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Abstract
On-board charger (OBC) is key part of electric vehicles. Limited to space and weight, design objectives of OBC are high 
power-density and high efficiency. Two-stage circuit is commonly used for 3.3 kW OBC, interleaved power factor correc-
tion (ILPFC) is utilized for power factor correction and DC bus voltage regulation, LLC resonant converter is utilized for 
voltage and power regulations. In this paper, the relationships between the internal parameters and efficiency of ILPFC are 
studied by discrete iterative method, and the internal parameters are optimized to improve ILPFC`s efficiency. Meanwhile, 
the relationships between the resonant parameters and efficiency of LLC converter are also studied by fundamental harmonic 
approximation method to optimize the efficiency in wide charging voltage. A 3.3 kW OBC prototype is developed to verify 
the effectiveness and correctness of the optimal method, the power factor and total harmonic distortion at full-load state are 
about 99.99% and 2.98% with the charging voltage ranging from 230 to 430 V, respectively.

Keywords On-board charger · Power density · Efficiency · Electric vehicles

1 Introduction

Limited to space and weight, main design objectives of OBC 
are high power density [1–6], high efficiency [7–9], high 
power factor (PF) [10], and low total harmonic distortion 
(THD) [11–13]. Typical OBC is based two-stage circuit 
[14–16], AC/DC stage is used for power factor correction 
[17], DC/DC stage is utilized to regulate charging power 
and voltage [18]. Traditional single phase boost circuit has 
high current stress [19], and large inductor [20]. On contrary, 
interleaved boost power factor correction (ILPFC) has lit-
tle current ripple, small inductor [21], high efficiency, and 
high power-density [20]. LLC converter has merits of soft-
switching [22], high efficiency [23, 24], and wide voltage 
[25], then ILPFC + LLC converter is suitable for OBC [26]. 
However, the efficiency is affected by switching frequency, 
boost inductors, and DC link voltage [27], which determines 
conduction loss and switching loss, and the above losses are 
difficult to analyze by traditional method.

To improve OBC`s efficiency, there are commonly three 
methods: (a) high performance devices [14, 18, 28–30], (b) 
modified circuit [6, 22, 31–33], and (c) improved control 
[1, 34, 35]. High performance devices is the most direct 
approach, literatures [14, 28, 29] use SiC and GaN devices to 
improve the efficiency, however, presently, the cost of these 
devices is much higher than Si-based devices, which is the 
biggest obstacle for industrial application. To improve the 
efficiency, literature [10] proposed variable dc-link voltage 
control and ensure LLC converter at the resonant frequency 
in wide voltage range, however, which brings complex con-
trol to PFC. Literature [26] designed an OBC with consid-
ering efficiency and volume, however, the peak efficiency 
of LLC converter is 95.4% and needs further improvement. 
Hybrid control adopted in [1] and [2] can improve the peak 
efficiency of LLC converter to 96%, but the control is com-
plex and not good for applications. Ultrawide dc-link volt-
age in [36] is also useful for efficiency, but the volume of 
passive components maybe increased because the large cur-
rent at low charging voltage. Multi-resonant frequency is 
introduced in [37] to widen the charging voltage range, but 
the extra components results in the complex hardware, low 
reliability, and difficulty to design the multi-parameters. The 
above methods are useful to improve the efficiency, but it 
is hard to deal with the contradictions between hardware`s 
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cost, complexity, reliability, control, implementation, and 
so on.

To improve the efficiency in wide charging voltage range 
without increasing hardware cost and control complex-
ity, a discrete iterative method is proposed to estimate and 
optimize ILPFC`s efficiency. Moreover, LLC converter`s 
loss and efficiency in wide charging voltage range are also 
estimated and optimized based on fundamental harmonic 
approximation (FHA). The OBC`s efficiency in wide charg-
ing voltage range is optimized by designing the internal 
parameters of ILPFC and LLC converters.

2  ILPFC

Typical topology for OBC includes two stages, as Fig. 1 
shows. AC/DC is used for PFC, DC/DC is used for out-
put voltage and power regulation. Actually, the topology in 
Fig. 2 is commonly adopted. VAC, iAC and VBUS are input 
voltage, input current and DC link voltage. L1, L2 are boost 
inductors, L1 = L2 = Lb. D1 ~ D4 are rectifier diodes. Q1 ~ Q2 
and D5 ~ D6 are MOSFETs and freewheeling diodes. S1 ~ S2 
are control signals of Q1 ~ Q2, they have a phase differ-
ence of 180 degree. iL1 ~ iL2 and iQ` ~ iQ2 are the currents of 
boost inductor and MOSFET. is,PFC is bridge current and 
is, PFC = iL1 + iL2. CB is link capacitor. Q3 ~ Q6 and D7 ~ D10 
are LLC converter`s MOSFETs and diodes. Lm, Lr and Cr are 
magnetizing inductor, resonant inductor and capacitor. vab 

and vcd are primary and secondary-side ac voltages. ir and io 
are resonant and output currents. Vo is charging voltage, Co 
is output capacitor. 

