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Abstract
Permanent-Magnet Synchronous Motor has shown advanced performance in the industry, but its smooth operation is affected 
by torque ripple. The conventional Linear Active Disturbance Rejection Controller (LADRC) has a strong anti-interference 
ability. However, this usually makes it more sensitive to measurement noise, reducing steady-state accuracy. This study pro-
poses an Enhanced LADRC controller to obtain strong system disturbance and noise suppression performance. Firstly, the 
total disturbance differential signal is introduced into the Linear Extended State Observer to improve the anti-disturbance 
ability of the system, and the bandwidth parameter configuration method is used to reduce the number of parameters be 
adjusted in the controller to two. Second, A Fal-Filter is built through the nonlinear function and inserted into the controller 
to weaken the measurement noise. Finally, the simulation model is established on the dSPACE motor control platform, and 
the corresponding control algorithm is implemented. Simulation and experimental results show that the control scheme can 
significantly improve the phase current distortion and reduce torque ripple.

Keywords Prospective authors · Template permanent-magnet synchronous motor · Linear active disturbance rejection 
control · Linear extended state observer · Fal-filter · Torque ripple

1 Introduction

Permanent-magnet synchronous motor (PMSM) has the 
advantages of simple structure, high efficiency, and high 
torque-to-inertia ratio, so it has superiority in low-speed 
tracking and high-speed flux-weakening performance [1]. In 
recent years, PMSM has been widely used in high-precision 
servo control. The high-precision and stable drive system 
put forward higher requirements for the smooth operation 
of the motor. However, the non-ideal factors of the motor 
and its drive system will cause torque ripple, which affects 
the application of permanent magnet synchronous motors in 
high-precision servo control systems [2–4].

At present, torque ripple suppression is mainly achieved 
through the optimization and design of the motor struc-
ture and the improvement of the control method. From the 

point of view of motor design, it is practical to analyze the 
magnetization method of permanent magnets to optimize 
the pole-arc coefficient and the pole-slot coordination. In 
terms of optimal control methods, it is mainly divided into 
two ways: relying on the strong robustness of the controller 
andfeed-forward compensation [5].

In recent years, many researchers have conducted 
research on optimizing the robustness of controllers and 
suppressing disturbances. A hybrid robust resonance 
control strategy is studied in [6]. It improves the vector 
resonance controller with the fractional order method, 
making the controller have good robustness and harmonic 
suppression performance. However, predictive control 
and sliding mode control also have strong robustness. A 
harmonic suppression method combining dead-band con-
trol and sliding mode control is proposed in [7], which 
exhibits good torque ripple suppression capability. In 
[8], the researchers analyzed the dead-band as a cause of 
torque ripple. Therefore, the motor drive system adopted 
the dead-band effect compensation algorithm based on 
a Proportional Resonance (PR) controller. Designing a 
feed-forward compensation link is also an effective way to 
suppress torque ripple. A method of extracting nonlinear 
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disturbances is analyzed in [9], and a proportional-integral 
(PI) controller is used to feed-forward the disturbances. 
After compensation, the sixth harmonic component is sup-
pressed, and torque ripple is reduced. In [10], an improved 
Non-homogeneous Disturbance Observer (NHDO) is pro-
posed to converge the d-q axis current error to zero. This 
compensation method has a faster compensation speed and 
can maintain an excellent current tracking performance 
when the main motor parameters do not match. The fifth 
and seventh harmonics in the three-phase static coordinate 
system are caused by the dead-band and lead to the torque 
ripple. Therefore, a filtering method was studied in [11] to 
weaken the dead-band effect, thereby reducing the torque 
ripple. Also, a torque ripple suppression method based on 
harmonic current control is proposed in [12]. It analyzes 
the optimal harmonic current solution, and the method 
also utilizes a least mean square (LMS) based adaptive 
filter (AF), which effectively suppresses torque ripple. 
In particular, the harmonic voltage injection method is a 
typical feed-forward suppression scheme. The harmonic 
voltage model is established under the multi-synchronous 
coordinate system [13]. Then the feed-forward harmonic 
voltage and feedback harmonic current control phase com-
bined, torque ripple is effectively suppressed.

