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Abstract
An analytic solution to the optimal formation problem of an unmanned aerial vehicle (UAV) swarm is newly proposed 
for maximizing the perfomrance of passive target tracking. Most previous techniques could not handle this problem effi-
ciently because they have had difficulties in defining the performance index of a nonlinear target tracking filter in closed 
form. To overcome this limitation, the passive target tracking problem is investigated within the framework of the linear 
non-conservative robust Kalman filter (NCRKF) theory. Accommodating the merit of the suggested linear target tracking 
filter structure, its performance measure can be analytically expressed in terms of the UAV formation as well as the sensor 
accuracy. Therefore, it is easy to determine the optimal UAV formation by maximizing the target tracking performance in 
the worst case. In addition, our approach is very practical because it considers the estimation error characteristics of the 
actual passive target tracking filter and the communication range among UAVs in determining the optimal UAV formation. 
Through the simulations, the effectiveness of the proposed scheme is validated.

Keywords  Optimal UAV formation · Passive target tracking · Fisher information matrix(FIM) · Non-conservative robust 
Kalman filter(NCRKF)

1  Introduction

Cooperative unmanned aerial vehicles (UAVs) are known 
to provide great versatility, resource efficiency, and surviv-
ability in various civilian and military applications com-
pared to a single UAV [1–4]. An UAV swarm has been 
paid considerable attention by many researchers especially 
in passive target tracking. This is because an UAV swarm 
is able to provide enhanced performance even using low-
grade sensors and to avoid the observability issue as well. 
Accordingly, the related studies have been mainly focused 
on the data fusion architecture and the formation of an 

UAV swarm which directly affect the overall target track-
ing performance [5–7]. However, since there are difficulties 
in deriving the performance measure due to the nonlinear 
filter structure used for passive target tracking, a systematic 
way to determine the optimal UAV formation still remains 
as an unsolved problem.

The moving target tracking with a passive sensor has been 
recognized as one of the representative nonlinear estimation 
problems. This is because the available passive measurement 
such as TDOA(time difference of arrival) or AOA(angle of 
arrival) has a nonlinear relation with the target state vari-
ables that should be estimated. Since the random trajec-
tory of a moving target is modeled as a nonstationary or 
cyclostationary time series, the passive target tracking can 
be addressed by the nonlinear Kalman filtering for Gauss-
Markov random processes [8–11]. Theoretically speaking, 
the estimation performance of the Kalman filter is character-
ized by using a Fisher information matrix (FIM) equivalent 
to the inverse of error covariance matrix [12, 13]. However, 
different from the linear one, nonlinear filters often produce 
biased estimates which cause the performance degrada-
tion of target tracking. Therefore, the structure of a target 
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tracking filter is substantial in defining the practical target 
tracking performance measure.

It is well-known that the performance of a passive target 
tracking filter using multi-sensor measurements is influenced 
by the relative geometry between the target and the sensors. 
This implies that the optimal sensor placement is another 
significant factor to secure the satisfactory target tracking 
performance. However, since the error covariance matrix 
of a nonlinear Kalman filter varies with the target motion, it 
is hard to derive the necessary and sufficient condition for 
optimal sensor placement in closed-form [14]. To tackle this 
issue, most existing methods rely on gradient-based numeri-
cal algorithms which require computational burden [15–17]. 
Even worse, if moving platforms equip the sensors and con-
trol their formation continuously, the optimization problem 
will become increasingly complicated. In this circumstance, 
the numerical techniques would not be adequate for on-line 
determination of the optimal sensor placement.

Meanwhile, the parameter optimization of the prescribed 
sensor formation has been attempted [18–20]. This scheme 
assumes that the multiple sensors are placed on a line or 
circle with equal spacing. In this setting, the target tracking 
performance measure has just a single unknown parameter, 
hence the complexity of the sensor formation problem is 
drastically reduced. This method was usually applied for the 
limited case where the target is surrounded by multiple sen-
sors. Although the far-field target tracking was sporadically 
studied, the result may be restrictive in real applications by 
ignoring the maximum communication range between sen-
sors. Furthermore, the previous schemes could fail to find 
the global optimum because they omitted the bias estimation 
errors caused by nonlinear filters in formulating the sensor 
formation problem.

To overcome the aforementioned limitations, this paper 
presents an analytic solution to the optimal formation of an 
UAV swarm providing TDOA measurements for target track-
ing. In contrast to the existing methods, the estimation error 
properties of the passive target tracking filter are taken into 
account. To do this, the passive target tracking problem is set-
tled by using a linear non-conservative robust Kalman filter 
(NCRKF) [21]. Exploiting the linear filter structure and the 
strong convergence of NCRKF, the FIM of the passive target 
tracking filter can be easily derived in closed form. It is also 
shown that, by taking determinant of the FIM, the object func-
tion of the UAV formation problem is simply expressed as a 
function of two factors; the relative position of the companion 
UAV with respect to the reference UAV as well as the standard 
deviations of the TDOA measurement noises. To cope with 
the time-varying relative geometry between target and UAV 
swarm, the optimal UAV formation is defined as the max-min 
solution of the derived objective function. Thus, the proposed 
analytic solution is able to guarantee the passive target tracking 
performance even in the worst case. Moreover, our solution is 

practically meaningful because it is derived by considering 
the communication range among UAVs which is important in 
implementing the multi-UAV system. Through the computer 
simulations with typical passive target tracking scenarios, the 
validity of methodology is verified.