Losses of EMI filters, rectifier bridge, boost inductors, 
MOSFETs and diodes of ILPFC are denoted as PE, loss, 
Pb, loss, PLb, loss, Pd, PFC, loss and Pm, PFC, loss. fs, PFC is switch-
ing frequency, the sampling period is ts, PFC = 1/fs, PFC. va is 
discrete as Σvk, k is sampling series, the sampling time is 
Σtk. In a sampling period, va(t) can be seen as constant value. 
iL1(t), va and S1 are shown in Fig. 3 [17–19].

2.1  Current Waveforms of IBPFC

2.1.1  Current Waveforms in CCM

In a half line period, as Fig. 3a shows, iL1(t) is continuous 
and the average is 0.5iAC(t). In the kth switching period, 
iL1(t) linearly increases when dk − 1 = 1 and decreases when 
dk − 1 = 0. Ik, start and Ik, end are the starting and ending values 
of iL1(t). iL1, kr and iL1, kf are waveforms when dk − 1 = 1 and 
dk − 1 = 0. tk − 1 and tk are the starting time and ending time. 
Ik,turnoff is turn-off current of Q1, Tk, r and Tk, f are the turn-
on and turn-off time. im1, k(t), id5, k(t) and iL1, k(t) are currents 
of Q1, D5 and L1. Duty cycle of Q1 is [20]

During tk − 1 ≤ t ≤ tk − 1 + dkts, PFC, iL1,k(t) raises in 
the slope of vk/L. im1,k(t) = iL1,k(t), and id5,k(t) = 0. Dur-
ing tk − 1 + dkts,PFC ≤ t ≤ tk, iL1,k(t) decreases in the slope 
of (VBUS − vk)/L. im1,k(t) = 0. id5,k(t) = iL1,k(t). Because 
Ik,start = Ik − 1,end, then iL1(t), im1(t) and id5(t) in the kth 
switching period in CCM can be expressed as (2), where 
Tk,f = (1 − dk)ts,PFC. Tk,r = dkts,PFC. Because Ik+1, start = Ik,end, 
then iL1(t), im1(t) and id5(t) can be expressed as (3), where 
fline is the line frequency. By the same principle, im2(t), id6(t) 
and iL2(t) in CCM can be also obtained.

(1)dk = (VBUS − vk)∕VBUS
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Fig. 2  Topology of OBC with two-stage circuit
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(2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ik,start = Ik−1,end t = tk
im1,k(t) = Ik,start + vk[t − (k − 1)ts,PFC]∕Lb tk−1 < t ≤ tk−1 + dkts,PFC
im1,k(t) = 0 tk−1 + dkts,PFC < t ≤ tk
id5,k(t) = 0 tk−1 < t ≤ tk−1 + dkts,PFC

id5,k(t) = Ik,start + vkTk,r∕Lb

−(VBUS − vk)[t − (k − 1)ts,PFC − Tk,r]∕Lb
tk−1 + dkts,PFC < t ≤ tk

Ik,turnoff = Ik,start + Tk,r∕Lb t = tk−1 + dkts,PFC
Ik,end = Ik,start + [vkTk,r + (VBUS − vk)Tk,f ]∕Lb t = tk

(3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

im1(t) =

2fs∕fline�
k=1

�
im1,k(t)

�

id5(t) =

2fs∕fline�
k=1

�
id5,k(t)

�

iL1(t) = im1(t) + id5(t)

2.1.2  Currents Waveforms in BCM

As Fig. 3b shows, in BCM, at the starting and ending points, 
iL1(t) = 0, the duty cycle is dk = (VBUS − vk)/VBUS. At t = tk − 1 
and t = tk, iL1(t) = 0, and Ik,start = Ik,end = Ik − 1,end = Ik+1,start = 0. 
During tk − 1 ≤ t ≤ tk − 1 + dkts,PFC, iL1,k(t) raises in the slope of 
vk/L, im1,k(t) = iL1,k(t), id5(t) = 0. During tk − 1 + dkts,PFC < t < tk, 
iL,k(t) decreases in the slope of (VBUS − vk)/L. im1,k(t) = iL1,k(t). 
id5,k(t) = 0. im1(t), id5(t) and iL1(t) in the kth period are