In [14], an extended state observer (ESO) based current 
harmonic suppression strategy is proposed. It is demon-
strated in detail that ESO is superior to traditional propor-
tional-integral controllers and advanced proportional reso-
nance (PR) controllers in harmonic suppression. Professor 
Gao Zhiqiang proposed LADRC after linearizing ADRC 
[15]. With LESO as the core, LADRC estimates and com-
pensates for the total disturbance of the system, which has 
reasonable rapidity and anti-disturbance performance. The 
ability of LADRC to observe disturbances determines its 
anti-disturbance performance. Therefore, a correction link 
for total disturbances is added in [16] to improve the anti-
disturbance performance of LADRC. However, improving 
the observation ability of the controller is often accompa-
nied by an increase in the sensitivity of noise. Therefore, the 
observation pressure of the observer is reduced in [17] by 
connecting two LESOs in parallel to prevent the amplifica-
tion of noise.

In this paper, an Enhanced LADRC is proposed, which 
improves the anti-disturbance ability of the controller and 
has strong anti-noise performance. The structure of this 
paper is as follows, the second chapter describes the conven-
tional LADRC and its limitations, the third chapter designs 
and analyzes the Enhanced LADRC, and strengthens the 
anti-disturbance performance and noise suppression per-
formance in two parts. In addition, the parameter setting 
method or selection range after increasing order are also 
given. Finally, its effectiveness is verified by simulation and 
experiment.

2  PMSM Mathematical Model and LADRC

Under the ideal work conditions, the mathematical model of 
PMSM in the synchronously rotating reference frame [18] 
can be described as:

where id , iq represent the dq-axis currents; ud , uq represent 
the dq-axis voltages; Ld , Lq represent the dq-axis induct-
ances; Rs , �e , and �f  represent the stator resistance, the rotor 
angular speed, and permanent magnet flux linkage. p repre-
sent the number of pole pairs.

In (2), the interference of the dq-axis current will increase 
the difficulty of electromagnetic torque control and easily 
cause torque ripple [19]. Input disturbance and measurement 
noise are included in the current loop. According to (1), the 
current loop of the PMSM drive system is a first-order sys-
tem [20]. The current loop is rewritten into a first-order con-
trolled system, and the q-axis current can be expressed as:

The form of (3) written as an equation of state can be 
expressed as:

w h e r e  x(t) =
[
x1(t) x2(t)

]T  .  A =
[
1 0

][
0 1

]T  . 
B =

[
b0 0

]T  .  C =
[
0 1

]T  .  E =
[
1 0

]
 .  x1 = �e  . 

f = −Rsiq − �e

(
Ldid + �f

)
 . x2 = f  . f  contains load torque 

disturbance and viscous friction coefficient disturbance. 
u = iq . h = ḟ  . b0 = 1∕Lq can be expressed as controller gain.

where z1(k) and z2(k) are expressed as estimates of x1 and 
x2 , respectively. y(k) is represented as the output of the con-
trol object. �1 and �2 are observer parameters.

According to the above formula, the transfer function of.
the estimated value z with respect to the system output y 

and the control value u can be obtained. Then, the system’s 
ability to suppress current loop disturbance and measure-
ment noise disturbance can be obtained. According to [18], 
LADRC can suppress disturbances in the whole frequency 

(1)

{
ud = Ld

did

dt
− �eLqiq + Rsid

uq = Lq
diq

dt
+ �e

(
Ldid + �f

)
+ Rsiq

(2)Te =
3p

2

[
�f +

(
Ld − Lq

)
id
]
iq

(3)
diq

dt
=

1

Lq
[uq − Rsiq − �e(Ldid + �f)]

(4)
{

ẋ(t) = Ax(t) + Bu(t) + Ch

y = Ex(t)

(5)

⎧⎪⎨⎪⎩

z1(k + 1) = z1(k) + h
�
z2(k) − �1e(k) + b0u(t)

�
z2(k + 1) = z2(k) − h�2e(k)

e(k) = z1(k) − y(k)
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domain, especially in low and high-frequency bands. How-
ever, improving the interference immunity in the mid-band 
requires increasing the observer bandwidth, which leads to 
the noise sensitivity of LADRC.

Therefore, it is necessary to find an improvement meas-
ure to the conventional LADRC, which can strengthen the 
ability to suppress disturbance and effectively suppress the 
measurement noise.

3  Design and Analysis of Enhanced LADRC

An Enhanced LADRC is designed in this section, including 
Linear Tracking Differentiator (LTD), Linear State Error 
Feedback (LSEF), Full-order LESO, and Fal-Filter. The 
block diagram of the ELADRC is shown in Fig. 1.

