a popular 
two-stage object detection algorithm with high detection 
accuracy. The YOLOv3 is also the two-stage object detec-
tion algorithm with real-time performance. The YOLOv4-
tiny is a streamlined version of the YOLOv4, which reduces 
the number of layers requiring feature fusion. YOLOv5 
is released following YOLOV4. The YOLOv5 network 
includes four versions YOLOv5s, YOLOv5m, YOLOv5l, 
and YOLOv5×. The detection results of SSD, Faster-RCNN, 
YOLOv3, YOLOv4-tiny, YOLOv5× and the proposed 
method are shown in Table 1.

The YOLOv5× and the YOLOv4(ours) achieved high 
scores in mAP with 99.01% and 99.08%, respectively. The 
precision value of YOLOv4(ours) is 91%. Meanwhile, the 
AP value of the defect is 100%, which indicates that all 
defects have been detected. The F1 value of YOLOv4(ours) 
is also significantly better than other algorithms. The recall 
of YOLO v5×, v4 is 91.98 and 98.84, and the precision of 
YOLO v5×, v4 is 99.18 and 91, respectively. Simultaneously 
achieving high values of precision and recall is very diffi-
cult in practice, and we need to choose which one is more 
important for our task. Usually, an increase in precision is 
accompanied by a decrease in recall, and vice versa.

The Faster R-CNN network is a typical two-stage object 
detection network, which needs to generate candidate regions 
of size W×H×K through the region proposal network (RPN) 
operation, thus its FPS value is low. Moreover, the ROI-Pool-
ing layer in the Faster R-CNN network is a fully connected 
layer, which will generate many repeated operations when 
training the network, thereby reducing the training speed of 
the model. All the feature information used for classification 
and localization of SSD comes from different feature layers, 
and the size of the a priori frame is fixed, which causes the 
detection result to not match the target size in the image, 
and the recognition and localization of small targets are not 
accurate enough. Therefore, the results in Table 1 show that 
Faster R-CNN and SSD have lower AP values for defects.

The specific experimental results are shown in Fig. 7, the 
precision and recall curves of YOLOv4(ours) are shown in 
Fig. 8. Similar to the numerical results presented in Table 1, 
the superiority of YOLOv4(ours) in several metrics such as 
Recall, mAP@0.5 and F1 is clearly depicted in Fig. 7. Specifi-
cally, SSD and Faster-RCNN perform poorly on mAP@0.5 
and F1, with the corresponding numerical results below 50, 
while YOLOv4(ours) approaches 100. Our algorithm behaves 
similarly to YOLOv5 on two contradictory metrics, Precision 
and Recall, but it is superior to YOLOv5 on Recall. In terms 
of detection speed, our algorithm and YOLOv5 achieve simi-
lar level of performance, both around 60 frames per second. 
The experimental results show that the detection algorithm 
based on YOLOv4 proposed in this paper is more suitable for 

Table 1   Detection performance 
of several detection models

Bold values are the best results of the evaluation indicators

Model Precision (%) Recall (%) AP mAP @0.5 (%) F1 FPS

Defects (%) Insulator (%)

SSD 92.7 54.96 0.81 66.97 33.89 40.5 28
Faster-RCNN 61.16 76.11 2.18 86.38 43.19 41.5 25
YOLOv3 78.15 97.5 96.62 97.57 97.09 92.5 31
YOLOv4-tiny 69 97 71.18 98.78 84.98 74.5 89
YOLOv5× 99.18 91.98 99.5 98.51 99.01 95 62
YOLOv4(ours) 91 98.84 100 98.17 99.08 98 59
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the defects detection of insulators and provides a competitive 
solution for the intelligent inspection of the power grid.

The detailed cross-sectional comparisons between our 
model and other previous works are shown in Table 2. In this 
table, three insulator defect detection models with the best 
results are selected and name as No.1–No.3, respectively. 
Specifically, No.1 refers to the defect detection algorithm 
based on YOLOv5 from Hefei Institutes of Physical Science 

[15]. According to the paper, its mAP can reach 99.05% 
and its accuracy can reach 86.8%. No.2 is the algorithm 
from Zhengzhou University [21], which incorporates Faster 
R-CNN network and Resnet-101 network, with an accuracy 
of 96.83%. No.3 represents the algorithm from Wuhan Uni-
versity, which has a relatively high mAP and accuracy of 
93.81% and 97.26%. No.4 is the insulator defect detection 
algorithm based on YOLOv4 proposed in this paper.

Fig. 7   The performance of vari-
ous algorithms

Fig. 8   The precision and recall curves of insulator defects detection

Table 2   Comparisons between our results and previous works.