2.1.3  Currents Waveforms in DCM

As Fig. 3c shows, in the kth switching period, iL1,k(t) is 
0 before the end, during tk − 1 ≤ t < tk − 1 + dkts,PFC, iL1,k(t) 
increase in the slope of vk/L. im1,k(t) = iL1,k(t). id5,k(t) = 0. 
Q1 is turned off at t = tk − 1 + dkts,PFC. During tk − 1 + dkts,PFC 
≤ t < tk,PFC + Tk,r + Tk,f, iL1,k(t) decreases in the slope of 
(VBUS − vk)/L. id5(t) = iL1,k(t) = 0 at t = tk − 1 + Tk,r + Tk,f. Dur-
ing tk − 1 + Tk,r + Tk,f ≤ t < tk, iL1,k(t) is in DCM, iL1,k(t) = id5,k(t) 
= im1,k(t) = 0. And dk in DCM and the average current IL1_k_av 
are give by (5) and (6) [21], where Po,PFC is output power. 
im1(t), id5(t) and iL1(t) in kth switching period in DCM are 
expressed as (7). Once im1(t), id5(t) and iL1(t) are obtained, 
RMS values of im1(t), id5(t) and iL1(t) can be calculated by 
(8), where IL1, Id5, Im1 and Is,PFC are RMS currents of L1, D5 

and M1, respectively.

(4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ik,start = 0 t = tk−1
im1,k(t) = Ik,start + vk[t − (k − 1)ts,PFC]∕Lb tk−1 < t ≤ tk−1 + dkts,PFC
im1,k(t) = 0 tk−1 + dkts,PFC < t ≤ tk
id5,k(t) = 0 tk−1 < t ≤ tk−1 + dkts,PFC

id5,k(t) = Ik,start + vkTk,r∕Lb

−(VBUS − vk)[t − (k − 1)ts,PFC − Tk,r]∕Lb
tk−1 + dkts,PFC < t ≤ tk

Ik,turnoff = Ik,start + Tk,r∕Lb t = tk−1 + dkts
Ik,end = Ik+1,start = 0 t = tk

(5)dk =
2
√
Lbfs,PFCPo,PFC√

2VAC

�
1 −

vk

VBUS
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√
2Po,PFC sin(2�flinets,PFCk)∕(2VAC)

v1
v2

vk+1vk

d1 d2 dk dk+1

iL1(t)

iL1,kr(t)
0.5iAC(t) iL1,kf (t)

t1 t2 tk tk+1

Ik,end

t0

ts

va(t)

S1

Ik,start

tk-1+Tk,r tk

Tk, fTk, r

tk-1

Ik,end

Ik-1,end=Ik,start

Ik,turnoff

S1

(a) 

v1
v2

vk+1vk

d1 d2 dk dk+1

iL1(t)

iL1,kr(t)
0.5iAC(t)

iL1,kf (t)

t1 t2 tk tk+1

Ik,end

t0

ts

va(t)

Ik,start

S1

tk-1+Tk,r tk

Tk, fTk,r

tk-1

Ik,turnoff

Ik-1,end=Ik,start Ik,end

S1

(b) 

v1
v2

vk+1vk

d1 d2 dk dk+1

iL1(t) iL1,kr(t)
0.5iAC(t)

iL1,kf (t)

t1 t2 tk tk+1t0

va(t)

ts

Ik,start

Ik,end

S1

tk-1+Tk,r tk

Tk, fTk,r

tk-1

Tk,zero

Ik,turnoff Ik,end

Ik-1,end=Ik,start

S1

(c) 

Fig. 3  Waveforms of iL(t), va(t) and S1 in: a CCM, b BCM, and c 
DCM in half line period
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2.2  Efficiency of ILPFC

Losses of EMI, rectifier, inductors, MOSFETs and diodes 
are denoted as PEMI, Pb,loss, PLb,loss, Pm, PFC,loss and Pd, PFC,loss, 
respectively.

2.2.1  Input EMI Filter Losses of ILPFC

As Fig. 4 shows, EMI includes capacitor CE and inductor Le. 
If iAC(t) is sine wave, then iEMI and PE,loss are (9) and (10), 
where rLe and rCe are equivalent series resistance (ESR) of 
CE and LE. IAC and IEMI are the RMS currents of LE and CE.

