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Abstract
This paper presents a new model-learning-based partitioned control strategy of a wearable lower exoskeleton. Here, the 
dynamics of the coupled human-exoskeleton system along with the corresponding resulting interaction torques are learned 
based on nonparametric regression technique and then incorporated in the control system for swing phase. This promising 
combination of partitioned control scheme and incremental model learning has provided the exoskeleton with the ability to 
adapt to various dynamics of human operators, to reduce the physical interaction between the operator and the exoskeleton, 
and minimize the sensory system used in the system. In this method, movement data containing the information of dynam-
ics and interaction was collected in a number of walking cycles, and then training and prediction procedure were performed 
to aid the controller. We have demonstrated the feasibility of the proposed method through an exoskeleton prototype that 
employs walking sessions on a bench-testing over different ranges of walking speeds (0.8–1.2 m/s) with various subjects. In 
the simulation results, the control performance of the proposed algorithm was qualitatively compared to other fundamental 
controllers including a classical impedance control and a Rigid-Body-Dynamics model-based control. The resulting inter-
action torque reduced to greater than 32%. These results were re-evaluated in the real system and similar performance was 
achieved.

Keywords  Lower limb exoskeleton · Human–robot interaction · Wearable robotics · Computed torque control · Model 
learning · Non-parametric regression

1  Introduction

Lower exoskeletons are intelligent wearable robots which 
are worn by human operators as orthotic devices for perfor-
mance assistance or work augmentation. They have attracted 
enormous attention in many fields such as labor-intensive 
industries, military and medicine. Although a number of 
studies relating to design of lower limb exoskeletons have 
been developed [1–8], many challenges continue to limit the 
performance of the system. One of the limiting factors is 
the lack of intelligent and effective control strategies for the 
incorporative human-exoskeleton system. In general, the aim 

of the control strategies is to drive the lower exoskeleton to 
work in concert with the operator’s movement while they fit 
closely to the body of the operators. To do this, the control of 
exoskeleton robots must satisfy the following requirements 
besides the normal expected performances in robotic field: 
(1) Capability of automatic gait-pattern adaptation since 
the physical characteristics of limb’s segments change from 
person to person and also within one person over time; (2) 
Delivering assistive torques while reducing the human–robot 
interaction torques for natural movement of the operators as 
a key point compared to other traditional robots; (3) Reject-
ing disturbances due to un-modeled dynamics effects such 
as actuator dynamics, noise, and friction.

To deal with the above problems, many control methods 
have been developed, from conventional methods such as 
master–slave position control [1], state machine [9], vir-
tual torque control [10], and impedance control [2] etc., 
to the enhanced methods such as admittance control [11], 
predictive control [12], primitive-based adaptive control 
[6], assist-as-need control [13], and EMG-based motion 
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intention recognition control [14]. As one of the typical 
groups in improvement of control quality for the lower exo-
skeleton, Ugurlu et al. developed a newly active compli-
ance control strategy where the force and position control 
loops are simultaneously managed to reduce the resulting 
interaction force and upper body effort [11]. Unlike tradi-
tional stiff control strategies as master-salve and impedance 
control, the proposed method computes the joint angles, 
contact force errors and force/position control law to pro-
vide compliant locomotion characteristics. The method 
depends significantly on hardware implementation and sen-
sor calibration which are necessary to improve the clini-
cal trials. In the scope of an exoskeleton at the knee joint, 
Staman et al. implemented a feedback force amplification 
on a novel series elastic element and electro-hydrostatic 
actuator to shadow the forces (torques) required from 
the human-operator muscle for control of the robot [15]. 
However, there are many simplifying assumptions for the 
calculation of feedback forces in this research that will be 
unreal when the robot cooperates with operators under the 
effects of uncertainties in external environments. One of the 
remarkable achievements of the Berkeley Lower Extremity 
Exoskeleton (BLEEX) system was to minimize the use of 
sensory information from human-exoskeleton interaction, 
and instead, utilized a novel control method, called Sen-
sitivity Amplification Control (SAC) to add robustness to 
the system [1, 16]. However, to achieve the SAC control, 
the dynamic model of the BLEEX system has to be identi-
fied as well as possible with a large number of parameters. 
While, as a trade-off, the Hybrid Assist Limb (HAL) system 
used a number of sensing modalities, such as skin-surface 
Electro-Myo-Graphical (EMG), reaction and interaction 
force sensors, to input a specific control scheme, typically 
as EMG-based impedance control schemes [3]. Similarly, 
Gui et al. proposed an EMG-based assist-as-needed control 
method on their custom-built lower exoskeleton to estimate 
a subject's voluntary joint torque from a progressive learning 
strategy [13]. To perform these control schemes in the both 
projects, it was necessary to estimate operator’s viscoelastic 
properties as the active interaction torques using the motion 
information measured from these sensors. Although the 
proposed control methods were generally not related to the 
complicated dynamic models, the design and calibration of 
the sensory system are not straightforward, especially in the 
case of the system attached to human during locomotion. By 
proposing a new concept of quasi-passive exoskeleton, Pas-
sive Exoskeleton Clothes of MIT exploited the quasi-passive 
elements of springs and variable damper to improve the effi-
ciency of exoskeleton devices [9]. By similar approach, Yu 
et al. proposed an under-actuated wearable exoskeleton to 
carry a heavy load through a feasible modular-type wear-
able system and a sensing data estimation to synchronize 
the robot with a user [17]. A quasi-passive variable stiffness 