2 � Linear Robust Passive Target Tracking 
Filter

This section outlines the TDOA-based passive target tracking 
problem in the setting of linear robust estimation theory. The 
detailed explanation is given in [21, 22].

Consider the typical engagement geometry illustrated in 
Fig. 1 involving two-dimensional tracking. In Fig. 1, (XI , YI) 
are axes of the inertial frame, and the origin of the inertial 
frame is set as the initial position of the reference UAV. The 
XI axis coincides with the initial line-of-sight (LOS) direction 
from the reference UAV to the target in the horizontal plane. 
The positions of the target and j-th UAV are (xt, yt) and (xj, yj) , 
respectively. Hereafter, the subscripts j = 0 and j = 1 ∼ N are 
used to denote the reference UAV and its companions. If the 
signal propagation speed c is known, the range difference (RD) 
rj can be easily calculated from the acquired TDOA tj . In such 
case, the RD measurement of the j-th UAV with respect to the 
reference UAV is simply defined as follows:

where

In the above equation, dt,j indicates the distance from the j-th 
UAV to the target.

From the relationship (1), the linear uncertain measure-
ment model can be derived after some tedious algebraic 

(1)rj ≜ c ⋅ tj = dt,j − dt,0, j = 0 ∼ N

dt,j =

√
(xt − x0)

2 + (yt − y0)
2.

Fig. 1   Relative geometry of target and UAV swarm
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manipulations [21]. This enables the TDOA-based target 
tracking problem to be dealt with in the setting of linear state 
estimation.

where

In the above equation, 𝜖 and �� are the noise corrupted meas-
urement of the true variable � and the measurement noise 
with the standard deviation �

�
 , respectively. The noise sta-

tistics of the j-th UAV position and the RD measurement are 
assumed as follows:

The measurement noise vk and the stochastic parameter 
uncertainty �Hk satisfy the following statistics.

(2)yk = Hkxk + vk = (H̃k − 𝛥Hk)xk + vk

x ≜

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xt − x0
yt − y0
dt,0

ẋt − ẋ0
ẏt − ẏ0
ḋt,0

ẍt − ẍ0
ÿt − ÿ0
d̈t,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, y ≜

⎡
⎢⎢⎣

⋮

yj
⋮

⎤
⎥⎥⎦
, v ≜

⎡
⎢⎢⎣

⋮

vj
⋮

⎤
⎥⎥⎦
,

H ≜

⎡⎢⎢⎣

⋮

hj 01×6

⋮

⎤⎥⎥⎦
, H̃ ≜

⎡⎢⎢⎣

⋮

h̃j 01×6

⋮

⎤⎥⎥⎦
, 𝛥H ≜

⎡⎢⎢⎣

⋮

𝛥hj 01×6

⋮

⎤⎥⎥⎦
,

yj ≜ r̃2
j
− (x̃j − x̃0)

2 − (ỹj − ỹ0)
2

+ 𝜎
2
xj
+ 𝜎

2
x0
+ 𝜎

2
yj
+ 𝜎

2
y0
− 𝜎

2
rj
,

hj ≜ −2
[
(xj − x0) (yj − y0) rj

]
,

h̃j ≜ −2
[
x̃j − x̃0 ỹj − ỹ0 r̃j

]
,

𝛥hj ≜ −2
[
𝛿xj,0 𝛿yj,0 𝛿rj

]
,

vj ≜ 𝛿x2
j,0
+ 𝛿y2

j,0
− 𝛿r2

j

− 2(x̃j,0𝛿xj,0 + ỹj,0𝛿yj,0 − r̃j𝛿rj)

− 𝜎
2
rj
+ (𝜎2

xj
+ 𝜎

2
x0
) + (𝜎2

yj
+ 𝜎

2
y0
).

(3)E

⎧
⎪⎨⎪⎩

⎡
⎢⎢⎣

�xj
�yj
�rj

⎤
⎥⎥⎦

⎫⎪⎬⎪⎭
= 03×1,var

⎧
⎪⎨⎪⎩

⎡
⎢⎢⎣

�xj
�yj
�rj

⎤
⎥⎥⎦

⎫⎪⎬⎪⎭
= diag(�2

xj
, �2

yj
, �2

rj
).

(4)Rk ≜ var{vk} = diag([⋯ Rj ⋯])

(5)Wk ≜ E{�HT
k
R−1
k
�Hk} =

⎡⎢⎢⎣

N∑
j=1

Wj

Rj

03×6

06×3 06×6

⎤⎥⎥⎦

where

Without loss of generality, the target dynamics can be 
described using the standard constant acceleration motion 
model.

where

In the above equation, T is the sampling period and uk is the 
zero-mean white process noise with its variance Qk.