2.2.2  Power Device Losses of ILPFC

The power devices` loss includes bridge loss Pb,loss, MOS-
FET loss Pm,PFC,loss, and diode loss Pd,PFC,loss, where Vb,F 

(7)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ik,start = 0 t = tk−1
im1,k = Ik,start + vk[t − (k − 1)ts,PFC]∕Lb tk−1 < t ≤ tk−1 + dkts,PFC
im1,k = 0 tk−1 + dkts,PFC < t ≤ tk
id5,k(t) = 0 tk−1 < t ≤ tk−1 + dkts,PFC
id5,k(t) = Ik,start + vkTk,r∕Lb
−(vk − VBUS)[t − (k − 1)ts,PFC − dkts,PFC]∕Lb
tk−1 + dkts,PFC < t ≤ tk
Ik,turnoff = Ik,start + Tk,r∕Lb t = tk−1 + dkts,PFC
Ik,end = Ik+1,start t = tk

(8)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

IL1 =

�
1

2fline ∫
1∕(2flins)

0

i2
L1
(t)dt

�0.5

Id5 =

�
1

2fline ∫
1∕(2flins)

0

i2
d5
(t)dt

�0.5

Im1 =

�
1

2fline ∫
1∕(2flins)

0

i2
m1
(t)dt

�0.5

Is,PFC =

�
1

2fline ∫
1∕(2flins)

0

�
iL1(t) + iL2(t)

�2
dt

�0.5

(9)iEMI(t) = is,PFC(t) −
√
2Po,PFC,full sin(2�flinet)∕VAC

(10)PE,loss = rLeI
2

AC
+ rCeI

2

EMI

and Vd,F are the voltage drop of bridge and diodes. Rds,on is 
the MOSFETs` on-resistor. CFB and tfall are the MOSFETs` 
parasitic capacitance and fall time. Irr and trr are the reverse 
recovering current and reverse recovery time of diodes. 
Pm,PFC,c and Pm,PFC,s are the MOSFETs` conduction loss and 
switching loss. Pd,PFC,c and Pd,PFC,s are the diodes` conduc-
tion loss and switching loss.

2.2.3  Boost Inductor Losses of ILPFC

Boost inductor`s loss is given by (12), where SLb , NLb
 and 

lLb are the effect conducting area, turn number and aver-
age winding length. ρT is the conductor`s resistivity. The 
ILPFC`s efficiency can be expressed as (13), where Pother 
is mainly the driving loss. Pb,c, Pm,PFC,c and Pd,PFC,c are 
affected by IL1+L2, Im1 and Id5. Pm,PFC,s, Pd,PFC,s are effected 

(11)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Pb,c = Vb,FIs,PFC
Pm,PFC,c = 2Rds,onI

2

m1

Pd,PFC,c = 2Vd,FId5

Pm,PFC,s = 2

0.5fs∕fline∑
k=1

I2
m1,turnoff

t2
fall

6CFB

Pd,PFC,s = voIrrtrrfs
Pb,loss = Pb,c

Pm,PFC,loss = Pm,s + Pm,c

Pd,PFC,loss = Pd,s + Pd,c

(a) (b)

Fig. 4  EMI`s: a equivalent circuit, and b waveforms

ts0.5ts0
time t (s)

ir
is im

ucduab

Fig. 5  Waveforms of ir, im, is, uab, and ucd at fs,LLC = fr,LLC
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by Im1,k,off and Irr, trr. Is,PFC, Im1, Id5 and IEMI are affected by 
VAC, VBUS, L and fs,PFC.

3  LLC Resonant Converter

3.1  Waveforms of LLC Resonant Converter in P 
Mode

To simplify the analysis, following assumptions are taken: 
(a) all components are ideal devices, (b) Vo is a constant 
value, (c) duty cycle of Q3 ~ Q6 is 0.5. ir, im, is, vab and vcd at 
the resonant frequency are shown in Fig. 5. ir(t) is sinusoi-
dal waveform. im(t) increases in the slope of VBUS/Lm during 
0 ≤ t < 0.5tr,LLC and decreases in the slope of − VBUS/Lm dur-
ing 0.5tr,LLC ≤ t < tr,LLC.

The resonant currents ir(t) and magnetizing current im(t) 
are given by (14) and (15), where Ir,peak and ωr are the peak 
resonant current and angular frequency. θ is phase difference 
between ir(t) and vab. ωr = 2πfr = (LrCr)−0.5.

Because ir(t) = im(t) at t = 0, then θ can be given by (16). 
The input energy EVBUS

 from VBUS and the absorbed energy 
ER by load can be obtained by (17) and (18), where N is 
transformer`s turn ratio. Because EVBUS

=ER , Ir,peak can be 
obtained by solving Eqs. (17) and (18), and θ can be cal-
culated by solving Eq. (19) and (16). Moreover, because 
is(t) = N[ir(t) − im(t)], then teh primary and secondary RMS 
currents Ip,RMS and Is,RMS, and the turn-off current Iturnoff can 
be given by (21).

