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Abstract
Dissolved gas analysis (DGA) method is widely used to detect the incipient fault of power transformers. This paper presents 
a novel DGA method for power transformer fault diagnosis based on Harris-Hawks-optimization (HHO) algorithm opti-
mized kernel extreme learning machine (KELM). The non-code ratios of the gases are used as the characterizing vector for 
the KELM model, and the Harris-Hawks-optimization (HHO) algorithm is introduced to optimize the KELM parameters, 
which promotes the fault diagnostic performance of KELM. Based on dataset collected from IEC TC 10, the fault diagnosis 
capability of the proposed method is validated by different characterizing vectors and is compared with conventional KELM 
and other optimized KELM. Moreover, the generalization ability of the proposed method is confirmed by China DGA data. 
The results demonstrate that the proposed method is superior to other methods and is more effective and stable for power 
transformer fault diagnosis with high accuracy.

Keywords  Dissolved gas analysis (DGA) · Kernel extreme learning machine (KELM) · Harris-Hawks optimization 
(HHO) · Transformer fault diagnosis

1  Introduction

The power transformer plays a vital role in power systems, 
and it serves as the connection of transmission and distribu-
tion networks at different voltage levels [1]. Once it fails, 
it will cause power interruption, which seriously influence 
economic production and living activities [2]. Thus, it is 
of great necessity to detect and diagnose incipient fault in 
power transformers [3].

In recent years, diagnosis incipient fault in power trans-
formers has been studied by many scholars and experts and 
transformer fault diagnosis problem is solved with different 

approaches. The aim of all these studies is to meet the reli-
ability requirements of power supply in order to minimize 
device damages and reduce economic, social and personal 
losses. Various approaches have been used to solve trans-
former fault diagnosis problem such as frequency response 
analysis [4], the vibration analysis [5], dissolved gas analysis 
(DGA) [6], etc.

Among these methods, dissolved gas analysis (DGA) is a 
widely used technique to detect the incipient faults in power 
transformers [7, 8]. Many researchers have put forward a 
large number of DGA-based methods. Traditional methods 
based on DGA such as IEEE key gases [9], Rogers ratios 
[10], IEC standard code [11], Dornenburg ratios [12], Duval 
triangle [13], IEC 60599 [14], have been applied to trans-
former fault diagnosis.

In addition to these traditional methods, artificial intel-
ligence (AI) methods based on DGA have been recently used 
in the field of transformer fault diagnosis, including artificial 
neural networks(ANN) [15], support vector machine(SVM) 
[16], fuzzy logic (FL) [17], adaptive neuro fuzzy inference 
system (ANFIS) [18],random forest (RF) [19], Bayesian net-
work [20], gene expression programming(GEP) [21], time 
series analysis [22], expert system [23], association rule 
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[24], set pair analysis [25], evidential reasoning [26], etc. 
The various proposed methods have produced good results 
and made an important contribution in the field of trans-
former fault diagnosis. These methods tend to build models 
that can bridge the relationship between machines data and 
machines health states [27].

Nowadays, deep learning theories have also been pro-
posed for transform fault diagnosis with the development of 
calculation capacity [28]. Deep learning can realize end-to-
end learning and avoid tedious feature engineering and build 
a black box model compared with traditional AI methods. 
However, it requires a lot of iterations and weight updates 
with time-consuming gradient computing. A new model 
based on extreme learning machine (ELM) was introduced 
to identify the state of transformer to solve the efficiency 
degradation caused by gradient update [29]. The ELM 
model outperformed ANN and other traditional methods. 
However, stochastic selection of the number of hidden layer 
nodes is easily leads to low stability and poor robustness of 
the model in the application [30].

By analyzing the reviewed articles, despite different diag-
nosis models have been presented by various scholars and 
experts, a precise diagnosis model is still needed yet. For 
this purpose, a novel fault diagnosis model based on HHO-
KELM for power transformers is proposed in this study.

