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Abstract
Nowadays, the power systems face several environmental and economic challenges and Distributed Generations (DGs) will 
be an effectual solution for them. The integration of DGs may result in power system volatility and losses. The optimal 
allocation of DGs will resolve the aforesaid issues. This study aims to implement multi-objective firefly algorithm for siting 
and sizing of DGs by optimizing six dissimilar objective functions such as minimization of power losses, improvement of 
voltage profile, enhancement of Voltage Stability Index, reduction of pollutant emission and elimination of average voltage 
Total Harmonic Distortion. Besides, fuzzy decision-making methodology has been deployed to choose one of the Pareto-
optimal solutions as the Best Compromise Solution. The studies have been conducted on standard IEEE 33-bus system and 
a practical 62 bus Indian Utility System namely Tamil Nadu Generation and Distribution Corporation Limited as a real-
world distribution network. The outcomes of the proposed work have been compared with related past studies and prominent 
improvement has been experienced.

Keywords  Distributed generations · Optimal placement · Firefly algorithm · Power losses minimization · Voltage profile 
improvement · Pollutant minimization · Total harmonic distortion minimization · IEEE33-bus system · TANGEDCO

1  Introduction

In recent times, DGs have gained more consideration in 
power systems for handling the environmental and finan-
cial challenges instigated by fossil fuel based power plants. 
DGs are known as the electric power generations that can 
be directly connected to loads or DS [1]. The DGs such as 
wind turbines, solar photovoltaic (PV), full-cells, biomass 
can mitigate the emission of greenhouse gases (GHG) and 
climate changes. Moreover, the DS are facing several defies 
due to the increasing electricity consumption and opera-
tional constraints [2]. The DS have been enforced to deliver 
power to the customer continuity. Owing to low voltage level 
and high currents, DS have been suffered from severe power 
losses and voltage volatility. Consequently, the incorporation 
of DGs have been considered to overwhelm the aforesaid 
problems [3, 4]. So as to preserve the high efficiency and 
to enhance the performance of the DS, the placement of 
DGs should be optimal. Furthermore, the optimal allocation 
and sizing of DGs will minimize the power losses, energy 
cost, pollutant emission and THDv. Similarly, it increases 
the voltage profile and VSI. These concerns have stimulated 
the research effort towards the development of accurate and 
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fast techniques for optimal DG placement and sizing to pre-
vent voltage collapse and reduce the system’s power losses. 
In this context, several optimization techniques have been 
applied to solve optimal sizing and placement problem of 
DGs [5–8]. Detailed reviews on several optimal DG allo-
cation algorithms and their implementation have been pre-
sented [9–12].

In recent years, several researches have been conducted 
to reduce the power loss and to increase the voltage profile 
in DS while optimizing optimal allocation problem of DGs 
and shunt capacitors [13]. Previously, analytical methods 
[14] and evolutionary algorithms like Generic Algorithm 
(GA) [15], Particle Swarm Optimization (PSO) [16, 17], 
hybrid PSO [18], hybrid Ant Colony Optimization (ACO) 
and Artificial Bee Colony (ABC) [19] have been applied for 
solving optimal allocation problem of single and multiple 
types of DGs. A logical methodology to optimally size and 
site both capacitors and DGs on DS has been presented [20] 
and PSO [21] has been implemented to improve the results. 
The meta-heuristic techniques for instance hybrid Harmony 
Search Algorithm (HSA) and Particle ABC (PABC) [22], 
Intersect Mutation Differential Evolution (IMDE) [23] and 
Backtracking Search Algorithm (BSA) [24] have all been 
employed to design and site both DGs and shunt capacitors. 
Most of these literatures have solved the problem with single 
objective namely real power loss minimization.