spring exoskeleton system was also introduced to increased 
speed and reduce energy cost during walking [18]. In these 
investigations, only the exoskeletal structure is concentrated 
via damper and stiffness elements while a conventional state-
machine controller was applied. Non-adaptive control and 
kinematic constraints in the musculoskeletal design hinder 
these robots from closely tracking human movement pat-
terns. The proposal of newly emulated inertial compensa-
tion and active-impedance controls bring novel solutions 
to improve the agility of the exoskeletons in swing mode 
[19]. In a different scheme, a model of the full exoskeleton 
dynamics including the contacts with the environment have 
been withdrawn to compensate for the control strategy [20]. 
In general, the control performance in these works signif-
icantly depends on the design and calibration of the sen-
sory system or on the computation cost of the exoskeleton 
dynamic model. Inspired by these points, we propose an 
intelligent control strategy of the coupled human–machine 
system with the ability to adapt to the change in the human-
exoskeleton interaction, while reducing the number of sen-
sors and substituting the issue of system identification.

Our goal in this paper is to develop a model-learning-
based partitioned control strategy (MLPC) which utilizes 
a nonparametric regression technique (Meier et al. [21], 
Nguyen-Tuong et al. [22]) to learn the dynamics model of 
the human-exoskeleton system including the physical inter-
action torques for a partitioned control of the system as 
depicted in Fig. 1. By doing so, both dynamics nonlinearities 
and the resulting interaction torques would be compensated 
by the model being learnt. To collect data for learning, the 
operator-exoskeleton system is controlled by a simple posi-
tion controller so that the exoskeleton can track the opera-
tor’s movement in the first several gait cycles. Since control 
issues are frequently addressed in the swing leg which is 
subjected to large motions with high bandwidths contrary to 
the stance leg, the proposed strategy would be applied in the 
swing phase during walking while a position control with 
gravity compensation is used to control the stance exoskel-
eton leg. By using this approach of dynamic model learning, 
we can simultaneously deal with above obstacles in lower 
exoskeleton control. Firstly, nonparametric learning meth-
ods (Stulp et al. [23], Schaal et al. [24]) can approximate 
a mapping describing dynamics relationship that contains 
all nonlinearities of the combined human-exoskeleton sys-
tem including interaction factors. Since there are no great 
differences of individual gait patterns (playing the role 
as excitation trajectory) from person to person as well as 
within person during walking, training and test trajectories 
for model learning would be guaranteed [25, 26]. While, 
from the viewpoint of system identification, the estimation 
of these dynamics parameters is not always straightforward 
due to the requirement of persistent excitation and the nec-
essary of sufficiently rich data sets [25, 27]. Secondly, the 
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interaction torques between the operator and the exoskeleton 
can be regarded as a part of nonlinear dynamics of the whole 
system. Not to count the force command from the human 
central nervous system, the force imposed by the human on 
the machine physically depends on the deviation between 
the joint position of the operator and exoskeleton which can 
be used as a learning input for MLPC [10, 28]. Finally, the 
sensors that are used to collect data and take as feedback sig-
nals of the entire system, are totally encoders on exoskeleton 
and inclinometers on human. This is because the proposed 
learning algorithm will only take inputs from joint angles, 
velocities and accelerations without any direct measurement 
of the interaction torques. Consequently, the aim of reducing 
the sensory system can be obtained.

The proposed control strategy would be evaluated on 
a HUman-powered Augmentation Lower EXoskeleton 
(HUALEX) developed at our center. HUALEX fundamen-
tally aims to provide sagittal plane augmented torques at 
hip/knee joints and to support load-carrying (Fig. 4). We 
applied MLPC to perform walking sessions for different sub-
jects (named A-C) wearing HUALEX on a bench-testing. 
The experimental results indicated that MLPC significantly 
improved the control performance with reduction in track-
ing error and the interaction torques, adaptation to novel 
dynamics and physical human properties yet within a prede-
fined range of walking speeds. The remainder of this paper 
is organized as follows; firstly we generally present how 
the learning procedure of dynamic model including physi-
cal interaction factor can be incorporated into a partitioned 
control scheme of the exoskeleton. Subsequently, we pre-
sent the implementation of MLPC on HUALEX. Finally, 
we test and evaluate the strategy in simulations as well as in 

experiments. The results will point out the effectiveness of 
MLPC in the exoskeleton control.

2 � Model‑Learning‑Based Partitioned 
Control (MLPC) Strategy

From the viewpoint of control strategy, the exoskeleton robots 
fall into either of two broad categories. The first is wearable 
robots augmenting the muscular force of healthy subjects 
and supporting load, as passive devices. Whenever the sub-
ject moves or works, the exoskeleton has to be commanded 
to follow his/her motion without any inhibition. The other is 
assistive robots that support patients with walking difficulties. 
For this type, the robot is an active device driven to follow pre-
defined gait trajectories and combined with a bit of informa-
tion from the patients. For a unified perspective on this study, 
we have focused mainly on the former, a lower exoskeleton 
for performance augmentation. On the other hand, from bio-
mechanical studies of human behavior, the walking gait cycle 
is frequently divided into a number of distinct phases [29, 30]. 
Among them, for a single leg, it is divided into two phases: 
a load support stance phase and an unloaded swing phase. 
Here, the swing leg is subjected to large motions with high 
bandwidths contrary to the stance leg. The stance leg is also 
affected by ground reaction forces which obstruct the control 
implementation and evaluation. Therefore, to simplify learn-
ing-control scheme, the dynamic behavior of the leg while in 
swinging mode will be investigated, in which two-linkage rev-
olute mechanism regarded as a 2-DoFs multi-link pendulum 

Fig. 1   The principle of model-
learning-based partitioned con-
trol strategy (MLPC) for lower 
exoskeletons in swing phase 
using interaction-dynamics 
learning
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(HUALEX leg in swing phase) will be used to evaluate the 
algorithm.