No. Company or organization Detected network F1 Recall (%) mAP (%) Precision (%)

1 Hefei institutes of physical science YOLOv5 [15] Not given Not given 99.05 86.8
2 Zhengzhou University Faster R-CNN + Resnet-101  [21] Not given Not given Not given 96. 83
3 Wuhan University MobileNet + YOLOv4 [22] Not given Not given 93.81 97.26
4 HBUT YOLOv4 (ours) 98 98.84 99.08 91
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To further verify the generality of the proposed method, 
experiments are performed with the VisDrone 2019 data-
set [32][33]. Recognizing objects in UAV images has been 
a hot topic in the field of object detection. The VisDrone 
2019 dataset was collected by the AISKYEYE team at the 
machine learning and data mining lab of Tianjin Univer-
sity and used as the competition dataset at the international 
conference on computer vision (ICCV) 2019 workshop. It 
contains 8599 images, including 6471 images as training 
set, 548 images as validation set, and 1610 images as test 
set. There are a total of 10 categories in this dataset, includ-
ing van, bus, person, truck, car, awning tricycle, bicycles, 
pedestrians, cars, and tricycles.

For a more comprehensive comparison, a series of work 
have been done and presented in Table 3. The detection 
results of our improved method are compared with that of 
YOLOv3 and YOLOv4-tiny. Specifically, the first column 
of Table 3 represents the network name, the next four col-
umns enumerate the AP values of typical categories in the 
dataset, including car, bus, van and truck, the last column is 
the mAP value. The best detection mAP of 10.68 is reported 
by our proposed method, while the AP values in the three 
items of bus, van and truck are also higher than YOLOv3 
and YOLOv4-tiny. In conclusion, the proposed algorithm 
has better detection performance on the VisDrone dataset.

3.2 � Effect of Improved Methods

A series of comparison experiments have been conducted 
to evaluate the effectiveness of the proposed method. The 
detection results of yolov4 algorithm trained by different 

improved methods are shown in Table 4. The first line rep-
resents training with the original method, the second line 
represents training after data augmentation, the third line 
represents training after redesigning the size of the anchor 
box and the last line represents training after data expansion 
and anchor box redesign at the same time.

It can be found that the precision decreases slightly 
when training with new anchor boxes, which may be due 
to insufficient samples. The precision value is significantly 
improved after data enhancement. Using data enhancement 
and K-means method, the precision is greatly improved. It 
is proved that both methods can improve the performance 
of the experiment.

4 � Discussion

4.1 � Influence of Features on Training

In this section, the effects of different features on training, 
including cosine annealing scheduler, label smoothing, and 
mosaic data augmentation, are introduced and analyzed.

Table 3   YOLOv4 versus YOLOv3 performance for VisDrone

Bold values are the best results of the evaluation indicators

Model AP mAP (%)

Car (%) Bus (%) Van (%) Truck (%)

YOLOv3 43 25 7.4 7.7 9.38
YOLOv4-tiny 11 12 2 4 3.04
YOLOv4(ours) 40 30 13 10 10.68 

Table 4   The effect of data augmentation and anchor box redesign

Model Training set Testing set Anchor box size Precision (%)

YOLOv4 763 85 (12,16), (19,36), (40,28), (36,75), (76,55), (72,146), (142,110), 
(192,243), (459,401)

62.10

YOLOv4 after data augmentation 2544 848 (12,16), (19,36), (40,28), (36,75), (76,55), (72,146), (142,110), 
(192,243), (459,401)

75.15

YOLOv4 after anchor redesign 763 85 (23,22), (86,21), (112,35), (186,46), (251,180), (279,87), (291,47), 
(293,65), (294,121)

52.19

YOLOv4 with anchor redesign 
and data augmentation

2544 848 (23,22), (86,21), (112,35), (186,46), (251,180), (279,87), (291,47), 
(293,65), (294,121)

99.20

Fig. 9   Schematic diagram of updating learning rate based on cosine 
annealing scheduler
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4.1.1 � Altering Learning Rate with the Cosine Annealing 
Scheduler

The learning rate is updated by the cosine annealing sched-
uler to simulate the learning restart process. It starts with a 
large learning rate, drops to the minimum value relatively 
quickly, and then increases rapidly to avoid the weight fall-
ing into local minimum value during the gradient descent 
process. A schematic diagram of updating the learning rate 

based on a cosine annealing scheduler is shown in Fig. 9. 
In the figure, the vertical axis represents the learning rate 
and the horizontal axis corresponds to the learning process, 
which is a covariate directly related to time.

4.1.2 � Label Smoothing

In addition, to prevent the network from overfitting and 
improve its generalization ability during training, label 
smoothing will be used to convert hard labels to soft labels. 
It is a regularization method, that adds penalty factors to 
refine the output labels. The implementation process of the 
method is shown as:

where the ŷi represents the redesigned label, yhot represents 
the original label, � represents the value of the smooth label, 
num represents the number of categories. In this paper, the 
value of label smoothing is set to 0.1.