Finally, according to [21], a linear passive target track-
ing filter is designed by applying the NCRKF theory to 
the uncertain linear state-space model (2) and (7).

(measurement update)

(time update)

where x and P are the estimate of the NCRKF and its error 
covariance matrix.

(6)Vk ≜ E{�HT
k
R−1
k
vk} =

⎡⎢⎢⎣

N∑
j=1

Vj

Rj

06×1

⎤⎥⎥⎦

Rj ≜ var{vj} = 2(2r2
j
+ �

2
rj
)�2

rj

+ 2(�2
xj
+ �

2
x0
)(2(xj − x0)

2 + �
2
xj
+ �

2
x0
)

+ 2(�2
yj
+ �

2
y0
)(2(yj − y0)

2 + �
2
yj
+ �

2
y0
)

Wj ≜ E{�hT
j
�hj} = 4

⎡⎢⎢⎢⎣

�
2
xj
+ �2

x0
0 0

0 �
2
yj
+ �

2
y0

0

0 0 �
2
rj

⎤⎥⎥⎥⎦

Vj ≜ E{�hT
j
vj} = 4

⎡
⎢⎢⎢⎣

(xj − x0)(�
2
xj
+ �

2
x0
)

(yj − y0)(�
2
yj
+ �

2
y0
)

−rj�
2
rj

⎤
⎥⎥⎥⎦

(7)xk+1 = Fkxk + uk

F =

⎡⎢⎢⎣

I3×3 T ⋅ I3×3
1

2
T2 ⋅ I3×3

03×3 I3×3 T ⋅ I3×3

03×3 03×3 I3×3

⎤
⎥⎥⎦
, u ∼ N(0,Q).

(8)P−1
k|k=P−1

k|k−1+H̃
T
k
R−1
k
H̃k−Wk

(9)
x̂k|k=(I+Pk|kWk)x̂k|k−1

+ Pk|kH̃T
k
R−1
k
(yk−H̃kx̂k|k−1)−Pk|kVk

(10)Pk+1|k = FkPk|kFT
k
+ Qk

(11)x̂k+1|k = Fkx̂k|k
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3 � Optimal UAV Formation for TDOA‑Based 
Target Tracking

3.1 � Objective Function for Optimal UAV Formation

The ultimate goal of this paper is to determine the optimal 
UAV formation so that the best tracking performance can 
be achieved. It is a known fact that the performance of the 
target tracking filter is proportional to the amount of tar-
get information. Therefore, the optimal formation problem 
reduces the problem of determining the UAV formation, 
which maximizes the amount of target information. The 
amount of target information can be represented by FIM or 
the inverse of the estimation error variance when the given 
target tracking filter has a linear structure [23]. It implies that 
the target information is closely related to the filter structure 
for the passive target tracking problem. Therefore, we obtain 
the corresponding FIM of the NCRKF based passive target 
tracking filter and analyze its determinant to indicate track-
ing performance with respect to the UAV formation. Basic 
assumptions used for designing the optimal UAV formation 
are as follows: 

A1.	� The passive target tracking using the UAV swarm con-
sists of reference UAV and N companion UAVs.

A2.	� The companion UAVs are placed around the reference 
UAV with the consideration of the maximum possible 
communication range dmax as shown in Fig. 1. In the 
figure, the angular position �j of the j-th companion 
UAV is defined with respect to the reference LOS 
which is the direction from the reference UAV to the 
target. � is the reference UAV-to-target LOS angle. dj 
is the distance between the reference UAV and the j-
th companion UAV. It is also assumed that dmax and dj 
are not changed and maintained while passive target 
tracking is performed.

A3.	� The measurement noises of UAV position have the 
same standard deviations denoted as �p . The standard 
deviations of the RD measurement noises are also the 
same. 

A4.	� The target is sufficiently far away from the UAV swarm 
maintaining the certain UAV formation. In addition, 
the target motion is negligible within the short time 
period.

 Based on the above basic assumptions, the target informa-
tion obtained by the proposed linear passive target tracking 
filter in Sect. 2 is easily computed. For more detailed deriva-
tion procedure, see Appendix A.

�p ≜�x0 = �y0
= �x1

= �y1
⋯ �xN

= �yN

�r ≜�r1 = ⋯ = �rN

where

It can be prove that the target information of NCRKF, Ir,k(x) , 
is the same with that of optimal Kalman filter (OKF), Io,k(x) . 
Extracting the position information from (47) yields

where R̄j is obtained using (4) and assumption A3.

Using the assumption A2, the target and UAV positions in 
Fig. 1 are rewritten as follows:

where c
�
≜ cos(�) and s

�
≜ sin(�) , respectively.

Now, let us define the amount of target position infor-
mation by taking the dedterminant of (13).

Provided that the target is sufficiently far away from the UAV 
swarm and the UAV swarm is guided toward the target, the 
following approximations (17)∼(19) make sense.