Most recently, Grey Wolf Optimizer (GWO) has been 
proposed to solve multiple objectives such as minimization 
of power loss and improvement of voltage profile [25]. A 
Multi Objective Shuffled Bat (Mo-SB) algorithm has been 
applied to select optimal placement of DGs by considering 
power loss and energy cost minimization [26]. Mo-SB algo-
rithm has been proposed by hybrid Shuffled Frog Leaping 
Algorithm (SFLA) and Bat algorithm. Discrete Artificial 
Bee Colony (D-ABC) algorithm has been implemented to 
site DGs by considering the objectives such as maximization 
of system loadability and reduction of power losses [27]. 
Multiple objectives such as energy cost reduction, reliabil-
ity enhancement, losses minimization and voltage deviation 
reduction have been considered while solving DGs optimi-
zation problem using Ant Lion Optimizer (ALO) [28] and 
Whale Optimization Algorithm (WOA) [29]. Lately, the 
improved chicken swarm optimization has been employed 
to place the charging stations optimally in the IEEE 33 bus 
system. The impact of Electric Vehicle load demand on the 
DS, in terms of per unit voltage profile, voltage stability 
index, average voltage deviation index and power loss has 
been discovered [30].

Firefly Algorithm (FA) has been proposed to increase the 
speed of exploration and exploitation, the sporadic patterns 
and activities of fireflies have been adapted [31]. FA outper-
forms PSO on continuous constrained optimization problems 
[32]. Owing to the benefits of the FA, it has been extensively 

employed in several engineering applications. The typical 
power system optimization problems such as economic dis-
patch and load forecasting problems have been solved using 
FA [33, 34]. This study contributes.

•	 To solve the objectives such as minimization of power 
losses, minimization the voltage deviation, enhancement 
of VSI, reduction of pollutant emission and elimination 
of THDv simultaneously on a real-world power system.

•	 To apply the new meta-heuristic optimization algorithm 
namely MOFA for DG placement in DS.

•	 To test the proposed method on IEEE 33-bus and a prac-
tical 62 bus IUS by considering multiple objectives with 
different cases.

2 � Mathematical Formulation

Six OFs for instance reduction of power losses, minimiza-
tion of the voltage deviation, improvement of VSI, reduction 
of costs, reduction of pollutant emission, and elimination 
of average THDv for optimum DGs placement problem are 
selected.

2.1 � Reduction of Power Losses

OF1 intends to minimalize the power losses and it is stated 
as [35]

where, nLno. of branches, Rithe resistance of the i-th branch, 
Iicurrent magnitude of i-th branch.

2.2 � Minimization the Voltage Deviation

OF2 intends to minimize the voltage deviation by following 
Eq. (2).

where. vi bus voltage magnitude, vspec
i

 specified voltage mag-
nitude (1.0 p.u.)

2.3 � Improvement of VSI

OF3 intends to enhance VSI.

(1)OF1 = min

nL∑
i=1

Ri
||Ii||2

(2)OF2 = min

N∑
i=0

(
vi − v

spec

i

vmax
i

− vmin
i

)2

(3)OF3 = min

(
1

VSI
(
m2

)
)
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where, m1 slack bus, m2,m3, ...,mn bus no. (2, 3,..., nbus), 
Vbus voltage (p.u), P and Qactive power (MW) and reactive 
power (MVar), Rij and Xij resistance (Ω) and reactance (Ω) 
of branch ij,

2.4 � Reduction of Cost

The cost is minimized by optimizing OF4.

Where 

where, NDG number of DGs, CDGi
 generation cost of i-th DG 

($/kWh), a, bfixed and variable generation cost constants, 
PGi active power at i-th DG unit (kW), Grthe annual rate of 
profit (5%), LFthe load factor of DGs (0.47), O & M cost-
operation and maintenance cost ($/kWh).

2.5 � Reduction of Pollutant Emissions

OF5 has been modeled to reduce CO2, SO2, and NOx emis-
sions [36].

where, CO2, SO2, and NOxcarbon dioxide, sulfur dioxide, 
and nitrogen oxides; EGrid and EDGi

 emissions generated by 
the grid and i-th DG unit.

