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Abstract
This study analyzes the potential of an independent method of dynamic pricing schemes to reduce the peak demand in the 
neighborhood area. For this, this work develops a collective energy consumption scheduling (CECS) algorithm in the resi-
dential sector based on a combination of energy consumption plans under a bi-level game theory method. The local level is 
responsible of gathering internal users’ data and reducing the energy consumption in each residential building. The central 
level is the external demand management system that is focused on modeling a coalition between the local load management 
modules, as well as giving the redistributed demand profile to increase the global profit through a peak load minimization, 
financial gain and peak-to-average-ratio reduction. Four controllable appliances are included in load shifting and time 
activation cycling: clothes dryer units, heating, ventilation and air conditioning systems, electric water heater, and electric 
vehicle. The principle of the proposed CECS method relies on the flexibility of the user requirement that presents one of the 
contributions of this study. It proposes a novel framework for determining optimal non-static load management strategies, in 
which consumers can change their daily power demand patterns depending on their routines, preferences and requirements. 
Numerical results show that time-varying schemes encourage customers to condense their electricity consumption within 
low-price periods. However, by incorporating the proposed approach of coordinated scheduling algorithm significant profits 
in the whole and single level are demonstrated. Simulations infer that given the same load profiles, the proposed framework 
outperforms the non-coordinated strategy leading to important rates in total peak load minimization, total saving in electric-
ity bills and reduction of peak-to-average-ratio.

Keywords Smart grid · Rebound peak · Demand side management · Load shifting · Game theory

List of Symbols

Parameters
t  Time slot, t ∈ {0,… , 24}

�  Considered device, 
� ∈ {HVAC,CD,EV ,EWH}

�t  The room temperature at each minute t, (◦F)
Gi  The heat gain rate in the house at time slot t
Δc  The energy needed to change the room by 

1◦F in (Btu∕◦F)

CHVAC  AC unit capacity, that takes positive value for 
heating and negative for cooling in 

(
Btu∕

◦

F
)

PHVAC  Rated power for space cooling (kW)

�EWH  The hot water temperature (◦F)
Δ�EWH  Lower tolerance (◦F)
�inlet  Inlet water temperature (◦F)
�a  Ambient temperature in (◦F)
frt  Hot water flow rate at time slot t in (gmp)

Atan k  The surface area of the tank 
(
ft2

)
Vtan k  Volume of the tank 

(
ft3

)
Rtan k  The heat resistance of the tank (◦F ft2 h∕Btu)
Δt  Time duration in (h)
PEWH  Rated power of the water heater (kW)

tstart(CD)  The required start time of CD operation
trequired  The drying operation duration (set to 90 min in 

this case)
k  Drying level in this case it is equal to 1/5
PCD  Rated power of the Clothes Dryer (kW)

Pm  The power consumption of the motor (kW)

PEV  The rated power for EV (kW)

SoCmax  The maximum charge state of the battery
SoCt  The state of charge of the battery at time t
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SoCt−1  The state of charge of the battery at time t − 1

D�,t  Decision variable of device at time t

1 Introduction

1.1  Motivation

The modernization of the traditional power grid has resulted 
in the redesign of a new smart grid, highly reliable and fully 
automated. This smart grid fostered the integration of renew-
able sources, allowed both communication channels of sup-
ply and smart devices and communication devices, smart 
sensors and digital sensing for ongoing demand management 
[1]. Recently, the residential sector represents a high energy 
consumption area with about 40% of the world’s energy 
demand [2]. Indeed, a major interest should be accorded to 
efficient home energy management (HEM) systems, target-
ing: (i) minimizing the overall cost, (ii) maximizing renew-
able energy sales, (iii) scheduling household appliances [3, 
4], etc. To tackle these challenges introduced by smart grid 
management, two essential mechanisms are used to improve 
its energy efficiency. The first one is conducted by integrat-
ing alternative power resources instead of conventional to 
address the power generation side, especially in renew-
able power generation monitoring (solar, wind, hydro…). 
Throughout the concept, self-generation of electricity occurs 
when the user becomes a prosumer for the purpose of selling 
excess power to the grid or recharging local batteries [5]. 
Whereas the other mechanism deals with energy demand 
management by directly affecting load management activi-
ties [6]. In the demand side management (DSM) perspective, 
researchers are particularly interested in shifting loads to off-
peak energy period [7], or monitoring the thermal character-
istic of some appliances to avoid high energy consumption 
[8]. This is usually used to achieve a minimum energy cost 
or a maximum user convenience factor. Therefore, a careful 
design of the DSM program should enhance the potential of 
end-users in terms of electricity consumption.