2.1 � Control of Lower Exoskeletons 
with Model‑Based Approach

Due to enabled high speed and compliant control, partitioned 
control (or computed torque control) were proposed and then 
developed adequately in the robotic field [31, 32]. However, 
the major obstacle of this control approach is the requirement 
of an accurate model for feed-forward torque generation. In the 
past, these models could be obtained using standard rigid body 
formulations, but this solution is limited due to model errors, 
actuator dynamics, and un-modeled nonlinearities [32, 33]. 
Moreover, it is not feasible to apply the solution for control 
of the combined human-exoskeleton system since the system 
is especially subjected to unpredictable human–robot interac-
tion forces (torques). An alternative to analytically deriving 
the dynamic model as well as the interaction dynamics is to 
learn them. In swing phase, the human subject’s leg including 
HUALEX is generally modeled as a 2-DOF serial link mecha-
nism (Fig. 2). The dynamics for this serial link are represented 
by the equation:

where q ∈ R2 is the generalized position vector comprising 
the hip and knee angles. The terms M(q) ∈ R2×2 , V(q) ∈ R2 , 

(1)

[ME(q) +MH(q)]q̈ + [VE(q, q̇) + VH(q, q̇)]q̇

+ GE(q) + GH(q) + 𝜏F + 𝜏H = 𝜏A,

G(q) ∈ R2 represent the positive definite inertia matrix, 
Coriolis and centrifugal torque vector, and gravity torque 
vector, respectively, of the human subject (index H) and the 
exoskeleton (index E). The term � ∈ R2 of Eq. (1) is the tor-
ques acting onto the exoskeleton. Of them �A is the actuator 
torque vector of drives acting onto the links of the exoskel-
eton, �H is the torque vector originating from the operator-
exoskeleton interaction, and �F is the friction torque vector 
around the joints of both the exoskeleton and operator. In 
general, �F are assumed as functions of joint positions and 
velocities as follows:

where DE,CE represent viscous friction and Coulomb fric-
tion coefficients around the joints of the exoskeleton respec-
tively, DH is the viscous friction coefficient around the joints 
of the operator, u(t) is the muscle activation at the joints of 
the operator. In Eq. (2), the stiffness of the operator’s mus-
cles is neglected since it is insignificant compared to other 
parameters.

The term �H are the torques generated by the muscles 
of the operator (resulting interaction torques) that physi-
cally result from deviations between the joint positions of 
the operator and exoskeleton. Given that, q̃ = qh − q is the 
deviations of the desired joint angles of the operator from 
the actual ones of the exoskeleton during walking. The inter-
action torques from the operator �H can be described as the 
nonlinear functions of the deviation without damping. This 
assumption leads to the most vulnerable effect of the interac-
tion torque that makes the system to be unstable. By doing 
so, the proposed control scheme will be designed under the 
least stable condition from the interaction:

In general, the determination of structure and parameter 
of the nonlinear function H(q̃) depends on factors relating to 
the physical properties of a specific operator and how well 
the operator fits to the machine. Note that the sign of �H in 
Eq. (3) is the vector sign depending on direction and orien-
tation of motion. The proposed algorithm will be validated 
with various cases of the H function when the exoskeleton 
is physically acted from various muscle acted from various 
models of each individual operator. For the sake of simplic-
ity and convenience, Eq. (1) can be rewritten as:

where M(q) = ME(q) +MH(q),V(q, q̇) = VE(q, q̇) + VH(q, q̇)

,G(q) = GE(q) + GH(q).
Introducing vector K  which is  def ined as: 

K(q, q̇, q̃) = V(q, q̇)q̇ + G(q) + F(q̇) + H(q̃).
Thus, the Eq. (4) becomes:

(2)𝜏F = F(q̇) = DEq̇ + CEsign(q̇) + DH(u(t))q̇ ,

(3)𝜏H = H(q̃) .

(4)M(q)q̈ + V(q, q̇)q̇ + G(q) + F(q̇) + H(q̃) = 𝜏A ,

Fig. 2   An exoskeleton interacting with the operator’s lower limb dur-
ing walking
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It can be seen from Eq. (4) that, if the dynamics of the 
system as well as the interaction factor H(q̃) can be esti-
mated exactly, partitioned control method can eliminate 
the nonlinearities and the interaction dynamics as shown 
in Fig. 1. Using Locally Weighted Projection Regression, 
an inverse dynamic control can be achieved. This control 
is practically not exact because of the uncertainties and the 
resulting interactions in the combined human-exoskeleton 
system. The model-based learning control input can be writ-
ten as [31, 32]:

where u is the new control input which makes the system 
to be robust and the notation (⋅̂) represents for the estimated 
corresponding item. The modelling error is expressed as:

Now substituting the control (6) input into the human-
exoskeleton model (5) yields:

where the uncertainty is determined as:

The remaining task of the control scheme is to linearize 
the operator-exoskeleton system with a robust Proportional 
Derivative (PD) controller. For doing so, the control law is 
chosen as:

where qh, q̇h, q̈h denote desired joint angles, velocities and 
accelerations of the human operator, Kp, KV are two diagonal 
positive-define matrices, and d is an additional input to be 
determined. Here, the tracking error is defined as follows:

By substituting the control laws (6) and (10) into the 
human-exoskeleton dynamic equation, closed-loop error 
equation is obtained as follows:

where

(5)M(q)q̈ + K(q, q̇, q̃) = 𝜏A.