2.6 � Elimination of THDV

OF6 intends to eliminate the THDv by using Eq. (12).

(4)
VSI

(
m2

)
= ||V(m1)

||4 − 4
[
P(m2)Xij − Q(m2)Rij

]2

−4
[
P(m2)Rij + Q(m2)Xij

]||V(m1)
||2

(5)OF4 = min

NDG∑
i=1

(
CDGi

)

(6)CDGi
= a + b × PGi

(7)a =
Capital cos t($∕kW) × Capacity(kW) × Gr

Lifetime(year) × 8760 × LF

(8)b = O&M cos t($∕kWh) + Fuel cos t($∕kWh)

(9)OF5 = Min(f ) =

NDG∑
i=1

EDGi
+ EGrid

(10)EDGi
=
(
CODG

2
+ NODG

x
+ SODG

2

)
× PGi

(11)EGrid =
(
COGrid

2
+ NOGrid

x
+ SOGrid

2

)
× PgGrid

where m is the no. of buses.
and

where, THDvmax
 is the maximum permissible bound at 

every bus (5%).

2.7 � Restraints

The equality and inequality restraints are deliberated while 
solving the problem.

The restraints for power balance requirements are pon-
dered as

The extreme power produced by DGs must not exceed the 
allowable bounds of DS.

(a) Generator bounds

(b) Bus voltage bounds

(c) DG Power factor bound

where, PL and QL active power losses (MW) and reactive 
power losses (MVar); Pd and Qd active power load demand 
(MW) and reactive power load demand (MVar).

3 � FA for Multi‑Objective Optimization 
(MOO)

The description and the implementation procedure have 
been adopted from [8, 10, 35, 39]. Table 1 offers the data 
of the DGs.

The MOO problem aims to optimize multiple and com-
peting objective functions. It results with a non-dominated 
set of solutions namely Pareto solutions, rather than a single 

(12)OF6 = Min(THDV ) =

∑m

i−1
THDVi

m

(13)THDvi(%) ≤ THDvmax

(14)
NG∑
i=1

PGi − PL = Pd

(15)
NG∑
i=1

QGi − QL = Qd

(16)PGmin
i

≤ PGi ≤ PGmax
i

(17)QGmin
i

≤ QGi ≤ QGmax
i

(18)0.95 ≤ Vi ≤ 1.05, i = 1, 2, ..., nbus

(19)0.9 ≤ PF
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optimal solution. The formulation for a MOO problem can 
be expressed as follows

where f1, f2, …, fp are the objective functions and x is the set 
of decision variables and h(x) and g(x) are the equality and 
inequality constraints of the problem.

FA is an optimization algorithm that imitates the behavior 
of fireflies [37–40]. The initial population of fireflies has 
been expressed based on Eq. (21).

where, NFNumber of fireflies; DDimension of the problem; 
randrandom number between 0 to 1.

The position vector ci =
(
ci1, ci2, ..., ciD

)
 of the firefly i, 

which has been deliberated as a Pareto optimal solution. The 
modernized tactic of FA has been provided in the Eq. (22).

where, γlight absorption coefficient; β0attractiveness at 
rij = 0; αrandomization parameter; ξivector of random num-
bers with Gaussian or uniform distributions.

The distance between any two fireflies rij can be calcu-
lated by Eq. (23).

where ci,k is the k-th dimension of independent variable ci 
of the firefly i, cj,k is the k-th component of the independent 
variable cj of the firefly j.