Thus, the RD information is also approximated by

(12)Ir,k(x) ≈ k( ̄̃HTR̄−1 ̄̃H − W̄),

H̄ ≜

⎡⎢⎢⎣

⋮

hj
⋮

⎤⎥⎥⎦
, ̄̃H ≜

⎡⎢⎢⎣

⋮

h̃j
⋮

⎤⎥⎥⎦
, R̄ ≜ R.

(13)

1

k
Ir,k(x)

a.s.
������������→

1

k
Io,k(x)

= 4

⎡
⎢⎢⎢⎢⎣

N∑
j=1

(xj−x0)
2

R̄j

N∑
j=1

(xj−x0)(yj−y0)

R̄j

N∑
j=1

(xj−x0)(yj−y0)

R̄j

N∑
j=1

(yj−y0)
2

R̄j

⎤
⎥⎥⎥⎥⎦

R̄j = 2𝜎2
r
(2r2

j
+ 𝜎

2
r
) + 8𝜎2

p
(d2

j
+ 2𝜎2

p
).

(14)(xt, yt) = dt,0(c�, s�)

(15)(xj, yj) = dj(c�j+�, s�j+�)

(16)

Lp ≜
||Io,k(x)||

= 4

[ N∑
j=1

(xj − x0)
2

R̄j

N∑
j=1

(yj − y0)
2

R̄j

−

( N∑
j=1

(xj − x0)(yj − y0)

R̄j

)2]

(17)dmax ≪ dt,0

(18)(dt,0s𝜆 − djs𝜃j+𝜆)
2
≪ (dt,0c𝜆 − djc𝜃j+𝜆)

2

(19)c
�
≈ 1, s

�
≈ 0
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Substituting (20) and (xj − x0, yj − y0) ≈ dj(c�j , s�j ) into (16), 
the objective function for UAV formation is defined as

where R̄j is replaced by

3.2 � Optimal Formation of UAV Swarm

From (21), we can confirm that the amount of target informa-
tion Lp depends on the relative position ( �j , dj ) of companion 
UAVs with respect to the reference UAV, and the standard 
deviations (�r, �p) of measurement noises. Lp is proportional 
to dj , and inversely proportional to (�r, �p) . It means that the 
enhanced target tracking performance could be achieved as 
the distance between UAVs becomes larger and/or the sensor 
measurement is more accurate. However, the intuitive result 
on �j is difficult to be directly obtained from (21) because there 
is a somewhat complex nonlinear relationship between �j and 
Lp . At this point, to make the analysis problem tractable, it 
is noteworthy that the position of the UAV measured by the 
navigation system is usually very accurate (𝜎p ≪ 1) . Then, R̄j 
in (21) is again approximated as follows:

Meanwhile, if the target moves at high speed, the target 
LOS angle � is rapidly changed. The variation of the LOS 
angle has a critical effect on the UAV formation because �j is 
determined with respect to the LOS direction as described in 
Fig. 1. Therefore, even while the UAVs are placed to maxi-
mize the amount of target information, they may not give a 
good tracking performance throughout the entire tracking 
period. To overcome the above limitation, it is desirable to 
find the UAV formation which maximize the amount of tar-
get information in the worst case. This leads to the following 
max-min problem.

where Lp is redefined by inserting (22) into (21).

(20)rj ≈
√

(dt,0 − djc�j+�)
2 − dt,0 ≈ −djc�j .

(21)Lp ≈ 4

[ N∑
j=1

c2
𝜃j

R̄j

N∑
j=1

s2
𝜃j

R̄j

−

( N∑
j=1

c
𝜃j
s
𝜃j

R̄j

)2]
,

R̄j ≈ 2𝜎2
r

(
2c2

𝜃j
+

(
𝜎r

dj

)2)
+ 8𝜎2

p

(
1 + 2

(
𝜎p

dj

)2)
.

(22)R̄j ≈ 2𝜎2
r

(
2c2

𝜃j
+

(
𝜎r

dj

)2)
.

(23)maxmin
�

Lp

A solution to this problem is given according to the fol-
lowing two cases. The cases are divided by the relationship 
between �j and ( �r , dj).

Case 1. |c
𝜃j
| ≫ 𝜎r∕dj

The amount of target information Lp is approximated and then 
rearranged as follows:

where t
�
≜ tan(�).

From (25), we can conclude that Lp increases when the 
number of UAVs N is large, and the standard deviation of RD 
measurement noise �r is small. In addition, the term in paren-
thesis of (25) can be interpreted as the variance of t

�j
 , 

j = 1, ...,N . Thus, this indicates that Lp also increases as the 
variance t

�j
 becomes larger. In order to obtain the minimum 

value of Lp , the stationary point of Lp and its minimization 
condition are given by (26) and (27), respectively.