(12)PLb,loss
= (I2

L1
+ I2

L2
)�T lLbNLb

∕S=2I2
L1
�T lLbNLb

∕SLb

(13)

�PFC =
Po,PFC

Po,PFC + PE,loss + PLb,loss
+ Pm,PFC,loss + Pd,PFC,loss + Pother

(14)ir(t) = Ir,peak sin(�rt − �)

(15)im(t) =
VBUS(4t − tr,LLC)

4Lm
=
VBUS(4frt − 1)

4fr1Lm

(16)� = arcsin

[
VBUSts,LLC

4LmIr,peak

]
= arcsin

[
VBUS

4LmIr,peakfr

]

(17)EVBUS
=

Ir,peakVBUS

2�fr

√√√√V2

BUS
− 16I2

r,peak
L2
m
f 2
r

I2
r,peak

L2
m
f 2
r

(18)ER = Po,LLCts,LLC =
V2
o

Rfr
=

V2

BUS

N2Rfr

3.2  Losses of LLC Resonant Converter

Losses of LLC converter includes MOSFETs’ loss Pm,LLC, 
transformer’s loss PT, resonant inductor’s loss PLr, and diodes’ 
loss. The total loss and efficiency of LLC converter are given 
by (26) and (27). In a half switching period, part of the reac-
tive energy is transferred from VBUS to resonant tank during 
θ/(2πfr) ≤ t < 1/fr and returns from the resonant tank to VBUS 
during 0.5/fr ≤ t < 0.5/fr + θ/(2πfr) in the next half period. The 
reactive energy WQ,Vin in a switching period is given by (28), 
and the reactive power QLLC and power factor PFLLC are given 
by (29) and (30). Based on FHA method, Vo can be obtained 
by (31) [22], where Q is the quality factor, and k = Lm/Lr. The 
selection of fr and Lm is based on the required Ptotal,LLC, and 
Cr can be determined by (33), then Lr can be further obtained.

(19)Ir,peak =
VBUS

4LmN
2Rfr

√
4�2L2

m
f 2
r
+ N4R2

(20)�= arcsin

⎡
⎢⎢⎢⎣

N2R�
N4R2+4�2L2

m
f 2
r

⎤
⎥⎥⎥⎦

(21)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ip,RMS =
VBUS

4
√
2LmN

2Rfr

�
4�2L2

m
f 2
r
− N4R2

Is,RMS =

������2fr

0.5∕fr

∫
0

�
ir(t) − im(t)

�2
N2dt

=
VBUS

�
5�2N4R2 − 48N4R2 + 12�4L2

m
f 2
r

4
√
6LmfrNR

Iturnoff =
VBUStr

4Lm
=
VBUS

4frLm

(22)

⎧⎪⎪⎨⎪⎪⎩

PQ,LLC,s = I2
turnoff

t2
fall

�
CFB

PQ,LLC,c = 2I2
p,RMS

Rds,on

PQ,LLC,loss = PQ,LLC,s + PQ,LLC,c

(23)PT ,loss = I2
p,RMS

rp,w + I2
s,RMS

rs,w

(24)PLr ,loss
= I2

p,RMS
rLr

(25)Pd,LLC,loss = 2VFIs,RMS



2344 Journal of Electrical Engineering & Technology (2022) 17:2339–2351

1 3

(26)

Ptotal,LLC,loss = PLr ,loss
+ PQ,LLC + PT ,loss + Pd,LLC

=

V2

BUS

⎧⎪⎨⎪⎩
CFB

⎡⎢⎢⎣

3�2R2N4rp +
�
5�2 − 48

�
N6R2rs,w + 12�4

�
rp + N2rs,w

�
f 2
r
L2
m

+8
√
6�N3RVFfrLm

�
12�4L2

m
f 2
r
+
�
5�2 − 48

�
N4R2

�
VBUS

⎤⎥⎥⎦
+ 6�2N4R2t2

fall
L2
m

⎫⎪⎬⎪⎭
96�2CFBN

4R2f 2
r
L2
m

(27)�LLC = Po,LLC

/(
Po,LLC + Ptotal,LLC,loss

)
.