3.1 � Evaluation of Pareto optimal solution

While optimizing multiple objectives, it is tough to choose 
a single optimal solution. So as to choose the “most 

(20)MinF(x) =
[
f1(x), f2(x), ..., fp(x)

]T

h(x) = 0

g(x) ≤ 0

(21)
ci,d = cd,min + rand ⋅

(
cd,max − cd,min

)
i ∈

[
1,NF

]
, d ∈ [1,D]

(22)cnew
i

= cold
i

+ �0 exp
(
−�r2

ij

)(
cold
j

− cold
i

)
+ ��i

(23)rij =
‖‖‖ci − cj

‖‖‖ =

√√√√ D∑
k=1

(
ci,k − cj,k

)2

appropriate” solution, the concept of optimality has been 
swapped by Pareto optimality. The Pareto optimal solution 
cannot be recognized with a single objective, and because 
of this, it has been determined without abating the enact-
ment with more than one objective. A fuzzy approach has 
been employed to find the Pareto optimal solution. The fuzzy 
membership functions have been expressed by Eq. (24).

The values of Fmin and Fmax have been obtained through 
the payoff table. The singular optima of the objective func-
tions have been estimated to make the payoff table for the 
competing objective functions p. Then the objective func-
tions Fi, i = 1,..., p ( F∗

i
 signifies the optimum value of Fi) 

has been resolved. The balance objective functions F1, 
…, Fi-1, Fi+1, …, Fp have been estimated and signified as 
Fi
i
, ...,Fi

i−1
,Fi

i+1
, ...,Fi

p
 . The i-th row of the payoff table has 

Fi
i
, ...,Fi

i−1
,F∗

i
,Fi

i+1
, ...,Fi

p
 . Similarly, all rows of the payoff 

table have been assessed. The j-th column of the payoff 
table has the estimated values for the objective function Fj 
among which the minimum and maximum values specify the 
bound of the objective function Fj for the implemented fuzzy 
method. The incessant and monotonic functions have been 
employed as membership functions. MOFA forms a popula-
tion and searches in an objective space to select the optimal 
solution. While optimizing MOO, a set of non-dominated 
solutions has been saved in the origin. The solution X1 domi-
nates X2 when the subsequent conditions have been satisfied:

The normalized membership function has been calcu-
lated for each individual using Eq. (26).

This membership function has been executed to rank the 
non-dominated solutions consistent with the importance 

(24)�Fi(X) =

⎧⎪⎨⎪⎩

1,

0,
Fmax
i

−Fi(X)

Fmax
i

−Fmin
i

,

Fi(X) ≤ Fmin
i

Fi(X) ≥ Fmax
i

Fmin
i

≤ Fi(X) ≤ Fmax
i

i = 1, 2

(25)
∀j ∈ {1, 2, ..., n},Fj(X1) ≤ Fj(X2),

∃m ∈ {1, 2, ..., n},Fm(X1) < Fm(X2),

(26)N�(j) =

∑NF

i=1
wi × �Fi(Xj)

∑Nrep

j=1
wi

∑NF

i=1
wi × �Fi(Xj)

Table 1   Data of the DGs [35] DG Size (MW) Life span 
(year)

Capital cost 
($/kW)

O&M cost 
($/kWh)

Fuel cost ($/kWh) Emission (lb/MWh)

NOx SO2 CO2

Grid – – – – – 5.01 11.3 2042
PV 1 25 3976 0.0120 – – – –
WT 5 25 1851 0.0092 – – – –
GT 3 15 1226 0.0647 0.0658 0.28 0.95 1242.8
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given over the objective functions and it has been signified 
as wi in Eq. (26).

4 � Simulation Results

Two DS such as the IEEE 33-bus system [21] and the 
TANGEDCO 62-bus IUS [13] have been considered [25].

Three different cases are considered as follow.

Case 1  The position and size of DGs are estimated by con-
sidering three objectives (OF1, OF2, and OF3).