As a well-known fact, since the UAV swarm-based passive 
target tracking problem needs at least 3 companion UAVs 
( N ≥ 3 ), the minimization condition of (27) is always satis-
fied. Therefore, the minimizing solution of Lp is to become 
t
�N

=
1

N−1

∑N−1

j=1
t
�j
 defined in (26). By inserting (26) into 

(25), the minimum value of Lp is obtained

(24)

Lp ≈ 4

[ N∑
j=1

c2
�j

2�2
r

(
2c2

�j
+ (

�r

dj
)2
)

N∑
j=1

s2
�j

2�2
r

(
2c2

�j
+ (

�r

dj
)2
)

−

( N∑
j=1

c
�j
s
�j

2�2
r

(
2c2

�j
+ (

�r

dj
)2
)
)2]

(25)

Lp ≈ 4

[ N∑
j=1

c2
�j

4�2
r
c2
�j

N∑
j=1

s2
�j

4�2
r
c2
�j

−

( N∑
j=1

c
�j
s
�j

4�2
r
c2
�j

)2]

=
N2

4�4
r

[
1

N

N∑
j=1

t2
�j
−

(
1

N

N∑
j=1

t2
�j

)2]

(26)

�Lp

�t
�N

=
N2

4�4
r

[
2

N
t
�N

−
2

N2

N∑
j=1

t
�j

]
= 0

→ t
�N

=
1

N − 1

N−1∑
j=1

t
�j

(27)
𝜕
2Lp

𝜕t2
𝜃N

= 2 −
2

N
> 0 → N > 1
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Now, the condition for maximizing the minimum value L∗
p
 

is obtained according to whether the number of UAVs N is 
an odd or even number.
1) N is an odd number
If the companion UAVs are placed symmetrically with 
respect to the target LOS direction, there exist the formation 
angle pairs (�i, �j) with the different sign and same value 
where j = i + 1 , ∀i, j . In this case, because the number of 
UAVs N is an odd number, the second term on the right-hand 
side of (28) is always satisfies with 1

N−1

∑N−1

j=1
t
�j
= 0 irre-

spective of the formation angle pairs. At this time, the for-
mation angle of the Nth companion UAV becomes �N = 0◦ 
from (26). By the characteristics of tangent function, the first 
term on the right-hand side of (28) has the maximum value 
of the symmetry formation angle with |�j| = 90◦ . Therefore, 
the maximizing solution of L∗

p
 is as follows:

2) N is an even number
In this case, L∗

p
 is rearranged as follows:

Again, considering the situation of the formation angle 
pairs (�i, �j) with the different sign and same value where 
j = i + 1 , ∀i, j , from the above equation, it can be deduced 
that L∗

p
 is maximized when |�j| = 90◦ ( j = 1,⋯ ,N − 1 ). 

This indicates |�N| ≈ 90◦ by (26). Therefore, the maximiz-
ing solution of L∗

p
 can be defined by

Case 2. |c
𝜃j
| ≪ 𝜎r∕dj

In a similar way with Case 1, Lp can be approximated by 
applying the assumption |c

𝜃j
| ≪ 𝜎r∕dj to (24).

The above equation is rearranged for convenience of the 
analysis.

(28)L∗
p
=

N(N − 1)

4�4
r

[
1

N − 1

N−1∑
j=1

t2
�j
−

(
1

N − 1

N−1∑
j=1

t
�j

)2]

(29)
�N = 0◦ and �i = 90◦ (i = 1, 3,⋯ ,N − 2)

and �j = −�i (i = 2, 4,⋯ ,N − 1)

(30)L∗
p
≈

N(N − 1)

4�4
r

[
1

N − 1

N−2∑
j=1

t2
�j
+

N

(N − 1)2
t2
�N−1

]

(31)
�i = 90◦ (i = 1, 3,⋯ ,N − 1)

and �j = −�i (j = 2, 4,⋯ ,N).

(32)Lp ≈
1

�8
r

[ N−1∑
j=1

d2
j
c2
�j

N−1∑
j=1

d2
j
s2
�j
−

( N−1∑
j=1

d2
j
s
�j
c
�j

)2]

In (33), letting pij ≜ dic�i djs�j(dic�i djs�j − dis�i djc�j ) , then 
Lp can be regarded as the sum of all matrix element pij . 
Thus, using the fact that pij = 0 where i = j and 
pij + pji = (dic�i djs�j − dis�i djc�j )

2 , the following equation 
is simply obtained.

At this point, the minimum amount of target information L∗
p
 

becomes 0 in the following condition.

From the result, we can understand that in the presence of 
considerable measurement noises, that is, |c

𝜃j
| ≪ 𝜎r∕dj , the 

UAV formation has a negligible effect on the target tracking 
performance. Thus it does not mean much to the problem.