Demand Response (DR) is a component of DSM 
approaches, designed to address end-user incentives based 
on market prices [9]. It provides a variety of operational 
and economic benefits to both electricity utility service and 
consumers [10]. The DR generally schedules controllable 
appliances in response to the time-varying price schemes, 
such as time-of-use (ToU) pricing, and real-time pricing 
(RTP) [11]. Indeed, the energy management system turns 
on the flexible loads after rush periods (starting of o_-peak 
times) to achieve the peak load reduction for power grids 
and economic profits improvement as to insure user's prefer-
ences. That may cause the accumulation of controllable load 
appliances at low-cost times. In this regard, it is required to 
develop a load scheduling model while considering various 

operation modes (user's references, owned appliances) to 
reduce the peak load. In this research work, we aim to inves-
tigate the capacity of an optimal non-static load management 
strategies, in which consumers can change their daily power 
demand patterns depending on their routines, preferences 
and requirements, such a novel contribution support our 
present work.

1.2  Related Works

By and large, dynamic pricing is mostly investigated in the 
HEM system using ToU and RTP schemes to save money. 
ToU pricing presents a lower cost volatility than the RTP 
signal [11]. Thus, ToU pricing is more adopted for resi-
dential users than RTP. In ToU scheme, the energy cost is 
determined day-ahead or at the beginning of a season. In 
Ref. [12], a HEM model for a residential user is presented 
in the purpose of minimizing electricity bill and peak costs. 
This scheduling method is based on ToU and inclined block 
rate (IBR) pricing schemes. The appliances categorization 
and priority factors are also incorporated in DR program. 
Despite the maximization of user comfort and minimization 
of energy cost, the Peak-to-Average Ratio (PAR) has not 
been considered. An interval number optimization method 
is used in [13] for load scheduling. Appliances are divided 
into: non-interruptible, interruptible and thermostatically 
interruptible. Combined Binary Particle Swarm Optimi-
zation (BPSO) with integer linear programming (ILP) are 
considered to handle the problem of electricity cost minimi-
zation. A profit of 3% reduction in the total cost is achieved. 
The involvement of ToU pricing for home power scheduling 
technique has been also investigated in [14–16]. Further-
more, selfish HEM systems are not often a profit. For exam-
ple, if all consumers shift their loads to the lowest energy 
price periods, an overloading in the power grid, blackouts 
and rebound peaks could be occurred. Consequently, a col-
laborative combination of energy goals at neighbors scale 
is a vital crucial.

When several houses behave differently and participate 
in the same DR service in order to minimize high electricity 
cost or the total load demand, a potential should be devel-
oped for monitoring and optimizing different scenarios for 
energy schedules. An improved collective algorithm was 
proposed in [17] as an incentive for energy users to adopt 
system management schedules. The approach considers two 
types of home units: power shifftable which have an adap-
tive power to answer variations of the required scheduling 
such as air conditioner and water heater, and time shifftable 
units that can be shifted to a predetermined time interval. 
The experimental results show that in addition to saving 
15.6% of energy use and production costs, a game theory 
must be studied for the programming model. Study [18] was 
designed to simultaneously reduce PAR and total electricity 
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bills. The planning model was based on an intelligent feed-
ing system with distributed participants and a dynamic 
supplier that adjusts energy costs according to the required 
demand profiles. Although the DSM results show an 11.73% 
and 25.53% reduction in overall system PAR for DSM with 
and without battery, respectively, they overlook the inher-
ent impact of variable daily load profile that may negatively 
influence and complicate the DSM process, so that each cli-
ent can have an application scheme based on their needs, pri-
orities and requirements. Similarly, a decentralized residen-
tial framework for 50 participants is presented in [19]. The 
home load management coordination problem is modeled 
as a bi-level optimization problem, where the upper sub-
problem looks for the modification of the system load profile 
and the lower level save individual demand tariffs. A rate 
of 20.5% decrement in the peak load is achieved by utiliz-
ing load management in non- cooperative load management 
(NCLM), while it is decreased to 16.8% when the coopera-
tive load management (CLM) modules are realized. How-
ever, a variety of application use scenarios are not available 
to demonstrate the broad application of the proposed model. 
Most recently, an extension of multi-objective mixed integer 
linear programming (MMILP) model is proposed in [20] to 
solve the households’ appliances scheduling problem taking 
into account consumer preferences and a peak load discount. 
The numerical experiments in this study show that the peak 
load is significantly reduced by 20% compared to unplanned 
energy consumption. Indeed, different individual electricity 
demand management approaches have been considered and 
tested. However, the re- planning of users’ activities may be 
impracticable at the community level.