3.1  Design of Linear Tracking Differentiator

In the vector control system of PMSM, there will be some 
high-frequency noise signals in the input signal, and LTD 
can extract continuous signals from the superimposed sig-
nals of various signals. However, inappropriate LTD param-
eters can lead to high-frequency chattering, which in severe 
cases can reduce the controllability of the system. There-
fore, this paper uses the first-order inertial link to replace the 
LTD, and its digital form can be expressed as:

where T = 1∕
(
2�fc

)
 is expressed as the inertia time con-

stant. fc is defined as the cutoff frequency. r(k) is defined as 
the speed given value. c(k) is defined as the output of the 
inertial component. h is expressed as the sampling step. k is 
defined as the kth sampling moment.

3.2  Design of Full‑Order Observer

The differential of the disturbance reflects the changing trend 
of the error and can determine the output value at the next 
moment. To enhance the observation performance of the 
LESO, so the differential equation of the total disturbance 

(6)c(k) = c(k − 1) + h
[
2�fc(r(k) − c(k − 1))

]

is added in (5). The structure of the full-order observer is 
shown in Fig. 1. The observer can be expressed as:

The transfer function of the system can be expressed as:

The poles of (8) are configured according to the band-
width method in [15]. Its characteristic equation and 
expected form can be written as:

By configuring the parameters, �1 , �2 and �3 can be deter-
mined as:

The LESO can track the system state variables accurately 
by selecting the observer bandwidth [21, 22]. The system 
control rate is expressed as:

where kp is represented as the controller proportional 
coefficient, and r(k) is defined as the given reference vari-
able of the system. The structure of the Full-order LESO is 
shown in Fig. 2.

3.3  Disturbance estimation and suppression

The observation ability of the total disturbance can deter-
mine the compensation effect of the observer, and the timely 
output of the observation value can improve the anti-inter-
ference ability. According to (1) and (2), the relationship 

(7)

⎧⎪⎨⎪⎩

z1(k + 1) = z1(k) + h
�
z2(k) − �1e(k) + b0u(t)

�
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z3(k + 1) = z3(k) − h�3e(k)

e(k) = z1(k) − y(k)

(8)z1 =
(�1s

2 + �2s + �3)y + b0s
2u
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(9)
{
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3
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3

(11)
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u0(k) = Kp

(
r(k) − z1(k)

)
u(k) =
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between the total disturbance’s estimated value and its actual 
value can be expressed as:

In Fig. 3, the observation speed of the total disturbance of 
the full-order observer is faster, and the observation results 
of the conventional observer are included. To simplify the 
following analysis, let the system disturbance is �c , and the 
measurement noise disturbance is denoted by �0 . According 
to (7), the transfer function of the observer to the system 
disturbance and measurement noise can be represented as:

According to the above formula, make its amplitude-
frequency characteristic curve. The disturbance rejection 
performance of the full-order observer is reflected in Fig. 4, 
and its noise rejection performance is shown in Fig. 5. Under 
the same bandwidth parameters, the anti-disturbance capa-
bility of Full-order LESO in the middle and low-frequency 
bands is significantly higher than that of conventional LESO. 
Also, the dynamic characteristics of full-order observers 
can maintain good performance. However, the analysis of 
Fig. 5 shows that the full-order LESO does not have a good 
improvement in noise suppression performance. Therefore, 
this paper is further improved by cascading Full-order LESO 
and Fal-Filter.

3.4  Design of the Fal‑Filter

The Fal-Filter can be formed by the Fal function and the 
integral link. By constructing the feedback structure, the 

(12)
z2

x2
=

3�0
2s + �3

0

(s + �0)
3

(13)
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2
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�0
=
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0
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3

measurement noise at the observer’s input can be reduced. 
The structure of the Fal-Filter as shown in Fig. 6. It can 
be represented as:

where the Fal function is given by:

where g is the proportional coefficient, m is the con-
stant between 0 and 1, n is designed as the filtering fac-
tor, y is the input signal of the Fal function, and y0 is 
expressed as the output signal of the Fal-Filter. y denoted as 
y0 = Fal_Filter(y, g,m, n).

According to the characteristics of the Fal function, there 
are two different processing methods for errors of differ-
ent sizes. The error is more evident at a certain moment 
( |E| > n ), and the signal can be quickly converged to the 

(14)
{

ẋ = gfal
(
(y0 − x),m, n

)
y = x, E = y0 − x

(15)fal(E,m, n) =

{ |E|msign(E), |E| > n
E

n1−m
, |E| ≤ n
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input signal through the sign function and small gain, until 
the error value is reduced to n.

After the error converges to a smaller range ( |E| < n ), the 
role of the Fal function changes from fast convergence to a 
low-pass filter. At this time,ẋ = gE∕n1−m.T, e value of ẋ is 
represented by k, according to (15), it can be described as:

The cutoff frequency of this filter decreases as the error 
decreases, which is suitable when AC disturbances accom-
pany the DC input signal.