Remark 1  The proposed scheme provides more general solu-
tion to the UAV formation problem than the existing methods 
because it considers practical views such as the measurement 
noise, the maximum communication range between UAVs, and 
the time-varying target motion. From (25), it is obvious that the 
amount of target information becomes larger as the number of 
UAVs increases or the measurement noise variance decreases. 
This conclusion accords with the previous approaches to the 
analysis of optimal UAV formation [15–17]. However, if the 
number of UAVs and the measurement noise properties are 
fixed, the amount of target information varies with the UAV 
formation. Unlike the previous results, (25) tells us that the 
optimal UAV formation maximizes the variance with respect 
to the formation angle �j . This analysis result implies that the 
good target tracking performance can be obtained by making 
the angular positions of the UAVs perpendicular to the target 
LOS direction and far away from it as much as possible.

(33)

Lp ≈
1

�8
r

[ N−1∑
i=1

N−1∑
j=1

d2
i
c2
�i
⋅ d2

j
s2
�j

−

N−1∑
i=1

N−1∑
j=1

(dic�i djs�j )(djc�j dis�i)

]

=
1

�8
r

N−1∑
i=1

N−1∑
j=1

dic�i djs�j(dic�i djs�j − dis�i djc�j )

(34)

Lp ≈
1

�8
r

N−1∑
i=1

N−1∑
j=1

(dic�i djs�j − dis�i djc�j)
2

=
1

�8
r

N−1∑
i=1

N−1∑
j=1

d2
i
d2
j
s2
�j−�i

(35)�i = �j or �i = �j ± 180◦
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Remark 2  In the UAV swarm-based target tracking problem, 
UAVs are generally assumed to be distributed evenly along a 
uniform circle so that the formation angle of j-th companion 
UAV is 2�j∕N  and with the reference UAV at the origin, 
according to a natural intuition in optimal UAV configura-
tion. This is one of the most widely used formations in the 
existing researches [18, 24]. However, these methods are 
developed considering stationary target and UAVs; thus, 
it is not suitable for moving target scenario. As shown in 
Fig. 2, it is obvious that the conventional uniform formation 
expose their limitations in ensuring the enough amount of 
target information necessary to improve the target tracking 
performance.

4 � Simulation Results

Computer simulations are carried out to validate the pre-
sented UAV formation algorithm. The performance of tar-
get tracking according to UAV formation is considered. 
The simulation parameters and conditions are summarized 
in Table 1. The target tracking is performed using TDOA 
information obtained from the UAV swarm, maintaining a 
particular UAV formation. At this time, it is assumed that 
the position and velocity of each UAV are individually given 
from its navigation sensor. It is also assumed that the tar-
get moves with constant velocity with a specific direction, 
where the reference and the three companion UAVs are 
guided towards the target. The trajectories of the target and 
the UAV swarm are shown in Fig. 3. For the given engage-
ment scenario, the simulation results are obtained from 200 
Monte Carlo trials.

The proposed UAV formation algorithm is compared 
with one of the most widely used formations, described in 

Remark 2. We have applied three types of tracking filters 
to the addressed problem by adopting optimal KF(OKF), 
extended Kalman filter (EKF) and presented NCRKF based 
tracking filter. The OKF is used to predict the performance 
bound but is not implementable because it uses the unavail-
able measurement matrix H in (2). On the other hand, the 
EKF is known as one of the most commonly used techniques 
for the non-linear passive target tracking approach.

Figures 4, 5, 6 and 7 show the error means and the corre-
sponding standard deviations of target position and velocity 
estimates. From the simulation result, the proposed NCRKF 
shows a fast convergence property, whereas the EKF does 
not due to its inherent non-linearity. In addition, it can be 
seen that the proposed formation in Fig. 3b tends to decrease 
the standard deviation of estimation error faster than the 
previous uniform formation shown in Fig. 3a. This implies 

5 10 15 20 25 30 35 40

# of auxiliary UAVs, N

0

2

4

6

8

10

12

14

16

18

A
m

ou
nt

 o
f t

ar
ge

t i
nf

or
m

at
io

n,
 |I

p
|

1032

Previous
Proposed

Fig. 2   Amount of target information

-5000 -4000 -3000 -2000 -1000 0

x pos. [m]

-1500

-1000

-500

0

500

1000

1500

2000

2500

y 
po

s.
 [m

]

Reference UAV
Target

(a) uniform formation

-5000 -4000 -3000 -2000 -1000 0

x pos. [m]

-1500

-1000

-500

0

500

1000

1500

2000

2500

y 
po

s.
 [m

]

(b) proposed formation

Fig. 3   Engagement scenario



558	 Journal of Electrical Engineering & Technology (2022) 17:551–564

1 3

that the proposed UAV swarm formation is a better selection 
from the viewpoint of target tracking performance, which is 
consistent with the results of the optimal formation analysis 
performed in Sect. 3.2.

In order to clearly show the effect of the UAV forma-
tion on the tracking performance, the normalized root mean 
squares errors (NRMSEs) of the position and velocity esti-
mates are shown in Figs. 8 and 9. The NRMSE is calculated 
as follows:

where N is the number of Monte-Carlo trials, d̃j is the posi-
tion or velocity estimation error. Letting �̂ be the estimate 
of the true vector � , then d̃j = (�̂ − �)T (�̂ − �) . Dj is the nor-
malized constant which is defined as the standard deviation 
of the estimation error �̂ − � . It is chosen as the maximum 
value of the estimation error standard deviations obtained by 
using two different UAV formations is used for Dj.