1.3  Contributions

Although the significant profits of price-based programs to 
individual consumers (i.e., the total cost), these results can 
be much worse than the optimum performance achieved 
through a coordinated load management strategy [21, 22]. 
It is necessary to have a scheduling algorithm that handles 
one more step, and to consider a new collective framework 
that can vastly outperform the optimal performance obtained 
by price-based consumers. The previous literatures [18, 19, 
23] considered collective demand management that assumed 
that consumers opted for invariable monthly/weekly or daily 
demand power models and that predetermined preferences 
did not change. It implies that these strategies always keep 
the same daily use of demand, which means that these strate-
gies do not change differently for multiple energy consump-
tion profiles. However, in the proposed model, a variable 
energy consumption design is adopted, and participants may 
select a different daily demand profile. For example, a con-
sumer may prioritize a home unit, but change it tomorrow, 
and even the home appliances may not remain the same.

The ultimate contributions of this paper can be summa-
rized as follows:

• Proposing a cooperative game framework by mode-
ling various number of consumers aiming to eliminate 
rebound peaks, decrease the PAR and improve cost sav-
ings at individual and large consumer levels.

• Investigating the impact of varying load demand usage 
by implementing efficient and flexible energy demand 
scheduling algorithm that address flexible consumption 
models using different scenarios.

• Developing a simulator interface to facilitate a direct 
interaction with the energy management system (EMS).

• Designing a generalized load management model by con-
ducting various simulations to validate its usefulness and 
applicability, to preserving simultaneously users’ pref-
erences and maximizing energy demand saving at indi-
vidual and commons plans.

• Proposing a pricing-based scheme for complexity analy-
sis. By performing the comparison with the proposed 
approach for energy consumption scheduling, we confirm 
that the main findings of our proposed algorithm outper-
formed the pricing-based load management strategy. In 
addition, the proposed algorithm is more advanced than 
existing works.

1.4  Paper Organization

The remainder of this paper is organized as follows. Sec-
tion 2 presents the collective energy scheduling model. 
Then, Sect. 3 describes the collective energy consumption 
scheduling framework with its general community goals. 
Section 4 summarizes the most important results and high-
lighting avenues for further research. Finally, the generic 
findings and acknowledge limitations are concluded in 
Sect. 5.

2  Model of the Aggregated System

In this study a load scheduling game model is proposed 
to address peak load savings, PAR reduction and energy 
expenses minimization. Four smart controllable appliances 
are included: an EWH, HVAC units, EV, and CD systems, 
in addition to a set of non-shifftable building units that will 
be taken as fixed vector components. Their operation time 
is unpredictable. Therefore, the CECS could not interrupt 
it. The main objective is to find the profitable decision of 
making ON/OFF hourly status of each shifftable appliance.

(1)G = {C;{Si,t}
C
i=1

{Pi,t}
C
i=1

{�i,t}
C
i=1

}
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(2)�i,t =

H∑
t=0

C∑
i=1

Rt ∗ Ptot(t)

(3)M�

m,t

Δ
=
[
M1

m,t
,M2

m,t
,… ,MC

m,t

]

(4)N�

n,t

Δ
=

[
N1
n,t
,N2

n,t
,… ,NC

n,t

]

(5)Pr =

⎛
⎜⎜⎝

Pr1,1 … Pr1,C

⋮ ⋱ ⋮

Prm,1 ⋯ Prm,C

⎞
⎟⎟⎠

(6)Pmax
tot

= max
t∈H

Ptot(t)

(7)P
avg

tot =
1

H

∑
t∈H

Ptot(t)

(8)PAR =
Pmax
tot

P
avg

tot

=

Hmax
t∈H

Ptot(t)

∑
t∈H Ptot(t)

(9)�t+1 = �t + Δ� ⋅
Gi

Δc
+ Δ� ⋅

CHVAC

Δc
⋅ DHVAC,t

(10)

�outlet,t+1 =
�outlet,t(Vtan k − frtΔt)

Vtan k

+
�inletfrtΔt

Vtan k

+
1gal

8, 34lb[
PEWH ∗

3412Btu

kWh
−

Atan k(�outlet,t − �a)

Rtan k

]

Δt

60
min

h

1

Vtan k

(11)𝜃EWH ≺ 𝜃outlet,t ≺ 𝜃EWH − Δ𝜃EWH

(12)taccum ≺ trequired & t ≥ tstart
CD

(13)SoCt = SoCt−1 + PEV

Δt

CBat

(14)Pctr(t) + Punc(t) ≤ Plim it(t)

(15)Ptot(t) = Pctr(t) + Punc(t)