(6)𝜏A = M̂(q)u + K̂(q, q̇, q̃)

(7)
ΔM(q) = M̂(q) −M(q), ΔK(q, q̇, q̃) = K̂(q, q̇, q̃) − K(q, q̇, q̃).

(8)q̈ = u − 𝜁(q, q̇, q̃, u)

(9)
𝜉(q, q̇, q̃, u) = −M−1(q)

[
ΔM(q)u + ΔK(q, q̇, q̃)

]

=
[
I −M−1(q)M̂(q)

]
u −M−1(q)ΔK(q, q̇, q̃)

(10)u = qh + KD(q̇h − q̇) + KP(qh − q) + d

(11)e =

[
q̃
̇̃q

]
=

[
qh − q

q̇h − q̇

]

(12)ė = Xe + Y(𝜉 − d)

X =

[
0 I

−KP −KD

]
, Y =

[
0

I

]
.

The robust PD control (10) leads to stabilize the nominal 
error system of a linear feedback, to compensate the accel-
erations of the lower limb joint angles, and to overcome the 
destabilizing effect of the uncertainty � . If KP and KD are two 
diagonal positive-definite matrices then X is Hurwitz. It is 
worth establishing a nominal error dynamics characterized 
by a frequency �iand a damping factor � . Therefore, the 
gains KP and KD can be chosen as follows:

Clearly, as the configuration of the combined human-
exoskeleton system changes, the effective close-loop gain 
changes and the poles move around in the real-imaginary 
plane. Nevertheless, we can use Eq. (13) to find a good set 
of constant gains such that, despite change of the poles, 
they are guaranteed to remain in favorable positions. This is 
equivalent to a starting point for the design of a robust con-
troller [31, 32]. For example, using the Lyapunov’s methods, 
the control term d can be designed. In order to accomplish 
the robust model-based control for the combined human-
exoskeleton system, a suitable expression for control law 
relating to ‖�‖ has to be determined. In practice,‖�‖ is not 
adequate to determine because of the properties of the lower 
exoskeleton system in which there are uncertainties relating 
to the human biomechanics and human intention. Thus, this 
paper focused on the experimental evaluation to demonstrate 
the proposed control strategy. This approach is well known 
in the robotic lower exoskeleton field [1–9]. One of impor-
tant remaining issues that will be discussed in next sections 
is to approximate the inverse dynamic model of the system 
for control law as Eq. (6). Note that, this control law is com-
puted as a function of the desired trajectory only. Hence if 
the desired trajectory is known in advance, values usually 
can be computed off-line before the system begins working. 
However, in the case of controlling the exoskeleton to follow 
human motion, we need a trajectory generator which gets the 
kinematics information from human motion, such as human 
joint angles, velocities and accelerations. These signals will 
be directly computed based on the inclinometers attached 
on the operator limbs.

2.2 � Key Features of Human–Robot Model Learning

If a reliable inverse dynamic model of the combined sys-
tem is available and simultaneously the physical interaction 
between the operator and exoskeleton is predicted well, the 
proposed model-based control can produce much higher-
quality control with less power consumption. This dynamic 
model is not easy to acquire even when using dynamic param-
eter estimation techniques due to persistent excitation issue 
[26]. Exciting trajectories in these techniques are unrealistic 
in normal operating regime of an exoskeleton. Therefore, a 

(13)Kp = diag(�2
1
,�2

2
), KD = diag(2�2�1, 2�2�2)
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more appropriate approach investigated in this paper is to use 
supervised learning techniques to approximate dynamic ele-
ments of the system. Looking at walking motion, the swing leg 
is usually subjected to large movement with high bandwidth 
while the interaction torques exerted by the human operator 
are correspondingly time varying. In order to approximate 
the dynamics of this high dimension system during quick and 
natural movement of the human operator, it needs incremental 
online training and adaptation learning. LWPR with the ability 
to incremental learning is particularly suited for this kind of 
regression problems since it was verified for real-time control 
applications [34–36].

2.2.1 � Locally Weighted Projection Regression (LWPR)

In general, supervised learning techniques have been divided 
into two major categories: global and local methods. Global 
methods such as Neural Networks (Haykin et al. [37]), and 
Gaussian Process Regression (Schaal et al. [24]) fit nonlin-
ear functions globally, provide a powerful tool to accurately 
approximate models from data. Local methods, typically as 
Locally Weighted Projection Regression (Nguyen-Tuong 
et al. [22]) make use of spatially localized models to fit a 
nonlinear function. LWPR is an incremental version of the 
locally weighted regression (LWR) algorithm with automatic 
structure adaptation and lower computational cost [38]. Com-
pared to the global regression techniques, LWPR is appropri-
ate for learning the complicated dynamic model containing 
the human–robot interaction factors of the system due to its 
fast learning speed [39, 40]. An LWPR model consists of a 
set of local linear models that come paired with a kernel that 
defines the area of validity of the local model. For a given 
input x , a weighting �k(x) is determined by the kernel of the 
kth local model while the local linear model predicts an output 
�k(x) . The combined prediction of LWPR is calculated by the 
weighted average of N individual predictions:

with 𝜓k(x) = x
T

k
𝜃̂k and 

[
(x − ck)

T , 1
]T . Here 𝜃̂k contains the 

regression parameters and ck is the center of the kth lin-
ear model. The region in which a linear model is valid is 
called the receptive field (RF). It is usually characterized by 
a Gaussian kernel:

where Dk is a positive definite matrix called distance metric. 
The main goal of the learning process is to adjust Dk and 𝜃̂k 
so that the error between the predicted values and the targets 
is minimal. For learning the linear models �k(x) , the regres-
sion parameter 𝜃̂k is calculated by an online formulation of 