In addition, the conventional low-pass filter has a signifi-
cant phase delay [23], and the Fal-Filter takes advantage of 
its nonlinear filtering. It can switch between fast approach-
ing the input signal and filtering, so the Fal-Filter has both 
fastness and filtering performance.

4  Simulation and Experiment

The simulations and experiments are carried out in the 
vector control system to verify the effectiveness of the 
Enhanced LADRC. The system control block diagram is 
shown in Fig. 7. A simulation model was built in MATLAB/
Simulink, and the experimental platform was the dSPACE 
platform. The photo of the experimental platform is shown 
in Fig. 8. The experimental platform mainly consists of 

(16)
y0

y
=

k∕s

1 + k∕s
=

k

s + k
=

1

s∕k + 1

PMSM, control cabinet, and induction motor as load. The 
control cabinet includes the dSPACE-DS1202 control board, 
signal converter, and drive circuit. In addition, the motor 
control platform can be connected with PC, real-time dis-
play current, torque, and other information. A PI controller 
controls the speed loop in simulation and experiment. The PI 
controller, conventional LADRC, and Enhanced LADRC are 
used in the current loop controller, and the three algorithms 
are compared. The parameters of the PMSM are listed as 
follows Rated power = 5.5 kW, Rated speed = 1500 rpm, 
Ld = 7.45mH , Lq = 1.78mH , Rs = 0.26 Ω, φf = 0.201 Wb, 
Bus voltage = 546 V, p = 4.

4.1  Simulation Results

The PMSM works under the condition of rated speed, the 
initial torque is 5 N·m, and then the given step torque is 
15 N·m. A random measurement noise signal is applied on 
the feedback path of the motor output current to verify the 
noise suppression performance.

In Fig. 9, the control performances under the three control 
methods are shown. By comparing the phase currents of the 
three methods, it can be found that the current distortion 
under the conventional PI algorithm is significant.

and contains high-frequency components. This phenom-
enon is caused by the inverter’s high-frequency noise and 
nonlinear factors [20]. Similarly, although the current is sta-
ble under the traditional LADRC control method, it still con-
tains some disturbance components. However, the Enhanced 
LADRC enables smoother phase currents, better sinusoids, 
and significantly fewer high-frequency components. Then, 
the phase currents under the three control methods are ana-
lyzed by FFT, and it can also be found that the disturbances 
under the Enhanced LADRC are reduced.

By comparing the torque performance under the three con-
trol methods, it can be seen that the stability of the PI controller 
is insufficient, and the torque ripple is noticeable. Compared 
with the PI controller, the torque ripple under the LADRC 
method is suppressed, but there are still high-frequency com-
ponents. However, Enhanced LADRC not only suppresses 
torque ripple, but also reduces high-frequency disturbances.
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4.2  Experimental Results

The Enhanced LADRC algorithm is built in the PMSM vector 
control system to verify the control method. The speed and 
torque set in the experiment are the same as in the simulation.

In Fig. 10, the disturbance immunity of the three con-
trol methods is demonstrated. The PI controller contradicts 
rapidity and overshoot, so the torque has a significant over-
shoot. In terms of anti-disturbance, the PI controller cannot 
effectively suppress current distortion and noise, resulting 
in more considerable torque disturbance. Compared with 
the PI controller, the dynamic performance of the conven-
tional LADRC is better, but it cannot suppress the noise 
and the internal disturbance of the system at the same time. 
However, the Enhanced LADRC strengthens noise suppres-
sion and better suppresses the system disturbance so that the 
torque ripple will be more minor. In addition, it also inherits 
the dynamic performance of the conventional LADRC.

5  Conclusions

The Enhanced LADRC control method was proposed in this 
paper to improve the measurement noise and disturbance 
rejection performance of PMSMs. It was verified on the 
MATLAB/Simulink and dSPACE motor control platforms, 
and the following conclusions were obtained.

1) The Full-order LESO and Fal-Filter deal with mid-and 
low-frequency disturbances and high-frequency noise. 
Therefore, the Enhanced LADRC can solve the problem 
that conventional LADRC is difficult to balance meas-
urement noise and system disturbance.

2) Through the Enhanced LADRC method, the motor’s 
torque is smoother, and the sine of the phase currents 
is strengthened. According to the experimental results, 
compared with the traditional PI controller, the total 
current harmonic distortion rate is reduced by about 
5.24%. When compared with LADRC, the distortion rate 
dropped by about 1.72%. In addition, the smoothness of 
phase current and torque is significantly enhanced by the 
method in this paper.

significant
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