The contributions of this study are as follows: (1) Non-
code ratios set is selected as the characterizing vector for 
KELM model. (2) A parameter optimization method based 
on HHO is adopted to obtain the optimal model param-
eters of KELM automatically. (3) The established HHO-
KELM model is applied to diagnose incipient fault in power 
transformers.

The remaining parts of the paper are organized as follows: 
Sect. 2 describes the proposed method; Sect. 3 presents the 
proposed fault diagnosis approach based on HHO-KELM; 
In Sect. 4, the results and analysis discussion are given. Sec-
tion 5 concludes the summary.

2 � The Proposed Method

A.	 Kernel Extreme Learning Machine

Kernel extreme learning machine (KELM) [30] is a kind 
of machine learning algorithm with strongest ability and 
generalization ability which is proposed on the basis of ELM 
and kernel functions. On the basis of ELM, the learning 
method of KELM is described as follows:

Given N different samples (xj, tj) ∈ Rn × Rm , j = 1,… ,N , 
where xj = [xj1, xj2,… , xjn]

T  is the input samples, 
tj = [tj1, tj2,… , tjm]

T is the encoded class label. The math-
ematical model of ELM can be described as below:

where, L is the neurons number in the hidden layer, wi, bi, �i 
are the input weights, hidden layer bias and output weights 
of the ith hidden neuron node respectively, g(xi,wi, bi) is the 
activation function. Equation (1) can be written in a matrix 
form as:

where � = [�1,… , �L]
T represents the vector of output layer 

weights, � = [t1,… , tN]
T is the corresponding coding class 

label, and H is the hidden layer output matrix:

The training of ELM is equivalent to solving the least 
squares solution of linear Eq. (2), which is defined as:

The least square solution of the output weight is calcu-
lated as:

where C is the regularization parameter. The output function 
for ELM is implemented as:

When the hidden layer function h(x) is unknown, the ker-
nel function matrix is calculated as:

where K(xi, xj) represents the kernel function. The radial 
basis function (RBF) is applied in this paper, which is given 
by:
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Then, the output function of KELM can be obtained as:

B.	 Harris Hawks Optimization Algorithm
Harris hawks optimization (HHO) is a newly intro-

duced metaheuristic optimization technique by Heidari in 
2019 [31], which contains the phases of exploration and 
exploitation.

1.	 Exploration Phase

In this stage, Harris hawks detect the prey through two 
strategies. The first strategy assumes that the hawks allo-
cate close to the team members and the prey. In the sec-
ond strategy, the hawks place on random trees. These two 
strategies can be described as:

where X(t) and X(t + 1) represent the hawk's positions at the 
current iteration t and the next iteration t + 1, respectively. 
Xprey(t) is the position of prey. Xrand (t) is a randomly selected 
hawk from the current position. r1,r2,r3,r4 and K are ran-
domly generated number between [0, 1]. LB and UB are the 
lower and upper bounds of control variables. Xm(t) is the 
average position of hawks which calculated as:

where, N is the total number of hawks. Xi(t) is the position 
of each hawk in iteration t.

2.	 Ransition from Exploration to Exploitation

The change from the exploration to exploitation in the 
HHO can be modeled based on the prey escaping energy 
as:

where, E indicates the escaping energy of the prey. E0 is 
the initial energy of the prey which is generated randomly 
between [−1, 1]. T is the maximum number of iterations. 
Therefore, if E < 1, this means the prey is weak, hence the 
hawks should exploit close to the prey location, and if E > 1, 
this means the prey has enough energy to escape, so the 
hawks should continue exploring the prey location.