(16)
Pctr(t) = PEWH × DEWH,t + PHVAC × DHVAC,t+

k × PCD × DCD,t + Pm + PEV × DEV ,t

As mentioned earlier, the implemented CECS algorithm 
can be considered as a game theory problem (Eq. 1), in which 
C are set of households or the players aiming to minimize 
their energy cost �i,t and increase the energy savings Pi,t under 
a common community objective. To implement the proposed 
CECS strategy three inputs namely the shifftable load vector 
M�

m,t
(Eq. 3), the non-shifftable load demand N�

n,t
(Eq. 4), and 

the predetermined time preferences of each smart appliance 
(Eq. 5) will be created based on user daily needs and behav-
iors. Since the central level is responsible of data gathering; the 
hourly information is sent to smart meters and the components 
of these inputs can also change during different days, so these 
are a time varying vectors. The PAR in load demand is calcu-
lated based on Eq. 8. In general a lower PAR value referred 
to minimum outages of the main system and most low oper-
ating expenses [24]. Where Pmax

tot
 and Pavg

tot  are the individual 
daily peak load and the average load, respectively. Equation 9 
specifies the one thermal parameter for HVAC system mod-
eling. Where at each time slot t , the HVAC should operate 
whenever the room temperature is greater than the maximum 
temperature range. Therefore the user will set the upper and 
the lower comfort temperature range �max and �min , respec-
tively. If the room temperature exceeds the comfort tempera-
ture limit the HVAC is tuned on otherwise it is inactive [25, 
26]. Equation 10 represents the temperature inside the tank, 
used to control the running cycle of the EWH. The formula in 
Eq. 11 sets the room temperature limits to keep users comfort. 
The clothes drying operation is divided into two parts. The 
high power consuming one (several kilowatts) is the heating 
coils part, and the motor one that can not be controlled by the 
CECS without user intervention. This second part consumes 
less power (some watts). Therefore, the energy consumption 
management system decides to start or stop working just the 
heating coils. The CD runs according to the accumulated time 
of drying operation Eq. 12. Each user will set the upper and 
lower. Commonly bi-directional EV charging is considered; 
the grid to EV or EV to grid minimizes the demand on high 
energy prices [27, 28]. Furthermore, in this chapter the EVS 
are treated as any controllable electrical device, an unidirec-
tional way of electricity is considered to charge its battery, 
what increase the complexity of the proposed model since if 
multiple EVs are simultaneously need to be charged a signifi-
cant demand peak can be introduced. The charging schedule of 
EV is similar to that presented for the CD operation, since the 
user should set the desired start charging time and the required 
fully charge state of the battery. At each time t , the state of 
charge of the battery is formulated as Eq. 13. The energy con-
sumed by the controllable devices for each participant having 
those units must be lower than power limit. The constraint 
shown in Eq. 14 indicates that at each time step t, the sum 

(17)D�,t =

{
1, appliance � is active

0, appliance � is inactive
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of power consumed by each household must be lower than 
maximum power usage defined by the energy manager system. 
The terms D�,t in Eq. 16 represent the operational state of the 
respective appliances. The uncontrollable power ( Punc ) refers 
to all other consumed power in the household other than the 
four shifftable devices considered in this paper. Equation 17 
specifies the activation function for controllable appliances 
after CECS decisions. If the appliance is active, its nominal 
power is absorbed, no usage power otherwise. In the CECS 
model, it assumed that home users do no communicate with 
each other due to privacy conditions. The coordination strategy 
is deployed in two consecutive levels: firstly the data collection 
among smart meters, and secondly a game theory with a Nash 
Equilibrium is presented to coordinate schedules repeatedly. 
From Eq. 1, the deployed game theory is defined as follows:

Players: each user i ∈ C in the neighborhood area.
Strategies: Selected load management schedules {Pi,t, �i,t} 

for each user i ∈ C to maximize its payoffs.

where Pi,t and �i,t are the strategies for all participants except 
i for consumed power and electricity price profiles.

Definition1 The Nash equilibrium is a solution concept in 
which each user selects its desired power usage to improve 
its payoffs.

 

where ∗ indicates the strategy of each variables type at Nash 
equilibrium state.

Theorem  1 The defined energy consumption game 
G = {C;{Pi,t, �i,t}

C
i=1

;Ui} exists.

Proof 1: �i,t convex for each time slot t  and the payoff 
(Ui({Pi,t, �i,t};{P−i,t, �−i,t}) is a concave function with respect 
to {Pi,t, �i,t} . Consequently, referring to [29] the Nash Equi-
librium exists.

3  Proposed Model

The general design of CECS is given in Fig. 1. In this 
schematic, various residential buildings (RBs) exist with 
controllable uncontrollable appliances and Home Load 

(18)Pi,t = [Pi,1, Pi,2,… , Pi,H]

(19)�i,t = [�i,1, �i,2,… , �i,H]

(20)Ui({Pi,t, �i,t};{P−i,t, �−i,t}) = −�i,t

(21)
Ui({P

∗
i,t
, �∗

i,t
};{P∗

−i,t
, �∗

−i,t
}) ≥ Ui({Pi,t, �i,t};{P

∗
−i,t

, �∗
−i,t

})