(36)Ēj =
1

Dj

√√√√ 1

N

N∑
k=1

d̃2
j
(k)

From the NRMSEs of position and velocity as Figs. 8 and 
9, the proposed formation provides more consistent estima-
tion performance than the previous formation regardless of 
filter structrues. This result corresponds to the fact men-
tioned in Remark 2. Consequently, the proposed formation 
algorithm is expected to be used as an attractive solution for 
guaranteeing the excellent performance of the passive target 
tracking based on the UAV swarm.

5 � Conclusions

A novel UAV formation algorithm has been proposed for the 
passive target tracking using TDOA information measured 
by the UAV swarm. To make the UAV formation problem 
tractable, the non-conservative robust Kalman filter was 
used for passive target tracking. Exploiting its linear filter 
structure and estimation error properties, the UAV forma-
tion target information was derived in closed-form. It was 
shown that the proposed UAV formation maximizing the 
worst-case target information provides more reliable passive 
target tracking performance than the conventional uniform 
formation. Moreover, the proposed approach enables practi-
cal constraints overlooked in most existing methods, such 
as the maximum possible communication range between 
UAVs to determine the UAV formation. Through the com-
puter simulation, it has been demonstrated that the proposed 
UAV formation technique provides exceptional tracking 
performance.

Appendix A

The FIM Jk(x) is generally defined by

where x̂k is an unbiased estimate of parameter x , which is 
to be estimated. Ck(x) is the CRB (Cramer-Rao bound). The 
(i, j)th element of Jk(x) is given by

where p(x, yk) is the joint probability distribution of x and 
stacked measurement vector yk ≜ {yl}, l = 1, ..., k . The 
following target dynamics and measurement models are 
assumed.

(37)E{(x̂k − x)(x̂k − x)T} ≥ Ck(x) ≜ J−1
k
(x)

(38)Jk(x)i,j = E

{
� log p(x, yk)

�xi

� log p(x, yk)

�xj

}

(39)
xk+1 = Fkxk

yk = Hkxk + vk

Table 1   Simulation condition

Item Assumption

Target Initial velocity |vt| = 20[m∕s], �t = 135◦

Initial position   (xt, yt) = (0, 0)[m]

UAV ◦ # of companion UAV:
Swarm N = 3

◦ Initial value:
Velocity       |v0| = 270[m∕s] , �0 = 30◦

Position (x0, y0) = (−5000, 0)[m]

(xj, yj) = (x0, y0) + dj(c�j , s�j )[m]

◦ UAV formation:
Uniform formation

dj = 300[m], 𝜃j = −
2𝜋

3
+

2𝜋

3
(j − 1), j > 0

Proposed formation
dj = 300[m], 𝜃j = −

𝜋

2
+

𝜋

2
(j − 1), j > 0

Noise RD             �2
rj
= (0.5[m])2

Variance UAV position             �2
xj
= �

2
yj
= (0.5[m])2

Filter ◦ Proposed linear filter (NCRKF):
P0|−1 =1∕9⋅diag([1002, 1002, 2 ⋅ 1002,…

302, 302, 2 ⋅ 302,…

102, 102, 2 ⋅ 102])

Q = diag([0.12, 0.12, 2 ⋅ 0.12])

◦ Non-linear filter (EKF):
P0|−1 =1∕9⋅diag([1002, 1002, 302, 302, 102, 102])

Q = diag([0.12, 0.12]),R = �
2
rj
⋅ I3×3

◦ sampling:
T = 20[ms]
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Under the assumption that the measurement noise vk is a 
normally distributed random variable with mean zero and 
variance Rk , i.e., yk ∼ N(Hkxk,Rk),

and the FIM is given by

where

(40)

p(x, yk) =
1

∏k

l=1
(2��Rl�)

1

2

⋅

exp

�
−

1

2

k�
l=1

�
yl − Hlxl

�T
R−1
l

�
yl − Hlxl

��

(41)Jk(x) = (Hk)T (Rk)−1Hk

and the block matrix �k is defined by

Hk = Hk
�

k, Hk =

[
Hk−1 0

0 Hk

]
, Rk =

[
Rk−1 0

0 Rk

]

�
k ≜

⎡
⎢⎢⎢⎢⎢⎣

�(0, k)

�(1, k)

⋮

�(k − 1, k)

�(k, k)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

�(0, k − 1)F−1
k−1

�(1, k − 1)F−1
k−1

⋮

�(k − 1, k − 1)F−1
k−1

In×n

⎤
⎥⎥⎥⎥⎥⎦

=

�
�k−1F−1

k−1

In×n

�
, �

0 = In×n
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where

and

𝛷(j, k) ≜ Fj−1 ×⋯ × Fk (j > k)

𝛷(j, k) ≜ In×n (j = k)

𝛷(j, k) ≜ (Fk−1 ×⋯ × Fj)
−1 (j < k)