(9)

f (x) = h(x)HT (I∕C + HHT )−1T =

⎡⎢⎢⎢⎣

K(x, x1)

⋮

K(x, xN)

⎤⎥⎥⎥⎦

T

(I∕C + ΩELM)
−1T

(10)

X(t + 1) =

{
Xrand(t) − r1

||Xrand(t) − 2r2X(t)
|| K ≥ 0.5

(Xprey(t) − Xm(t)) − r3(LB + r4(UB − LB)) K < 0.5

(11)Xm(t) =
1

N

N∑
i=1

Xi(t)

(12)E = 2E0

(
1 −

t

T

)

3.	 Exploitation Phase

The exploitation process of HHO has been modeled 
based on the escaping energy of prey E and its chance for 
escaping r. There are four chasings besiege in the exploi-
tation phase of HHO.

a: Soft Besiege ( r ≥ 0.5 and |E| ≥ 0.5).
In soft besiege phase, the prey tries to escape using ran-

dom jumps, but the hawks surround it softly. This process 
can be expressed as:

where ΔX(t) is the distance between the prey position and 
the hawks’ position in iteration t. K = 2(1-r5) indicates the 
strength of the prey randomly jumping during the escaping. 
r5 is a random number ranged from [0, 1].

b: Hard Besiege ( r ≥ 0.5 and |E| < 0.5).
In hard besiege mode, the prey becomes too exhausted 

to escape. As a result, the hawks effortlessly catch the 
prey, and then pounce on it. This move can be modeled as:

c: Soft Besiege with Progressive Rapid Dives ( r < 0.5 
and |E| ≥ 0.5).

In soft besieges with progressive rapid dives approach, 
the prey able to escape and the hawks softly surround it. 
To model this besiege, a levy fight (LF) concept is used 
as follows:

where H is the soft besiege positions. The hawks dive based 
on the LF as:

where D is the dimension of problem. S is a random vector 
by size 1 × D. The LF is calculated as:

where� is a constant value set to 1.5. u and v are random 
values between [0,1].

Finally, the updating position of hawks is calculated as:
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d: Hard Besiege with Progressive Rapid Dives ( r < 0.5 
and |E| < 0.5).

In hard besieges with progressive rapid dives case, 
the behavior of the prey is similar to its behavior in the 
case of a soft besiege. The position of team members is 
updated by reducing the distance between their average 
position and the prey position. This motion is described 
as:

where Xm(t) is obtained from Eq. (11).

C.	 The Proposed HHO-KELM Method

The diagnosis performance of KELM is affected by 
the penalty factor C and kernel parameter σ. In order to 
obtain the optimal parameters of the KELM, we optimize 
the penalty factor C and the parameter σ of the kernel 
function by HHO. The specific steps of HHO optimizing 
KELM parameters are described as follows:

Step 1: Initialize the KELM parameters C, σ and the 
parameters of HHO, including the number of search 
agents N, the number of iterations T and D-dimensional 
space.

Step 2: Calculate the objective function value of each 
hawks through the Eq. (9) and update the position of Xprey. 
The fitness function of the HHO in the optimization pro-
cess is the mean square error (MSE), which is:

where yD and y represent the measure value and the observed 
value. M represents the number of observation samples.

Step 3: Update the initial energy, jump strength and 
escaping energy of each individual in each iteration.

Step 4: Determine whether the number of iterations is 
equal to the maximum value. If it is not, execute t = t + 1 
and return to step 2. Otherwise, go to step 5.

Step 5: Export HHO optimal solutions (values of C 
and σ).

The flow chart of this procedure is described in Fig. 1.

(20)X(t + 1) =

{
H if F(H) < F(X(t))

G if F(G) < F(X(t))
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M

∑M
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(yD(i) − y(i))2

3 � Transformer Fault Diagnosis

3.1 � Model Based on HHO‑KELM

A.	 Transformer Fault Types and Input Characterizing 
Vector Selection

Faults inside transformers are classified in thermal faults 
and electrical faults according to [32]. Thermal faults are 
low and medium thermal (LM-T) and high thermal (H-T) 
categorized by means of temperature in the range of 
TLM-T < 700 °C and TH-T > 700 °C, respectively. Electri-
cal faults are low-energy discharge (LE-D) and high-energy 
discharge (HE-D). In addition this work takes the normal 
state (NS) into account to distinguish between normal mode 
and failure mode.