Case 2  The objectives for instance OF1, OF4, and OF5, have 
been optimized. MOF2 has been expressed as:

Case 3  Multiple DGs are placed by optimizing the objec-
tives, such as OF2, OF4, and OF6. MOF3 has been framed as:

4.1 � Results of 33‑Bus System

The results of case 1 have been offered in Table 2. It evi-
dently infers that the optimal location and capacity of DGs 
make an optimistic effect to minimalize energy loss, increase 
voltage profile and boost VSI. Table 3 provides the techni-
cal, financial, and environmental benefits by solving MOF2. 
Table 4 presents the minimized values of voltage deviation, 

(27)MOF1 = min
(
OF1, OF2, OF3

)

(28)MOF2 = min
(
OF1, OF4, OF5

)

(29)MOF3 = min
(
OF2, OF4, OF6

)

energy cost and THDv by optimizing MOF3. Table 5 indi-
cates that power loss, overall energy cost and pollutant 
emission have been minimized by 133.4388 kW, 2.117$/
MWh, 4755.1 lb/h respectively after integrating DGs into 
the system.

4.2 � Results of TANGEDCO 62‑Bus IUS

The results of TANGEDCO 62-bus IUS indicate that a 
substantial minimization in power losses of 35.7842 MW 
is attained while optimizing MOF1. Table 6 specifies that 
the minimized voltage deviation of 0.0035 p.u has been 
achieved. The outcomes of MOF2and MOF3 have been pre-
sented in Tables 7 and 8. The PV and WT type DGs are vital 
in the minimization of emission, power loss and energy cost. 
A noticeable minimization in a power loss has been achieved 
from 40.4512 to 37.5452 MW. The energy cost has been 
minimized from 36.8121 $/MWh to 35.445 $/MWh. The 
pollutant emission has been decreased from 117,564.25 lb/h 
to 84,215.30 lb/h.

The voltage profile of the IEEE 33 bus and TANGEDCO 
62 bus IUS are shown in Figs. 1 and 2 respectively. The 

Table 2   Results of MOF1 for IEEE 33 bus system

DG Site (Bus 
No.)

Capacity 
(kW)

Power loss 
(kW)

Voltage 
deviation 
(%)

VSI

PV 28 467.20 79.2450 0.0007 0.0140
WT 32 501.67
GT 15 445.18

Table 3   Results of MOF2 for IEEE 33 bus system

DG Site (Bus 
No.)

Size (kW) Power loss 
(kW)

Energy cost 
($/MWh)

Pollutant 
emission 
(lb/h)

PV 14 539.71 77.5412 25.0454 3124.8
WT 25 387.62
GT 9 401.47

Table 4   Results of MOF3 for IEEE 33 bus system

DG Site (Bus 
No.)

Size (kW) Voltage 
deviation 
(%)

Energy cost 
($/MWh)

THDv (%)

PV 31 506.30 0.0006 25.1424 1.6251
WT 28 379.35
GT 07 242.23

Table 5   Comparison of results for IEEE 33 bus system

Condition Power loss (kW) Energy cost 
($/MWh)

Pollutant 
emission 
(lb/h)

Before integrating DGs 210.98 27.1624 7879.9
After integrating DGs 77.5412 25.0454 3124.8
Accelerated PSO [41] 151.40 – –
PSO [16] 115.29 – –

Table 6   Results of MOF1 for 62 bus IUS

DG Size (kW) Site (Bus 
No.)

Power loss 
(MW)

Voltage 
deviation 
(%)

VSI

PV 845.34 17 35.3542 0.0035 0.0248
WT 4215.25 30
GT 2412.04 48
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voltage profile values have been plotted before and after 
the integration of DGs. The illustrative comparisons of the 
power losses, energy cost and pollution emission for before 
and after integrating DGs have been shown in Figs. 3 and 4 
for IEEE 33 bus system and 62 bus IUS respectively.

The values of VSI are less than 1 for the system, hence 
the system is stable. The values shows VSI close to 1 
infers that the system is impending its load limit and is 
nearly unstable. Else, the more VSI is close to zero the 
more the node is stable. In reality, the optimal DG place-
ment is selected based on which node has the highest VSI 
value. Figures 5 and 6 show the Pareto front of IEEE 33 
bus system and 62 bus IUS respectively using MOFA. 
The BCS for all the cases have been identified from the 

three-dimensional Pareto optimal set attained by optimiz-
ing the MOO. It has been noted that every Pareto optimal 
solution is an alternate choice for a decision-maker.