Management Modules (HLMMs) implanted in households 
smart meters. Each HLMM is used to schedule the demand 
load for RB and exchange management information among 
the neighborhood area. As shown in Fig. 1, the implemented 
CECS framework plans the energy consumption under two 
levels: (i) the local scheduling phase (LS), and (ii) central 
scheduling (CS) phase. The LS is the internal demand sched-
uling system that is focused on the collection of individual 
data (consumers' requirement, tasks activation time, load 
duration, load priorities, etc.). Then, it sends these data 
information to the CS or the external level of energy man-
agement. This later is responsible to collaborate individual 
desired plans and found their interaction with the global goal 
of reducing peak load consumption in the whole community. 
Moreover, the flowchart related to the pseudo code.1 is given 
in Fig. 2. After individual data gathering, the local level 
announces individual plans for load profile to each HLMM. 
The CECS system at the central level investigate the indi-
vidual load profiles and elaborate the proposals load profiles 
comprising the main goal of a total peak load saving, PAR 
minimization resulting a significant economic profit. The 
proposed approach considers a collective plan to achieve 
these perspectives. The CS system send CECS proposals 
and recommendations to individual HLMMs to modify their 
load profiles.

Schedules with accepted decisions are updated. This 
operation is repeated until no further modification in the 
system load profile is announced. It should be noted that 
the local improvements of energy profiles are iteratively 
evaluated to judge its economic and technical benefits 
i.e., the CS for the energy demand system investigates 
gathered demand change proposals individually, until 

Fig. 1  Neighborhood grids under study
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guarantee the achievement of all requirement of differ-
ent players. The coordinated demand planning is based on 
shifting and cycling time activation of controllable appli-
ances while collating combination of plans, considering 
neighbor's interaction. Therefore, required improvements 
are obtained according to limitations including appliances' 
operational characteristics, instructions and limits, besides 
preserving the customers' preference. The implemented 

CECS algorithm is executed in a daily cycle and composed 
of three parts summarized as follow:

Data gathering: In this step, the data required for the 
simulation is feed into the energy management system. It 
involves the predetermined priorities of each user, the fore-
casted demand curves according to user activities and plans, 
parameters of the appliances and also the participant avail-
ability for the following day.

Scheduling problem resolution: As introduced previ-
ously the CECS workflow is formed in a coordinated level 
in which the energy demand management system should 
find the junction of each candidate action under a commu-
nity benefit. For this, each user equipment's preferences are 
defined in this step as a vector of H hours in addition to the 
desired time activities of each appliances. Once the data is 
collected the CECS is able to be run. After the combination 
of scheduling plans by solving Eq. 1 to select (in Nash Equi-
librium) the best consumption profiles. The set of recom-
mendations are stored in a matrix of �C × H� composed by 
the energy consumption of the whole group. From this step, 
it is possible to present the accounting of energy demand 
of each individual consumer in addition to the aggregated 
demand curve of the residential community.

Validation of users for the proposal plans: It is a fun-
damental part of the proposed EM system. The users are 
informed by the proposed schedules, containing the PAR 

Fig. 2  Flowchart of implemented CECS



2701Journal of Electrical Engineering & Technology (2023) 18:2695–2708 

1 3

reduction, the peak load minimization rate, energy demand 
cost gain. Consumers are permitted to change the beginning 
or ending time activation of an appliance or they may change 
their priorities. These modifications are sent to scheduling 
resolution phase again. By executing the CECS algorithm, 
an updated consumption matrix is reselected. Since the 
proposed approach ensures both cooperative and individual 
benefits, this step is repeated until the adoption of all users’ 
agreements.

4  Numerical Simulations

4.1  The Proposed CECS user Interface

The graphical user interface was developed in the C# simu-
lation tool as a strong, simple and well-performed type of 
object-oriented language [30]. As presented in Fig. 3, this 
simulator considers the parameters of each user including 
(temperature, load profile, appliances preferences, avail-
ability of users…). These parameters can be changed under 
the CECS recommendations. Finally, the proposed CECS 
schedules executed under the primary parameters fed into 
the interface are presented to users. It offers easy access 
to participants to the day-ahead scheduling by a personal 
computer providing detailed information about the total 
consumption saving and the optimal activation time of each 
controllable appliance. In the following sub-sections, the 
obtained results by the implemented CECS are presented 
and analyzed.

4.2  Data Preparation and Studied Scenarios

The following appliances HVAC, CD, EWH and EV present 
the most energy consumption in U.S according to [31]. The 
developed model considered a minute-interval for weather 

data for a typical day in May. The appliances’ parameters 
are referred to the data presented in [22, 32–36] and main 
parameters are summarized in Table 1. The multiple studied 
homes are categorized based on ownership of appliances 
and predetermined load's preferences which are listed in 
Tables 2, and 3, respectively. In this section, the proposed 
approach is evaluated supposing different scenarios in order 
to demonstrate its improved performance. The first scenario, 
presents a classic test, we assume that buildings hold similar 
appliances with a stationary energy consumption profiles. 