The above incipient faults caused by oil and insulation 
paper decomposition can generate several kinds of gases: 
hydrogen (H2), methane (CH4), acetylene (C2H2), ethylene 
(C2H4), ethane (C2H6), carbon monoxide (CO) and carbon 
dioxide (CO2). Based on this gases, Non-code ratios are 
taken as the input characterizing parameter of the diagnostic 
model in this paper. Non-code ratios include CH4/H2, C2H4/
C2H2, C2H4/C2H6, C2H2/(C1 + C2), H2/(H2 + C1 + C2), C2H4/

Fig. 1   The flowchart of HHO optimizing KELM parameters
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(C1 + C2), CH4/(C1 + C2), C2H6/(C1 + C2) and (CH4 + C2H4)/
(C1 + C2). Of these, C1 represents CH4 and C2 represents the 
sum of C2H4, C2H6 and C2H2.

B.	 Transformer Fault Diagnosis Model Based on HHO-
KELM

In this study, a fault diagnosis model based on HHO-
KELM for transformers is established. It can be divided into 
three parts: data collection and processing, the training of 
the network, and the performance testing and evaluation of 
the network model.

In the data collection and processing part, some dissolved 
gas content of transformer is firstly collected from the trans-
former faults records as DGA data, the collected DGA data 
are then transformed to non-code ratios. When the ratio with 
0/0 is set to “0” and c/0 to 20, where c is not “0” [33].The 
obtained DGA ratios are then normalized to clear up the 
influence of order of magnitude, shown as:

where xsi and xi are the DGA ratios before and after normali-
zation, ximax and ximin and are the maximum and minimum 
value of a DGA ratio.

In the network training part, a training dataset is con-
structed by using DGA records with transformer fault 
types. The characterizing vectors are input to the KELM 
network. The KELM adopts the HHO algorithm to obtain 
the model parameters. The learnt feature shows the relation-
ships between the DGA ratios and the corresponding fault 
patterns.

After the training process, the diagnostic parameters are 
obtained. Then, the types of faults are classified for the sam-
ples in the testing set or the transformer under investigation 
with the trained diagnostic parameters. Accuracy is taken 
into consideration to appraise the capability of fault diag-
nosis approach which is computed by:

where Ncorrect is the number of samples correctly diagnosed, 
Ntotal is the total number of samples in the whole dataset.

The implementation process of the proposed fault diag-
nosis model is described as follows:

Step1: Obtain the DGA data of transformers through the 
acquisition device.

Step2: Transform DGA data to Non-code ratios.
Step3: Normalize the obtained DGA ratios and construct 

a feature vector.
Step4: Divide the data into a training set and testing set. 

The training set is used to train a diagnostic model.

(25)xsi =
xi − ximin

ximax − ximin

(26)A =
Ncorrect

Ntotal

Step5: The testing set is selected to test and evaluate the 
performance of the proposed model.

The flow chart of the proposed transformer fault diagnosis 
model is shown in Fig. 2.

4 � Results and Analysis

A.	 Test Data

DGA samples are collected from IEC TC 10 database 
[11], as shown in Table 1. These samples are used to evalu-
ate the performance of the proposed fault diagnosis method.

B.	 Model Parameters

The relevant parameters of HHO and KELM for trans-
former fault diagnosis are detailed in Table 2.

C.	 Transformer Fault Diagnosis Results

Fig. 2   The flow chart of the proposed fault diagnosis model

Table 1   Test data of IEC TC 10 database

Fault types LM-T H-T LE-D HE-D NS

IEC TC 10 database 10 14 23 45 26
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In order to investigate the accuracy of HHO-KELM for 
transformer fault diagnosis, 93 samples out of total 118 cases 
are used to train KELM structure parameters and the rest 
25 samples (5 samples of each fault) are employed to test 
diagnosis capability of the trained KELM.