The network is trained with different strategies, of which 
each strategy is tested with different IoU values. The details 
of the training strategy are shown in Table 5, the mAP values 
of the detection result are shown in Table 6. The IoU@0.25, 
IoU@0.50, IoU@0.75, and IoU@0.90 represent the map 
values of the network prediction results when IoU is set to 
0.25, 0.5, 0.75, and 0.9, respectively. It can be seen from 
Table 5 that the accuracy of the algorithm decreases as the 
IoU threshold increases. For these four strategies, when the 
IoU value is set to 0.9, the value of mAP goes down to the 

(7)ŷi = yhot(1 − 𝛼) + 𝛼∕num

Table 5   Training network under different feature combinations

Experiment number Label 
smoothing

Cosine 
annealing

Data 
enhancement 
method

Strategy 1
Strategy 2 ✓
Strategy 3 ✓ ✓
Strategy 4 ✓ ✓ ✓

Table 6   Experimental results of different strategies

Condition mAP (%)

Strategy1 Strategy2 Strategy3 Strategy4

IoU @0.25 74.56 99.59 72.98 70.77
IoU @0.50 73.44 99.08 71.16 69.49
IoU @0.75 41.75 58.32 58.32 58.32
IoU @0.90 5.13 6.53 6.53 0.03

Fig. 10   The detection result under good light conditions
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minimum. The reason for this phenomenon is if the IoU 
value is set too large, some prediction objects with low con-
fidence will be filtered out, thus missing the network predic-
tion. When the value of IoU is set to 0.5 or 0.75, the mAP 
value of strategy 2 is significantly higher than that of other 
strategies. Based on the above experiments results, for the 
purpose of improving the recall rate of prediction results, 
the value of IoU is set to a relatively lower value of 0.5 in 
this paper.

5 � Robustness Test

Some typical images with different light intensities and dif-
ferent background complexity are detected, and they are 
compared with other models to further endorse the detection 
effectiveness of the proposed method.

The results are shown in Figs. 10, 11, and 12, respectively.
Figure 10 shows a comparison of the detection results 

under good light conditions. It can be seen that all objects 
in the image are recognized by YOLOv4 in Fig. 10f, and 
the predicted box matches the actual box best. In Fig. 10a, 
the inspection of the defects and the distant insulator are 
missed. In Fig. 10c the defect is detected by YOLOv3 but the 
insulator in the distance is also missed. The Faster R-CNN, 
YOLOv4-tiny and YOLOv5× accurately located the insula-
tor, but all miss the defects in Fig. 10b, e and d.

Figure 11 shows the detection result of an image with 
poor light conditions. As shown in Fig. 11f, the proposed 

network still accurately located all the objects. In Fig. 11c, 
defects are detected by YOLOv4-tiny, but the location is not 
accurate enough, and the bounding box of defect is larger 
than the actual box. However, the other algorithms as shown 
in Fig. 11a, b, c and e only locate the insulators and miss 
the defects. Both of these two algorithms are difficult to 
withstand the influence of changes in the outdoor detection 
environment.

Figure 12 shows the detection comparison of differ-
ent algorithms under complex backgrounds. Because the 
shooting angle cannot be precisely controlled, part of the 
insulators in the images are blocked. As shown in Fig. 12a, 
b, c and d, the insulators blocked by the transmission line 
pylon are missed. In Fig. 12f, all objects are detected using 
the YOLOv4(ours). It has high robustness and high detec-
tion accuracy, thus it is more suitable for insulator defect 
detection.

6 � Conclusions

This paper discusses the insulator defects detection of the 
power grid aerial images. Firstly, the YOLOv4 network is 
used as the basic model to analyze the defect feature and 
optimize the size of anchor boxes. Secondly, in response to 
the problem of fewer data sets, the dataset is expanded by 
the proposed augmentation method. Finally, under the same 
experimental conditions, the proposed method is compared 

Fig. 11   The detection result under the poor light conditions
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with other advanced algorithms. This paper draws the fol-
lowing conclusions from the experiments:

(1)	 By implementing data enhancement and anchor 
boxes redesign, our proposed method is superior to 
other comparison algorithms, including SSD, Faster-
RCNN and released version of YOLO. Compared to 
the streamlined version of the YOLOv4, our algorithm 
improves the detection precision by 37.2%. Moreover, 
it also outperforms YOLOv5× across the board in sev-
eral evaluation metrics such as Recall, AP value, mAP 
and F1 of insulator defect detection results.

(2)	 We also conduct a cross-sectional comparison of our 
proposed method with other previous works and further 
validate its generality on the VisDrone 2019 dataset. 
The simulation results all show the effectiveness and 
superiority of the proposed method in this paper.

(3)	 The robustness test results demonstrate that our pro-
posed method performs well under different light inten-
sities and complex environmental backgrounds, and can 
accurately detect all targets, which is significantly bet-
ter than other comparative algorithms.

However, the inspection task of the power transmission 
systems is not only the defect detection of the insulators 
but also the common components that may cause the power 
grid failure including poles, ground wires, fittings, etc. In 
the future, multi-fault detection and classification will be 
carried out at the same time, and visual intelligent detection 

software will be constructed to realize intelligent detection 
of power transmission system.

7 � Supporting information

Images and data from this study are available on Figshare at: 
https://​figsh​are.​com/​artic​les/​datas​et/​Power_​Line_​Insul​ators_​
Datas​et/​11826​483https://​doi.​org/​10.​5281/​zenodo.​36566​11.
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