Fig. 3  Proposed CECS graphical user interface

Table 1  Appliances parameters

Parameters Value

Water heater
Vtan k(gallon) Uniform volume between 20 and 80
Atan k

(
ft2

) 14

Rtan k

(
◦F ft2 h∕Btu

) Uniform resistance between 12 and 25
PWH(KW) 4.5
Δt(min) 1
�W (

◦F) Uniform temperature between 110 and 120
Δ�WH(

◦F) Uniform temperature between 5 and 10
Air conditioning
�s(

◦F) Uniform temperature between74 and 78 for 
summer days, and between 66 and 72 for 
winter days

CHVAC(Btu∕h) 33
Δ�AC(

◦F) 2
PAC(kW) 2352
Clothes dryer
Pm(kW) 0.3
PCD(kW) 3.7
Electric vehicle
PEV (kW) 3.3
CBattery(kWh) 24
SoCmax(%) 100

Table 2  Homes analyzed by their sets of appliances

House-identifi-
cation

EWH HVAC CD EV

1  × ✓ ✓ ✓
2 ✓  × ✓ ✓
3 ✓ ✓  ×  × 
4 ✓ ✓  × ✓
5 ✓ ✓ ✓  × 
6 ✓  × ✓ ✓
7  × ✓ ✓  × 
8 ✓  × ✓ ✓
9  × ✓ ✓ ✓
10 ✓ ✓ ✓ ✓
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Customers are permitted to change their pre-defined load's 
priorities for the following day scheduling.

The proposed schedules are updated until satisfying all 
user's requirements, then the CECS method generates the 
day-ahead re-planning of load devices with a resolution of 
1 min. In the second scenario, the impact of different load 
profiles is investigated by changing the number of devices 
in each home. While in the third scenario, the load sched-
ules are decided by assigning different appliances' priorities 
values what increase the system complexity. The last case 
is referred to energy consumption scheduling with variation 
of predetermined loads preferences and owned shifftable 
appliances.

For each above-mentioned scenarios, three load sched-
uling models are simulated: (1) before load management, 
(2) non-cooperative or price-based load management 
(N-CECS), and (3) the proposed cooperative energy con-
sumption scheduling (CECS).

Model 1: Without load management
This case is considered as a reference case. In this model, 

the simulations are carried out with no pricing-based or 
coordination schemes. The algorithm did not consider an 
intelligent redistribution of time-shifftable appliances, 
i.e. EV and CD, only the control the HAVC and EWH is 
adopted. Indeed, the controllable appliances are working 
immediately when consumers turn them on Figs. 4a, 5a, 6a 
and 7a, show the simulation results for the baseline load pro-
files under different users’ parameters as mentioned earlier.

Model 2: Non-Cooperative/price-based demand energy 
management. (N-CECS)

This case is considered as a traditional scheduling sce-
nario. It occurs when users monitor their load profile self-
ishly without considering a collective goal. Indeed, there 
is no coordination between consumers, each one schedules 
its electricity demand individually considering the day-
ahead TOU [37] and its load preference. In other words, 
controllable appliances are shifted to the lowest energy 

price periods (from 6 am to 2 pm or after 7 pm). In this 
scenario, it is assumed that time-varying prices are already 
being sent to customers for consideration in their response 
to load management. Therefore, the required re-planning is 
exchanged with the electricity service provider to evaluate 
individual monetary incentives. As mentioned previously, 
ToU tariffs are announced for the following 24 h in which 
the determined electricity price is dependent on the time 
delivery production block (on-peak, off-peak or super-off-
peak duration).

Model 3: Cooperative energy consumption scheduling 
CECS

This case is referred to the same smart grids with the 
proposed CECS program. The framework schedules con-
sider the neighbor’s preferences, and it applied when 

Table 3  Homes analyzed by their load's preferences

House-identifi-
cation

EWH HVAC CD EV

1 1 2 3 4
2 4 1 3 2
3 1 2 4 3
4 2 3 1 4
5 3 4 2 1
6 2 1 3 4
7 1 4 2 3
8 4 1 3 2
9 2 4 1 3
10 3 1 2 4

Fig. 4  Power consumption under scenario 1
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consumers are willing to collaborate their data in order to 
solve the rebound peak problem and to reduce total energy 
cost. Algorithm 1 presents the main steps of the sched-
uling method. As described the proposed CECS consid-
ers a central- level and local- level for load management 
problem.

4.3  Performance Evaluation

Neighborhood-level metrics are procured from the simula-
tion findings:

PAR of overall daily consumption: parameter that evalu-
ates the effectiveness of the energy consumption scheduling. 
It is expressed as the ratio between the maximum demand 
power and the average consumed power.