(28)

WQ,Vin
=

V2

BUS

4�LmN
2frR

(√
4�2L2

m
f 2
r
+ N4R2 −

√
4�2L2

m
f 2
r

)

(29)

QLLC = frWQ,Vin

=
VBUS

4Lmfr

�
arcsin

�
N2R√

N4R2 − 4�2L2
m
f 2
r

��
2 sin

2
�
�fr

�
− 1

�

+
2Lmfr

N2R
sin

2

�
�

2
arcsin

�
N2R√

N4R2 − 4�2L2
m
f 2
r

���

4  Design of On‑Board Charger

4.1  Design of ILPFC

The design flow of ILPFC is shown in Fig. 6. Once VAC, 
fPFC, Lb and VBUS are determined, PE,loss, Pb,loss, Pm,PFC,loss, 
Pd,PFC,loss and PLb,loss

 are calculated by the proposed method, 

and ηPFC can be improved by optimizing fs,PFC, Lb, VBUS. The 
design of Lb can refer to [23].

The relationships between ηPFC and VAC, fs,PFC, Lb and 
VBUS are presented in the Fig. 7, where αPFC is the load fac-
tor. Figure 7a shows that all loss reduces with the increase 
of VAC. Figure 7b shows that almost all loss decreases with 
the increase of Lb except for PLr,loss, because large Lb brings 
large ESR and copper loss. Figure 7c shows that almost all 
loss decreases with the increase of fs,PFC except for Pm,PFC,loss 
because of large switching loss. Figure 7d shows that almost 
all loss increases with the increase of VBUS except for 
Pd,PFC,loss because of large diodes` current ripple. Figure 7e 
shows that ηPFC increases with the increase of VAC. Figure 7f, 
g present that the influence of Lb on ηPFC and the influence 
of fs,PFC on ηPFC are nonlinear. Figure 7h shows that the 
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influence of VBUS on ηPFC is almost linear. High VBUS can 
improve ηPFC, but which leads to high voltage stress.

4.2  Design of LLC Resonant Converter

The design flow of LLC converter is shown in Fig. 8. If 
VBUS, Vo,nor are determined, then N can be determined. Then 
the total losses can be figured out by (27), and fr and Lm can 
be selected by the required Ptotal,LLC, and then Lr and Cr can 
be determined by voltage gain.

The surface map of Ptotal,LLC and ηLLC at fs = fr are shown 
in Fig. 9a, b for Rds,on = 150 mΩ, rLr=25 mΩ, rp,w = 25 mΩ, 
rs,w = 22 mΩ, R = 31Ω, VF = 0.7 V, tfall = 6 ns, CFB = 130 pF. 
Large fr and Lm is useful to improve ηLLC but reduces the volt-
age gain, then fr and Lm must be optimized. If required ηLLC is 
determined, target area of (fr, Lm) can be searched in Fig. 9b. 
In this paper, Lr and Cr are designed as 45 µH and 75 nF. The 

peak voltage Vo,peak is approximate 433 V, as Fig. 9c shows, 
which satisfies the requirement Vo,max = 430 V. As Fig. 9d 
shows, if Lr and Cr are designed as 50 µH and 67.55 nF, 
Vo,peak = 418 V, the design result will miss the requirement.

5  Control of On‑Board Charger

Average current control is used for ILPFC as shown in Fig. 10a. 
VBUS,ref is the reference of Vbus. iL1,ref and iL2,ref are the references of 
iL1 and iL2, the duty cycles are Temp1 and Temp2. An offset doffset is 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7  Relationship between loss and: a VAC, b Lb, c fs,PFC, d VBUS, 
and between ηPFC with αPFC for different: e Vac, f Lb, g fs,PFC, and h 
VBUS

Fig. 8  Design flow chart of LLC converter

(a) (b)

(c) (d)

Fig. 9  Surface map of: a Ptotal,LLC(fr,Lm), b ηLLC(fr,Lm), and 
curves of Vo(fs,LLC) for: c Lr = 45  µH, Cr = 75  nF, and d Lr = 50  µH, 
Cr = 67.55 nF
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added to improve PF, the modified duty cycles are Temp1 + doffset 
and Temp2 + doffeset. Kd is the offset coefficient. As Fig. 11 shows, if 
Lb = 220 µH and fs,PFC = 60 kHz, iL1 is in DCM and iAC is distorted 
near the zero crossing point for Kd = 0. If Kd = 1, iL1 is in CCM and 
iAC is a sinusoidal waveform. Here Kd is set as 0.8.

Io,ref and Vo,ref are the references of io and Vo. The charging 
curves is given in Fig. 12, if Vo > 275 V, the charging power 
is 3.3 kW, the converter works in constant voltage mode, 
otherwise, the converter works in constant current mode, 
and the maximum charging current is 12A.