(14)ŷ(x) =

∑N

k=1
𝜔k(x)𝜓k(x)∑N

k=1
𝜔k(x)

(15)�k(x) = exp
(
−
1

2
(x − ck)

TDk(x − ck)
)

weighted partial least squares (PLS) regression (Vijayaku-
mar et al. [39]), instead of recursive least square (RLS) pre-
sented in [40]. The advantage of PLS compared to recursive 
least square (RLS) is to reduce the computing cost of regres-
sion since the PLS algorithm is done only in a subspace 
determined by principal components of input, instead of 
doing over the whole input space as in case of RLS [41]. 
The regression parameter 𝜃̂k can be calculated recursively 
as detailed in [43]. The distance matrix Dk determines the 
locality of each local model that can be learned individually 
by the stochastic gradient descent. Based on a given cost 
function Jk , distance metric Dk is updated as the following 
rule:

where Mk is an upper triangular matrix that ensures Dk to be 
positive. Minimizing the penalized weighted mean squared 
error expressed in Jk , the distance metric Dk can be obtained 
[42]. The number of receptive fields is updated automati-
cally. If a training data point x does not activate any RF by 
more than a constant �gen a new RF is created centered at 
x . It shows that the number of RFs is directly proportional 
to the complexity of the input. Parameter �gen is a tunable 
one called meta-parameter. Besides, there are several other 
parameters related to the convergence and approximation 
error of the algorithm that need to be tuned manually during 
learning [39, 42, 43].

2.2.2 � Movement Data Collection

The main issue involved in the data collection for learning 
is that learned model is unable to generalize well outside 
the regions that it has been learned. In the field of robot 
manipulator control using model learning, in order to learn 
inverse dynamics of a robot and use it to control, training 
data and test data have to guarantee the learning procedure 
will not fall into overestimated domain. Besides, the actual 
joint angles of a robot have to be chosen such that the rela-
tionship between the inputs and the target are sufficiently 
nonlinear [22, 27]. These joint angles play the role of an 
exciting trajectory during training and a desired trajectory 
during predicting. Fortunately, these exciting and desired 
trajectories are guaranteed for the motion of a lower exo-
skeleton that follows a normal walking gait dominated 
by an operator. Taking only human walking into account, 
although the human gait is different within one person over 
time, this difference is not so significant and still ensures 
that the desired trajectory for prediction will be inside the 
regions that it has been learned. It means that movement data 
collected by that way is able to capture the nonlinear dynam-
ics of the exoskeleton and the corresponding human–robot 

(16)Dk = MT
k
Mk, with Mn+1

k
= Mn

k
− �

�Jk

�Mk
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interaction torques. These data, naturally, can be collected 
by controlling the exoskeleton to track the human motion 
with a non-model based controller, say a master–slave posi-
tion controller.

As shown in Fig. 3, it is assumed that number (N1 + N2) 
iterations of the walking gait cycle (only considered in swing 
phase) will be performed. The exoskeleton is controlled by 
a simple master–slave PD controller with high gains in the 
first N1 iterations of the trajectory and then switched to the 
partitioned controller with the model being learnt. Half 
of the observed data was used for training the model and 
half for testing and estimating the accuracy of the learned 
model. In order to obtain this adequate movement data, the 
design of the position master–slave controller for collecting 
data depends on several setup issues, for example, a proper 

mechanical connection between the master (human) and the 
slave (exoskeleton) as exampled in Fig. 2. Moreover, only 
data in swing phase collected for learning process requires 
a suitably sensory setup for phase detection as discussed in 
the next section (Fig. 4). 

3 � Implementation on Human‑Powered 
Augmentation Lower Exoskeleton 
(HUALEX)

The control scheme discussed in Sect. 2 is motivated through 
simulations and experiments on HUALEX in this section. To 
deploy MLPC, the simplified configuration of HUALEX in 
swing phase is considered when the operator's leg with the 
exoskeleton is regarded as a two DOFs multi-link pendulum.

3.1 � HUALEX Platform

From bio-mechanical studies of human behavior, HUALEX 
was designed as an anthropomorphic configuration [29, 44]. 
For simplification, there are totally ten-DoF (degree of free-
dom) revolute joints adopted for the HUALEX implemen-
tation (five DOFs for each leg). Among them, two-linkage 
revolute mechanism regarded as a 2-DoFs multi-link pendu-
lum is actuated parallel to the human's thigh and shank for 
one leg. In order to implement and evaluate control strate-
gies on HUALEX, thigh and shank cuffs mounted with the 
corresponding linkages through two-dimensional interaction 
force sensors (TIFSs). The information from these sensors is 
not explicitly the entire force exerted on the HUALEX from 
human but is aimed at obtaining the change in the interac-
tion force. TIFSs can measure the deformation according to 
mainly flexion/extension orientations when external forces 
from a human are applied. For the sake of load distribution, 
a harness made of rigid structures is rigidly connected to a 
custom-built backpack to support the operator's upper body 
and transfer the carrying-load to the exoskeleton. The pri-
mary weight of the exoskeleton and carrying-load was aimed 
at 55 kg (40 kg for the load).