Figure 3 reports the typical HHO fitness variation curves. 
It is found that the converge time is 11.2693 s and the fitness 
value (mean square error) reaches 0.1708 after the second 
iteration, and then remain flat for a while. After the fifth 
iteration, the fitness value is reduced to 0.1630, which is 
the best value. This illustrates that the HHO algorithm can 
converge to the best solution very quickly.

The diagnosis results based on HHO-KELM are present 
as Fig. 4. It can be seen that HHO-KELM has four errors in 
training samples, and the classification accuracy is 95.7% 
(89/93). In the test samples, three errors are generated in the 
type of faults, and the classification accuracy is 88% (22/25). 
This indicates that the proposed method has good accuracy.

D.	 Comparisons with Different Input Characterizing 
Vector

In order to further determine the proposed method, the 
input characterizing vectors of HHO-KELM are divided into four categories: (1)All the DGA data (H2, CH4, C2H2, C2H4, 

C2H6, CO, CO2); (2) IEC Rations (CH4/H2, C2H2/C2H4 and 
C2H4/C2H6); (3) Rogers Ratios (CH4/H2, C2H2/C2H4, C2H4/
C2H6 and C2H6/CH4); (4)Non-code Rations. The above four 
different types of characterizing parameters are modeled 
in KELM for diagnosis and the fault diagnosis results are 
reported in Table 3 and Fig. 5.

As seen in Table 3 and Fig. 5, HHO-KELM with Non-
code ratios can detect LM-T better than others. HHO-KELM 
with IEC ratios and Rogers ratios can not detect LM-T prop-
erly. HHO-KELM with Non-code ratios has the best perfor-
mance for H-T as well. The accuracy of HHO-KELM with 
Non-code ratios for LE-D is same to HHO-KELM with IEC 
ratios and Rogers ratios. All methods except HHO-KELM 
with all the DGA data, can detect HE-D and N-S properly.

In short, the HHO-KELM with Non-code ratios shows 
the highest total accuracy. With the input vector of Non-code 
ratios, the average accuracy of HHO-KELM is increased sig-
nificantly compared to HHO-KELM with all the DGA data, 

Table 2   Parameters of KELM and HHO

Algorithms Parameters Values

HHO The population size N 20
The maximum iteration number T 100
Dimension D 2

KELM The range of penalty factor C [0.1, 50]
The range of kernel parameter σ [0.1, 10]

0 10 20 30 40 50
Numeber of Iterations

0.16

0.17

0.18

0.19

0.2

0.21

0.22
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tn
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s v
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Fig. 3   The fitness variation curves of HHO

The diagnosis results on training samples

The diagnosis results on test samples

(a)

(b)

Fig. 4   The diagnosis results using HHO-KELM model. a The diag-
nosis results on training samples. b The diagnosis results on test sam-
ples
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IEC ratios and Rogers ratios, the average accuracy for testing 
samples is increased by 60%, 32% and 24%, respectively.

E.	 Comparisons with Different Diagnostic Methods

In order to verify the diagnosis performance, the ELM, 
KELM, GA-KELM and PSO-KELM with the input vec-
tor of Non-code ratios are selected to compare with the 
HHO-KELM.

Figure 6 shows the relationship between the fitness value 
(mean square error) and the number of iterations for differ-
ent algorithms in the optimization process for KELM. It can 
be seen from Fig. 6 that the HHO-ELM model reduces the 
number of iterations and can find a stable solution close to 
the best goal. The reason the original ELM, KELM are not 
represented in the iteration number versus fitness plot is that 
the original ELM, KELM did not incorporate an intelligent 
optimization algorithm and did not ensure fitness.