Overall community cost: the total electricity bills at com-
munity level using the day-ahead planning model.

Peak load demand: the maximum demand power of total 
profile after applying the scheduling model.

First, the analysis of the N-CECS based on TOU pricing 
with the baseline load profiles is investigated for the four 
scenarios. Figures 4b, 5b, 6b, and 7b, compare the aggre-
gated load profiles of the whole community after and before 
implementing the N-CECS program. It is clear that, with 
the involvement of load scheduling based on time varying 
prices, most controllable loads are shifted to the same hours 
( low-pricing periods), which resulting major power imbal-
ances in the daily planned loads. Specifically, peak rebounds 
are produced during the off-peak periods (between 7 and 
11 pm), when prices are the lowest and multiple households 

Fig. 5  Power consumption under scenario 2

Fig. 6  Power consumption under scenario 3
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consume at the same time. Moreover, as shown in Fig. 4b 
the peak load is higher after the N-CECS, especially when 
all consumers required the same preferences and devices 

(118.52 kW). This is can be explained by the uncoordinated 
behaviour of the second model (N-CECS), each customer 
schedules their appliances activation during the low-pric-
ing periods for electricity payment savings. Therefore, 
overloads at these periods might be occurred. Although 
Figs. 5b, 6b and 7b show that around 12.18%, 27.94%, 28% 
saving in the maximum load demand are taken into account 
in the N-CECS implementation, the total findings based 
on N-CECS prove significant violations at the grid opera-
tional restrictions (rebound spikes). So, it can be concluded 
that the load scheduling based on time varying electricity 
prices should not be applicable for all systems and require-
ments. In this case, the performances of the stationary price-
based method achieved by appropriate tariff schemes are 
suboptimal.

At a second step, the results of implementing the pro-
posed collective load management model are shown and 
compared to the N-CECS. Figures 4c, 5c, 6c and 7c compare 
the consumption curves after implementing the CECS sys-
tem and with N-CECS scheduling. It is doubtless that after 
implementing the proposed CECS scheme, the peak load are 
largely minimized, and rebound peaks are avoided. Indeed, 
the proposed method can make good balance between mul-
tiple user preferences, power consumption, and controllable 
appliances by selecting the proper starting time to switch 
on,while reduce the power consumption by up to 33%. As 
depicted in Figs. 4c, 5c, 6c and 7c), the total daily energy 
consumption for all the four tested scenarios are proving 
that the driven N-CECS peaks are higher than for the peak 
loads resulted from the CECS scheme. Moreover, Figs. 4c, 
5c, 6c and 7c) show an obvious decrease in maximum load 
of 32.61%, 33.10%, 33.2% and 28.42%, respectively for 
Scenario 1, Scenario 2, Scenario 3 and Scenario 4. In addi-
tion, as can be observed in Fig. 4c, the load profile in CECS 
scheme is significantly different from the one in N-CECS 
strategy due to the elimination of demand rebound spikes at 
low-pricing time intervals through effective CECS participa-
tion. The summary table (Table 4) shows that with the com-
parison of four studied scenarios. It can be found that with 
coordination the proposed approach can both save energy 

Fig. 7  Power consumption under scenario 4

Table 4  Summary of the achieved metrics under differ-ent studied models

Scenarios

(1)same Pr, same home 
appliances

(2)same Pr, different home 
appliances

(3)different Pr, same home 
appliances

(3)different Pr, different 
home appliances

Metrics Non-coopera-
tive schedul-
ing

Cooper-
ative sched-
uling

Non-coopera-
tive schedul-
ing

Cooper-
ative sched-
uling

Non-coopera-
tive schedul-
ing

Cooper-
ative sched-
uling

Non-coopera-
tive schedul-
ing

Cooper-
ative sched-
uling

Peak load profile (%) − 3.49 32.61 12.18 33.10 27.94 33.2 28 28.42
Community cost ($) 74.33 62.96 54.90 52.64 64.52 62.19 53.69 52.00
PAR 2.83 2.128 2.49 1.95 2.22 2.12 2.126 1.98
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cost and reduce peak loads for each scenario in comparison 
to the metrics associated with N-CECS. Scenarios 2 and 3 
presented the most decreased peak load demand under the 
CECS approach. Furthermore, scenarios 2 and 4 presented 
the lowest expensive under the recommended CECS profiles. 
Similarly, scenarios 2 and 4 resulted in the lowest PAR in 
comparison to other scenarios under the proposed approach.