In order to allow the measurement of joint angles, encod-
ers on HUALEX and inclinometers on human limbs were 
used. Incremental optical encoders (HP optical encoders 
HEDS) with a resolution of 2000 counts per revolution 
are adopted. For one leg, two custom-built inclinometers 
attached to the operator’s shank and thigh enable to meas-
ure the angular position of his leg segments relative to 
the gravity. Each inclinometer was built using a low-cost 
MPU-6500 six-axis motion tracking sensor that combines 
a 3-axis gyroscope and a 3-axis accelerometer in a small-
sized package and provides high resolution measurement (up 
to a scale range of 2000◦∕s for gyroscope and scale range 
of ± 16 g for accelerometer). It is necessary to incorporate 

Fig. 3   Duration of data collection for learning and control: N1 gait 
cycles for collecting data using a simple master–slave position con-
trol; N2 gait cycles driven by MLPC

Fig. 4   Diagram of HUALEX's assembly and implementation. A: 
Backpack including load-carrying, power supply, and main con-
troller; B: Rigid connection of the HUALEX to a user at torso; C: 
Two-dimensional Interaction Force Sensors (TIFSs); D: Node con-
troller and Elmo driver; E: Axial transfer force sensor (AFS); F: The 
HUALEX foot; G: Hip and knee actuators and encoders; H: Incli-
nometer; I: Foot insole
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the measurements of the acceleration in the long-term rate 
and the rotation in the short-term rate; hence, a low-cost 
micro control unit (MCU) (STM32F405, 32 bit, 168 MHz 
frequency) was used to control the inclination data stream 
and to implement Kalman filtering. Our application requires 
a fast communication and delay reduction in the impedance 
controller, so the inclination data was captured by MCU 
using SPI serial communications at 10 MHz. A least square 
method was used to calibrate the sensor. Figure 5a shows the 
performance verification displayed on a 3-D demo for one 
of the designed inclinometers.

To determine the phase of human gait, a set of Force Sen-
sitive Resistors (FSRs) were distributed on the insoles. Two 
insoles were integrated into the exoskeleton shoes (Fig. 5b). 
The set of FSRs are located in a manner the static pressure 
distribution of the foot during walking is able to give as 
much information of the ground reaction force as possible 
[45, 46]. The function of the sensor-integrated insoles is 
absolutely important to distinguish the walking phases and 
to collect data for training and control. In MLPC, the switch 
of control modes between the stance phase and swing phase 
was immediately executed through the detected foot–ground 
information on the insole of HUALEX. Toe-off and heel-
strike are the key indications of the switching between the 
stance and swing phases which were determined by groups 
of Force Sensitive Resistors (FSRs) at the toe and the heel 
of the insoles, as discussed in [47]. Besides, two axial force 
sensors (AFSs) was inserted into the exoskeleton shanks to 
measure the forces transferred from load-carrying through 
the exoskeleton which are able to validate the efficiency of 
the control strategy, as shown in Fig. 4. All the force sen-
sors (FSRs, TIFSs, and AFSs) were herein calibrated and 
tested using a standard analog force gauge (YueQing Handpi 
Instruments Co., LTD.). Besides, custom-built servo amplifi-
ers are additionally equipped to measure the electrical power 
consumption for the actuators.

During development of the HUALEX, a new physically 
hierarchical control network (HCN) has been developed 
to increase the ability of integration, and ensure real-time 

control performance. The architecture of HCN is a 3-level 
control network as shown in Fig. 6a consists of a central con-
troller (master control) as the highest level, a node control 
level, and an I/O module. The master control communicates 
with the node control via Controller Area Network (CAN) 
to provide an understandable and consistent behavior and 
comfortable data visualization. In the central control level, 
a main STM32F ARM microcontroller programmed in C 
using ARM C/C +  + Compiler has been developed. A graph-
ical user interface developed on a personal computer (PC) 
using Visual C +  + allowed us to observe experimental ses-
sions and to acquire data for an offline learning processes, as 
seen in Fig. 6b. During the human–robot cooperation, safety 
feature for the system was also considered in the design of 
both the mechanical structure and software interruption 
mechanisms [47].

3.2 � Analysis in Swing Phase

In order to apply the model learning approach to control of 
HUALEX, the inverse dynamics model that maps the knee 
angle, velocity, acceleration and the interaction torque to 
the actuator torque would be extracted. Equation (4) can be 
expressed as the form of a rigid body dynamics consisting 
of dynamic factor and interaction factor:

Since the parameters MH , VH , GH in Eq.  (1) change 
according to varying operators, the matrix M(q) and vector 
K(q, q̇) will correspondingly change. Learning procedure 
will provide the system the adaptation to these changes. 
Besides, the interaction term 𝜏H = H(q̃) that also changes 
from person to person needs to take information as a suit-
able input for the LWPR model. As discussed in Sect. 2, the 
equivalent interaction torque H(q̃) is generally represented as 
a nonlinear mapping that is mostly modeled as a spring type 
virtual coupling and is proportional to the deviation (qh − q) 

(17)
𝜏A = M(q)q̈ + K(q, q̇)

�����������������

dynamic factor

+ H(q̃)
���

in teraction factor

Fig. 5   Inclinometer and sensor-
integrated foot: a Custom incli-
nometer and its performance 
verification on an animation 
demo; b The HUALEX insole 
(top) and foot (bottom); Force 
Sensitive Resistors (FSRs) 
are distributed on prototype 
HUALEX insole including two 
main groups G1, G2 of ground 
reaction forces on the toe and 
heel
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in the literature [2, 48]. However, this assumption might not 
be general. This is because, in reality, �H is an unpredict-
able function that depends not only on the deviation of the 
human–robot position but also on the physical properties 
of each wearer and the timing of joint movement. Here, the 
deviation is just taken as an input for the interaction factor 
learning. This choice is confirmed as a typical example [48]. 
The proposed control law would use this learned model to 
compensate for the torques exerted by the operator on the 
robot, without any measurement of this interaction torque.