6  Experiment Result and Analyses

The requirements are given in Table 1. A 3.3 kW proto-
type is developed, as Fig. 13 shows. Two same transform-
ers are used for LLC converter, the primary and second-
ary windings are in series and paralleled, the turn ratio is 
17:26. PQ35/35 DMR cores are used for ILPFC, PQ35/35 
DMR95 cores are used for LLC converter. TI F28035 
is selected for the controller, MOSFETs with types of 
IPP60R099C6 and IPP65R110CFD are used for Q1 ~ Q2 

and Q3 ~ Q6. In Fig. 13a, conventional OBC is based on 
single-phase boost PFC and LLC converter, the param-
eters are Lr = 12 µH, Cr = 99 nF, and Lm = 88 µH, the size is 
245 mm × 210 mm × 95 mm, the volume is 298  in3, and the 
power density is 11.1 W/in3. For this paper`s prototype, the 
size is 241 mm × 175 mm × 75 mm, as Fig. 13b shows, the 
volume and power density are 193  in3 and 7.1 W/in3, which 
is higher than conventional prototype.

Measured iac, Vac, iL1, and iL2 at the full-load, half-load 
and 20% load states are given in Fig. 14. The normal input 
voltage is 220 V with 50 Hz. At the full and half load states, 
iac is sinusoidal and has the same phase as Vac, and the PFs 
are higher than 99.9% and 99.8%. At 20% load state, as 
Fig. 14c shows, iL1 and iL2 are in DCM.

Figure 15 shows the measured waveforms of LLC con-
verter. The maximum and minimum switching frequencies 
fmax,LLC and fmin,LLC are 117 kHz and 47.6 kHz, respectively.

Figure 16 presents the harmonic distribution at 20%, half, 
and full load states. The THDs at 20%, half, and full load 
states are 6.3%, 4.09%, and 2.98%, respectively. The PFs at 
20%, half, and full load states are 96.99%, 99.91% 99.96%, 
respectively.

As Fig. 17a shows, measured ηPFC is lower than the the-
oretical efficiency, the error comes from the driving loss. 
ηPFC, ηLLC and ηoverall of the developed prototype are higher 
than conventional OBC. The PFC and LLC converters’ peak 
efficiencies are about 97.3% and 97.4%. The overall and 
peak efficiencies are higher than 93.3% and 94.8% (Fig. 18).

Figure 19 shows the measured ripple factor of Vo, the rip-
ple factor is calculated by 0.5ΔVo/Vo, where ΔVo is the peak-
to-peak value of the voltage ripple, the voltage ripple factor 
decreases with the increase of Vo, which can be explained as 
follows: firstly, the voltage ripple of Vo comes from the DC-
link voltage`s ripple, in this paper, the peak-to-peak ripple of 
VBUS is about 20 V, because the voltage ripple can be seen as 
a AC voltage, it can be transferred to Vo by the transformer, 
and the transformer turn ratio is about 1.308, then the peak-to-
peak voltage ripple transferred from VBUS to Vo is about 15.3 V. 
Secondly, the voltage controller of LLC converter has the abil-
ity to adjust Vo even VBUS is fluctuates, then the voltage ripple 
transferred from VBUS to Vo can be reduced, in the measured 
results, the peak-to-peak voltage ripple of Vo ranges from 6 to 
7 V in the range of Vo from 230 to 430 V, and the voltage rip-
ple factor is ranging from 1.39 to 0.69% as shown in Fig. 19.

Table 2 gives the hardware cost of the main components. 
For ILPFC, the most cost is used for inductors and capaci-
tors, and power devices` cost also takes a great part. For LLC 
converter, the most part cost is used for MOSFETs and trans-
former. The hardware cost of ILPFC`s main components is 
about 30.75 $, the hardware cost of LLC converter is about 
40 $, the total cost of the main components is about 70.75$.

The requirements are given in Table 1. A 3.3 kW proto-
type is developed, as Fig. 13 shows. Two same transformers 

(a)

(b)

Fig. 10  Control of: a ILPFC, and b LLC converter

Fig. 11  Waveforms of: a iL, and b iAC for Kd = 0 and 1
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are used for LLC converter, the primary and second-
ary windings are in series and paralleled, the turn ratio is 
17:26. PQ35/35 DMR cores are used for ILPFC, PQ35/35 
DMR95 cores are used for LLC converter. TI F28035 
is selected for the controller, MOSFETs with types of 
IPP60R099C6 and IPP65R110CFD are used for Q1 ~ Q2 
and Q3 ~ Q6. In Fig. 13a, conventional OBC is based on 
single-phase boost PFC and LLC converter, the param-
eters are Lr = 12 µH, Cr = 99 nF, and Lm = 88 µH, the size is 
245 mm × 210 mm × 95 mm, the volume is 298  in3, and the 
power density is 11.1 W/in3. For this paper`s prototype, the 
size is 241 mm × 175 mm × 75 mm, as Fig. 13b shows, the 
volume and power density are 193  in3 and 7.1 W/in3, which 
is higher than conventional prototype.