Figure 8 helps to more appreciating the result community 
demand profiles for both N-CECS model and CECS model. 
Scheduling with CECS can maintain the peak load demand 
to 78 kW, whereas scheduling with N-CECS scheme have a 
peak load demand distribution in the high range (reaching 
until 118 kW in the first scenario). It implies that consumers 
should get some shaving in their energy consumption for 
the low price period, and vice versa. According to Fig. 8a, 
we note that the tallest moustache is at its maximum, which 
signifies a longer tail to the highest values. This suggests that 
about 50% of the load profiles match the most extreme peak 
load demand values. Unlike Fig. 8b, the CECS algorithm is 
able to produce the most consistent minimum compared to 

Fig. 8  Maximum load demand in the whole community
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(a) Scenario (1).
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1 2 3 4 5 6 7 8 9 101

1.5

2

2.5

3

3.5

4

PA
R

Household identification

PAR-single consumer
PAR-whole community

(c) Scenario (3).

1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

PA
R

Household identification

PAR-single consumer
PAR-whole community
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Fig. 9  PAR in individual daily load and comparison with PAR driven 
schedules under different scenarios
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the uncoordinated load scheduling model, i.e. N-CECS. On 
the other hand, to prove the efficiency of the proposed load 
scheduling strategy on the reliability of both the single and 
aggregated findings, different PAR spectra of ten homes are 
illustrated in Fig. 9a–d. It is obvious from Fig. 8, that the 
cooperative PAR is significantly less than the PAR in each 
consumer's individual load. Thus, appropriate schedules are 
obtained for individual users, while conserving the global 
community profit. Indeed, the implementation of CECS 
schedules is very effective in reducing PAR compared to 
two other models, resulting in significant community and 
individual benefits at the same time.

To sum up, these simulation results demonstrated that: 
(1) the proposed CECS successfully eliminates rebound 
peaks by avoiding load accumulation at low price hours. (2) 
The cost of electricity consumption is lower in the proposed 
CECS strategy than in the N-CECS scheme for all tested 
load profiles. (3) The PAR in the proposed CECS model 
is greatly reduced simultaneously for individual and com-
munity scales, which measures the efficacy of the proposed 
CECS algorithm.

4.4  Comparison with Existing Collective Scheduling 
Mechanism

In this subsection, the proposed CECS is compared with 
the existing DSM approaches. The comparison targets 
the same contributed objectives: PAR [17, 18], peak load 
minimization [17, 19, 20], and consumption cost reduction 
[17, 19, 20]. Based on the same collective goal of energy 
management across different smart grids. The comparison 
is restricted to total profits. Based on these five algorithms, 
the summary is presented in Table 5. It can be seen the PAR 
associated with the CECS based schedules is 53.6% less than 
the PAR associated with demand side management sched-
ules in ref. [18]. When it comes to reducing energy costs, 

the CECS scheduling algorithm significantly exceeds the 
other two algorithms. The cost discounts compared to [19] 
are less by 84.7% and 93.5% respectively. Based on peaks in 
demand reduction under the CECS algorithm comparing to 
[17–20], a significant performance gain is achieved between 
8 and 69.9%.

5  Conclusion

In this paper, an effective coordinated load management 
model for a large neighborhood smart grids is proposed. 
HLMMs controls the energy demand usages under het-
erogeneous customers' preferences and home appliances 
based on game theory approach has been established to 
obtain significant profits in terms of peak load reduction, 
PAR minimization and total bills minimization. Moreo-
ver, a graphical user interface has been implemented in 
the C# software environment to incentivize users for the 
evaluation of proposed CECS. The simulation results are 
conducted for various scenarios to prove the applicabil-
ity of the proposed CECS model. The findings reveal 
that the proposed CECS-based scheduling strategy can 
largely avoid the negative impacts of the rebound peak 
power system and reduction in total peak load to approxi-
mately 33% of total peak load after CECS implementation. 
Furthermore, the proposed model improves cost savings 
till 18.05% and minimizes PAR by more than 43.7%. In 
addition, the model presented shows better performance 
in managing the complexity of the multiple preferences 
of users and devices in their possession and in realizing 
significant benefits at the individual and cooperative level.

Future extensions of this work could take into account 
the impact of a large number of appliances and power pro-
duction constraints. In addition to the investigation of the 
local and total communication effect among users on the 
effectiveness of the proposed algorithm.

Table 5  Comparison of profits achieved by different algorithms

References Analyzed load profiles PAR reduction (%) Cost minimization (%) Peak load 
minimization 
(%)

[17] Non- varying Not considered 15.6 15.6
[18] Non- varying  > 1.73 Not considered Not considered
[19] Non- varying Not considered 1.8 16.8
[20] Non- varying Not considered Not considered  > 10
Proposed model Non- varying Scenario1 25.29 11.8 32.61
Proposed model Non- varying Scenario2 28.8 7.46 33.1
Proposed model Non- varying Scenario3 25.41 12.50 33.2
Proposed model Non- varying Scenario4 27.8 8.56 28.42
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