3.3 � Control Law Based on Learned Model

In order to approximate the mapping represented in Eq. (17), 
the inputs of LWPR network are the joint angles q , veloci-
ties q̇ , accelerations q̈ of the exoskeleton and the deviation q̃ 
between the joint angles of the operator and the exoskeleton, 
and the outputs are the actuator torques:

For a swing leg of the coupled human-exoskeleton sys-
tem, the learning data can be obtained with a revolution 
optical encoder, an acceleration sensor on the exoskeleton 
and an inclinometer on the lower thigh of the human. The 
information from these measurements was continually stored 
and updated for training data batch. The operators walk-
ing pattern in the first cycles generates individual excitation 
trajectory for the training procedure. Subsequently, the cor-
responding learned model is aided the partitioned controller 
as follows:

(18)𝜏A = ĝLWPR(q, q̇, q̈, q̃)

(19)𝜏A = ĝLWPR(qh, q̇h, q̈h, q̃
∗) + Kp(qh − q) + KV (q̇h − q̇)

The feed-forward command ĝLWPR given by the learned 
inverse model inputs the actual joint angles ( qh ), the corre-
sponding velocities ( q̇h ), accelerations ( ̈qh ) of the operator, 
and the current angle derivations (q̃∗) between the operator 
and exoskeleton joint angles. Whereas the feedback com-
mand, as discussed in Sect. 2, is provided by a PD controller 
to ensure that the system is stable with appropriate coeffi-
cients KP, KD . Through this equation, it can be seen that the 
more accurately the combined human–robot dynamic model 
can be learned, the higher the quality of compliant tracking 
control will be.

Regarding the master–slave position controller used here, 
it is not sufficiently appropriate during the swing phase since 
the exoskeleton is subjected to large motions and needs 
high bandwidth. In this case, it is easy to result in chatter-
ing phenomenon as well as large error in tracking control. 
Nevertheless, we accepted this choice as a trade-off for col-
lecting data in the first several movements. For design of 
the master–slave position control, one of the key points is 
the consideration of the mechanical connection between the 
master (operator) and the slave (exoskeleton). Due to the fact 
that the controller takes the error between the master and the 
slave position as input, if we bind them together with rigid 
connections, the output signal for control goes to zero. That 
means it would impede the motion of the master. Therefore, 
the initial value of the inclinometers on the human limbs 
(shank and thigh) was set to 1.5 degree in order to avoid that 
case while the connections at thigh and shank cuffs were not 
rigid and only aimed to measure the change of the interac-
tion forces. With this connection, the master–slave control 
of the exoskeleton is obviously guaranteed, but without good 
performance.

Fig. 6   Hardware configuration and user interface; a The designed hierarchical control network; b Designed interface for data visualization and 
collection
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4 � Evaluation of MLPC in Computer 
Simulations

4.1 � Simulation Implementation

Since the gait patterns imposed by an operator are almost 
consistent during normal walking and can be customized to 
each individual, the collected data correspondingly contains 
his/her resulting interaction with the exoskeleton. To accom-
plish this, a suitable parameterization of the trajectories is 
used here to generate varying human gait trajectories [2, 
49]. For simulation purposes, we choose these trajectories 
with different bound values and frequencies for training and 
prediction as follows:

where M is the scale of the amplitude, N is the time stretch, 
� is the offset of the individual gait, and qn is the nominal 
physiological trajectories at hip and knee joints assumed 
to be superposition of sinusoidal trajectories. The goal of 
this choice is to validate the adaptation to various human 
gait patterns. The parameters M, N, � would be changed 
according to the physical properties of each subject at each 
joint, as well as changed within one subject overtime dur-
ing training and predicting. To simulate the generalization 
ability of MLPC, a 10% percent change in these parameters 
was introduced for each joint in swing phase. Regarding the 
structure and coefficients of the function describing interac-
tion torque in Eq. (3), they were only estimated roughly such 
that they are close to the experimental results.

Three selected subjects (operators) in our center would take 
part in walking sessions for practical evaluation of the control 
strategy. Simulations were independently performed with these 
subjects. They are healthy persons whose weight were 73 kg 
(subject A), 65.5 kg (subject B), and 69 kg (subject C). The 
inertial and gravitational components of the lower limb (thigh 
and shank) of each subject (i.e. IHi, mHi, lHi , i = 1 for the hip 
joint and i = 2 for the knee joint) were calculated by means 
of experimental measurement and anthropometric data [29, 
30]. We estimated these components which were based on 
percentage distribution of total body weight according to dif-
ferent segmentation plans. Besides, the dynamic parameters 
(e.g. IEi, mEi, lEi , i = 1 for the hip joint and i = 2 for the knee 
joint) were calculated by Solidworks from the design models 
of the HUALEX parts. The viscous friction and Coulomb fric-
tion coefficients of the exoskeleton were properly estimated 
from material and structure assembly of the experimental 
platform. The viscous friction DH (affected by the activation 
muscle u(t)) was also artificially calculated from the define 
pattern [50]. Table 1 shows ranges of variation for input/output 
variable normalization of LWPR network in simulation. For 

(20)qd = Mqn

(
t

N

)
+ �,

simulation, only 2-DOF human-exoskeleton model in swing 
phase was built. MLPC was evaluated using this model devel-
oped in Matlab (MathWorks, USA). The open-source LWPR 
was modified to incorporate the human-exoskeleton model for 
executing learning and control procedure [43].