Table 3 shows the comparison between the developed 
prototypes in literatures [17, 26], where THDfull, PFfull, 
ηPFC,full, ηLLC,full, ηOBC,full are the THD, PF, PFC`s efficiency, 
LLC`s efficiency, and overall efficiency at the full load. PD 
is the power density. The prototype in this paper has better 
performance in total efficiency, power density, THD and PF 

compared with the prototypes in literatures [17, 26], this is 
attributed to the proposed comprehensive design method to 
optimize OBC`s internal parameters.

Table 4 shows the comparisons between this paper with 
literatures [1, 10, 36–38]. Compared with literatures [1, 10, 
36–38], the developed prototype has higher efficiency and 
wider output voltage range. In literatures [1, 38], SiC-based 
diodes are adopted on the secondary-side, and the reverse 
recovery loss of SiC-based diodes is much lower than that 
of Si-based diodes adopted in this paper, that is to say, if the 
SiC-based diodes are replaced by Si-based diodes in litera-
tures [1, 38], the advantage of efficiency in this paper over 
that in literatures [1, 38] will be further enhanced. Com-
pared with this paper, the output voltage range in literature 
[36] is wider, however, which needs regulate dc-link voltage 
dynamically to ensure LLC converter always operates at the 
resonant frequency and sacrifices the efficiency in low out-
put voltage region and increases the current ripple in high 
output voltage region. The comparison between literatures 
[37, 38] and the this paper is more fair, because the power is 
the same, but the comparison result further verified that the 
efficiency in this paper is higher.

7  Conclusion

The loss and efficiency of ILPFC are analyzed by the pro-
posed discrete iterative method. The loss, efficiency and 
voltage gain of LLC converter are analyzed by FHA method. 
And the efficiency of OBC is optimized by designing the 
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Fig. 12  Charging curve of 3.3 kW OBC

Table 1  Key parameters of 3.3 kW OBC

Parameters Value Parameters Value

VBUS 400 V Lm 320 µH
PPFC, Po,LLC 3.3 kW Lr 45 µH
fs,PFC 60 kHz N 1.308
fr 86.6 kHz Vo 230~430 V

(a) (b)

Fig. 13  Pictures of: a conventional, and b the developed 3.3 kW pro-
totypes
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internal parameters. The ILPFC`s efficiency is improved by 
about 1.1% compared with conventional scheme. The effi-
ciency of LLC converter is improved by about 1.3% com-
pared with conventional scheme. The PF and THD of the 
prototype are approximate 99.99% and 2.98%, respectively, 
the overall efficiency is improved by about 1% compared 
with conventional 3.3 kW OBC at the full load state.

In the future, the proposed method will be extended to 
optimize the efficiency of 6.6 kW and 11 kW bi-directional 
OBC with properly modification for actual topologies.

Fig. 16  Harmonic at 20%, half, and full load states

(a) (b)

(c) (d)

Fig. 17  Curves of: a ηPFC for theory and test, b ηPFC for two proto-
types, c ηLLC, and d ηoverall for prototype

Fig. 18  Curves of relationship between power factor and load factor

Fig. 19  Curves of relationship between voltage ripple factor and Vo

Table 2  Hardware cost of main components

Circuit Main components` cost

ILPFC MOSFET:5.3$, diodes:5.7$, driver:1.45$,
Capacitors:7.8$, inductors:7$, filter:3.5$

LLC MOSFETs:17.7$, diodes:2.5$,
Controller:4.5$, driver:1.7$, filter:3$,
Resonant components:3$, transformers:7.6$

Table 3  Comparisons between this work and Ref. [17, 26]

Items This paper Ref. [17] Ref. [26]

Topology ILPFC + LLC ILPFC + LLC ILPFC + LLC
Uac 220 V 220 V 110 V
Uo 203 ~ 430 V 250 ~ 450 V 320 ~ 420 V
Po 3.3 kW 6.6 kW 1 kW
Devices Si-based Si-based Si-based
THDfull 2.98% Unknown 3.61%
PFfull 99.99% 99.4% 96.3%
ηPFC,full 97.3% Unknown 96.4%
ηLLC,full 97.4% 95.6% 97.2%
ηOBC,full 94.7% Unknown 93.7%
PD 17.1 W/in3 Unknown 131.1 W/in3
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