The power system planner can espouse one of them for 
the individual system depends on its preferences over the 
objective functions. After applying the MOFA to gener-
ate Pareto sets, the BCS among them has been selected 
using fuzzy decision-making according to the Eq. (24). 
For instance, the performance analysis for the results of 
MOF3 for 62 bus IUS is given in Tables 9. The best, worst, 
mean, variance and standard deviation (SD) [42] values 
are estimated and given in Table 10.

Table 7   Results of MOF2 for 62 bus IUS

DG Size (kW) Site (Bus 
No.)

Power loss 
(MW)

Cost ($/
MWh)

Pollutant 
emission 
(lb/h)

PV 845.36 20 37.5452 35.4457 84.215.30
WT 4246.30 35
GT 2668.25 60

Table 8   Results of MOF3 for 62 bus IUS

DG Size (kW) Site (Bus 
No.)

Voltage 
deviation 
(%)

Energy cost 
($/MWh)

THDv (%)

PV 941.25 31 0.0009 33.5412 1.1251
WT 4651.4 28
GT 2457.9 07

Fig. 1   Voltage profile for IEEE 33 bus system

Fig. 2   Voltage profile for 62 bus IUS

Fig. 3   Comparative results for IEEE 33 bus system on optimal place-
ment problem
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The consistency of the MOFA has been validated from 
the parameter variance and it has been estimated as 0.00245. 
The merits of MOFA is that it typically has good efficacy 

Fig. 4   Comparative results for 62 bus IUS on optimal placement 
problem

Fig. 5   Three-dimensional Pareto optimal set attained by optimizing multiple objectives on IEEE 33 bus system

Fig. 6   Three-dimensional Pareto optimal set attained by optimizing multiple objectives on 62 bus IUS

Table 9   Comparison of results before and after incorporating DGs for 
62 bus IUS

Condition Power loss (MW) Energy 
cost ($/
MWh)

Pollutant 
emission 
(lb/h)

Before integrating DGs 40.4512 36.8121 117,564.25
After integrating DGs 37.5452 35.4457 84,215.30

Table 10   Estimation of performance analysis the results of MOF3 for 
62 bus IUS

Statistic Energy cost using 
MOFA

Best 33.5142 ($/MWh)
Worst 36.4025 ($/MWh)
Mean 35.2754 ($/MWh)
Variance 0.00245
SD 0.04949
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for certain problems and necessitate only a minimum num-
ber of iterations. Though, one of its limitations is the high 
possibility of being stuck in local optima since it is a local 
search algorithm.

5 � Conclusion

In this study, the MOFA is executed to estimate the num-
bers, placements and capacities of the DGs for IEEE 33-bus 
system and 62-bus IUS. The formulations of the objectives 
for instance minimization of power loss, reduction of voltage 
deviation, improvement of VSI, reduction of cost, mitigation 
of emission and elimination of THDv are modeled. A sys-
tematic and exhaustive investigation has been performed. The 
implementation of MOFA for optimal placement of DGs on 
DS reveals its efficiency. The execution of MOFA on IEEE 
33-bus system and 62-bus IUS demonstrates that with DGs 
penetration, the power losses, energy cost, and pollutant emis-
sion can be reduced remarkably. Moreover, the overall voltage 
quality has been improved considerably. It has been experi-
enced that the DG units operating in voltage control mode 
and having reactive power regulation capability efficiently 
improve the voltage stability margin regardless of the system 
size. The MOFA offers a modest and precise solution and 
do not needed extensive computations. Lastly, the MOFA is 
based on naive algorithm through simple mathematical for-
mulations. Hence, it can be simply protracted to deliberate the 
load variation and erratic characteristics of renewable based 
DGs. In future, the economic, environmental, social, and tech-
nical impacts of the renewable energy sources would be inves-
tigated. The power loss estimation has been performed under 
both leading and lagging power factors while sizing of DGs.
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