The fault diagnosis results for five different methods are 
shown in Table 4 and Fig. 7.

According to Table 4 and Fig. 7, HHO-KELM has better 
performance than other methods for detection of LM-T. The 
worst method for detecting LM-T is ELM and KELM. ELM, 

PSO-KELM, GA-KELM and HHO-KELM can effectively 
diagnose H-T fault. However, HHO-KELM method is weak 
in detecting LE-D and is lower than PSO-KELM. All meth-
ods have better performance for HE-D. For N-S, GA-KELM 
and HHO-KELM have better accuracy than ELM, KELM 
and PSO-KELM.

It can be concluded that HHO-KELM has the best aver-
age accuracy. Compared with ELM, KELM, GA-KELM 
and PSO-KELM, the average fault diagnosis accuracy of 

Table 3   HHO-KELM diagnosis results using different characterizing 
vectors

Faults All the DGA 
data (%)

IEC Ratios (%) Rogers 
Ratios (%)

Non-code 
Ratios 
(%)

LM-T 20 0 0 80
H-T 20 20 60 100
LE-D 0 60 60 60
HE-D 100 100 100 100
NS 0 100 100 100
Average 28 56 64 88

0%

20%

40%

60%

80%

100%

LM-T H-T LE-D HE-D NS

All the DGA data IEC Ratios
Rogers Ratios Non-code Ratios

Fig. 5   HHO-KELM diagnosis results using different characterizing 
vectors
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Fig. 6   The relationship between the fitness value and the number of 
iterations for different algorithms

Table 4   Diagnosis results using different methods

Faults ELM (%) KELM (%) PSO-
KELM 
(%)

GA-KELM 
(%)

HHO-
KELM 
(%)

LM-T 20 20 40 60 80
H-T 100 60 100 100 100
LE-D 60 60 80 60 60
HE-D 100 100 100 100 100
NS 20 80 80 100 100
Average 60 64 80 84 88

0%

20%

40%

60%

80%

100%

LM-T H-T LE-D HE-D NS

ELM KELM PSO-KELM
GA-KELM HHO-KELM

Fig. 7   Diagnosis results using different methods
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HHO-KELM is increased by 28%, 24%, 8%, and 4% for test-
ing set, which show that the HHO-KELM has higher clas-
sification accuracy than those of the other compared method.

F.	 Fault Diagnosis Using China Transformers DGA 
Data

In order to investigate fault diagnosis capability of the 
proposed method comprehensively, 180 DGA samples 
of transformers in China are diagnosed by HHO-KELM. 
The180 samples are divided into two parts, of which 130 
samples are used to train HHO-KELM model and the other 
50 samples (10 samples of each fault) are tested with the 
trained model. Figure 8 presents a high accuracy of 90% 
(46/50) for China DGA data, which shows that the proposed 
method has better performance.

5 � Conclusion

In this work, a fault diagnosis method based on HHO-KELM 
is presented to diagnose the different fault states of trans-
formers. The proposed model is solved using non-code ratios 
as the input vector, Furthermore, HHO algorithm is imple-
mented to optimize the KELM model parameters. Finally, 
some numerical analysis are proposed in order to demon-
strate the validity of the proposed strategy. The comparison 
results show that the average test accuracy of the Non-code 
ratios feature set is 60%, 32% and 24% higher than that of the 
DGA full data, the IEC ratios and the Rogers ratios feature 
quantity respectively. Also, the accuracy of the HHO-KELM 
model for transformer fault diagnosis reaches 88% which is 
higher than the model of ELM, KELM, PSO-KELM model 
and GA-KELM. Considering the presented results, it can 
be said that the proposed method outperforms all compared 
diagnosis models and is an accurate model for solving such 
problems.

However, some shortcomings still existence in the study, 
such as the insufficient data samples. Additional datasets 

could be considered in future work in order to validate the 
proposed method by means of fault diagnosis accuracy.
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