Fk ≜

⎡
⎢⎢⎢⎢⎢⎣

�(0, 1) �(0, 2) ⋯ �(0, k − 1) �(0, k)

0 �(1, 2) ⋯ �(1, k − 1) �(1, k)

⋮ ⋱ ⋮

0 0 ⋯ 0 Phi(k − 1, k)

0 0 ⋯ 0 0

⎤⎥⎥⎥⎥⎥⎦
=

�
Fk−1

�
k−1F−1

k−1

0n×(k−1)n 0n×n

�
, F1 =

�
F−1
0

0n×n

�
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Fig. 6   Error mean of target estimate: velocity
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Fig. 8   NRMSE of target esti-
mate: position
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Fig. 9   NRMSE of target esti-
mate: velocity
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The detailed derivation procedure of the matrices can be 
found in [25].

The achievable amount of target information is defined by 
using weighting matrix W.

where

The weighting matrix consists of weighted values, Wp , Wv , 
and Wa for target position, velocity, and acceleration respec-
tively. In this paper, we focus on maximizing the amount of 
target position information, and thus the weighted values are 
designed as Wp = I , Wv = 0 , Wa = 0.

Consider the following system matrix.

By applying the above matrix F to (42), the achievable 
amount of target information becomes

where H̄j and R̄j denote the newly defined term correspond-
ing to target position information of measurement matrix 
Hj and measurement error covariance Rj . The FIM depicts 
the characteristics that when the probability distribution is 
sharply peaked, the estimate may be more likely to be accu-
rate than when the probability distribution is flatter. This 
means that the FIM includes the amount of target informa-
tion carried by the corresponding measurement equation. 
Meanwhile, the probability distribution of the addressed 
filter framework is defined by [22]

In the same way as above, we can easily obtain the achiev-
able amount of target information of the proposed filter.

(42)
Ik =tr

{
WJk

}
= tr

{
W(�k)T (Hk)T (Rk)−1Hk

�
k
}

=tr
{
(Hk)T (Rk)−1Hk

�
kW(�k)T

}

W =

⎡⎢⎢⎣

Wp 0 0

0 Wv 0

0 0 Wa

⎤⎥⎥⎦

(43)F =

⎡⎢⎢⎣

I T ⋅ I
1

2
T2 ⋅ I

0 I T ⋅ I

0 0 I

⎤⎥⎥⎦

(44)Ik =

k∑
j=0

HT
j
R−1
j
HjW =

k∑
j=0

H̄T
j
R̄−1
j
H̄j

(45)

pr(x, y
k) =

1
∏k

l=1
(2𝜋�Rl�)

1

2

⋅ exp

�
−

1

2

k�
l=1

�
(yl − H̃lxl)

TR−1
l
(yl − H̃lxl)

− (xT
l
Wlxl + x

T
l
Vl + VT

l
xl)
��

According to the problem formulation in this paper, espe-
cially described by basic assumptions of subsection 3.1, 
Ir,k(x) can be approximated as

Appendix B

In this paper, the FIM of optimal KF and proposed NCRKF 
are defined respectively for the measurement equation of (2).

where

In the above equation, po(x, yk) and pr(x, yk) are the joint 
probability density of optimal KF and NCRKF. The FIM 
of proposed filter can be rewritten by utilizing the optimal 
KF’s FIM.

(46)

Ir,k(x) =

k∑
l=1

(
H̃T

l
R−1
l
H̃l −Wl

)
W

=

k∑
l=1

(
̄̃HT
l
R̄−1
l

̄̃Hl − W̄l

)
.

(47)Ir,k(x) ≈ k
(
̄̃HTR̄−1 ̄̃H − W̄

)
.

(48)Jo,k(x) = − E

{
�
2lnpo(x, y

k)

�x2

}

(49)Jr,k(x) = − E

{
�
2lnpr(x, y

k)

�x2

}

𝜕
2lnpo(x, y

k)

𝜕x2

= −
1

2

𝜕2
∑k

l=1
(yl − Hlxl)

TR−1(yl − Hlxl)

𝜕x2

𝜕
2lnpr(x, y

k)

𝜕x2

= −
1

2

�
𝜕
2
∑k

l=1

�
(yl − H̃lxl)

TR−1(yl − H̃lxl)
�

𝜕x2

−
𝜕
2
∑k

l=1

�
x
T
l
Wlxl + x

T
l
Vl + VT

l
xl

�
𝜕x2

�

(50)

E

{
�
2lnpr(x, y

k)

�x2

}

= E

{
�2lnpo(x, y

k)

�x2

}
+ E

{
�
2(�JW − �JV − �JT

V
)

�x2

}
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where

It can be easily known that the second term on the right-hand 
side of (50) becomes zero. That is, the FIM of the NCRKF 
converges to that of the optimal KF almost surely.

It seems a natural consequence as the NCRKF scheme is 
invented by compensating the difference between cost func-
tions defined in least-squares estimation terms of optimal KF 
and standard KF without proper error compensating strategy.
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