For LWPR, its ability of learning incrementally robust and 
providing error bounds has been demonstrated [39, 43]. How-
ever, LWPR is sensitive to initial conditions and its conver-
gence speed depends greatly on manual tuning parameters. 
In implementation, there are two parameters that sufficiently 
affect our learning results and need to be carefully selected. 
The first one is the distance metric matrix D whose initial 
value is associated with how large a receptive field is. The 
diagonal matrix D is initialized such that LWPR converges 
fast (value of D is not too small) as well as avoid over-fitting 
phenomenon of the learning data (value of D is not too large). 
In this case, it is set in the following form:

 where �2
i
 is the variance of the ith input ( i goes from 1 to 

4). Here, it is assumed that some prior information such as 
the range of operating angles or bound values of the devia-
tions Δ is known for providing the distribution of the training 
input data. From this point, the matrix D is initialized using 
the inverse of the variance of these data. This is meaningful 
for our case when the training data have different distribu-
tion corresponding to various subjects (A to C). Besides, 
another parameter necessary for tuning is the weight activa-
tion threshold �gen , which is critical to the updated number 
of receptive field during learning. This meta-parameter is 
responsible for generating a new local model if no model 
responds high enough for a training sample. On the other 
hand, the LWPR inputs (q, q̇, q̈, q̃) and output ( �A ) have to 
be normalized corresponding to their physical ranges. These 
ranges were selected based on the system performance when 

(21)D =
1

2

⎛
⎜⎜⎜⎝

1∕�2
1

0 0 0

0 1∕�2
2

0 0

0 0 1∕�2
3

0

0 0 0 1∕�2
4

⎞
⎟⎟⎟⎠
,

Table 1   Ranges of variation for input/output variables normalization 
of LWPR network

Variable Ranges of varia-
tion q

1

Ranges of variation q
2

Joint angle q (rad) [− π/4, π/4] [0, π/2]
Joint velocity q̇ 

(rad/s)
[− 2.5, 2.5] [− 3.5, 3.5]

Joint acceleration q̈ 
(rad/s2)

[− 30, 30] [− 40, 40]

Deviation ||qh − q|| 
(rad)

[0, π/18] [0, π/18]

Torque �(Nm) [− 20, 20] [− 15, 15]
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tracking the predefined motions. Table 1 shows our selection 
for these ranges.

4.2 � Results and Analysis

We first demonstrate that an inverse dynamic model of 
the system along with resulting interaction factor can be 
learned online and then used for control. For each experi-
ment regarding a specified subject (A, B, or C), twenty itera-
tions of a number of walking cycles were carried out for the 
swing leg. The number of walking cycles is set to 5 by trial 
and error. In these first 5 motion cycles, the exoskeleton 
was controlled by the master–slave PD controller and the 
data was collected at the same time. The walking cycle is 
used over a typical period range of about 1.33 s to 2.0 s to 
ensure that system performance could be satisfied with vari-
ous periods of the lower limb motion. Formula (20) is used 
for trajectory generation of both hip and knee joints but with 
different scale of the amplitude, time stretch, and nominal 
trajectories. The motion amplitudes were also constrained 
to a range of ±�∕4 rad for the hip joint and 

[
0 �∕2

]
 rad for 

the knee. Half of the collected sample contained the data of 
the set [q, q̇, q̈, Δq] that is used for training the model and 
half for testing. For each subject, ten trials were performed. 
Results, Fig. 7a shows that the average of the normalized 
mean square error (nMSE) on the test data drops quickly 
through the 20 iterations and converges to a relatively small 
nMSE range (about 10−2 ) for each subject. Where, the nMSE 
is defined as the mean square error divided by the variance 
of the target data values at each joint.

From Eq. (19), it can be seen that the accuracy of the 
learned model including the interaction factor can also 
be manifested by the ratio of feedback command (i.e. PD 
control command) to partitioned command (i.e. PD plus 
feed-forward control command). The smaller ratio could be 

obtained, the more the nonlinearities in the system would 
be cancelled. The average of this ratio through 20 iterations 
shown in Fig. 7b indicates that LWPR can learn the system 
model with high accuracy already from the third iteration. 
Tracking performance in Fig. 8a shows that hip joint track-
ing error, in the presence of the interaction torque from the 
subject, is greatly reduced after fifteen walking cycles of 
learning (i.e. after 3 iterations). This result is achieved when 
we introduced 10% error in the motion amplitude and in 
the motion frequency. In this case, the PD coefficients of 
the initial PD control were not chosen with the best ones. 
As seen in Fig. 8b, the predictions of learned model as the 
feed-forward command at the hip joint are relatively close to 
the partitioned command. This demonstrates that a dynamic 
model including interaction factor was obtained by the pro-
posed learning procedure. Furthermore, the effect of taking 
inputs for the learning was also validated. Control perfor-
mance result with learned model using only normal dynamic 
information (i.e. q, q̇, q̈ ) was compared with one using the 
aided information of interaction factor (i.e. q, q̇, q̈, Δq ). 
As seen in Table 2 (in the two last rows), if we only take the 
data set in the former case as inputs of LWPR, the learned 
model will be significantly less accurate than one in the lat-
ter case (Fig. 9).

The effect of learning the interaction factor in the par-
titioned control law was also evaluated through the per-
formance comparisons to other methods under the same 
conditions of the motion pattern and interaction torque. 
Figure 10 shows the desired hip joint angle of subject B 
and the actual one of the exoskeleton after 50 swinging 
cycles (10 iterations) with a classical impedance control, a 
RBD model-based (without interaction compensator), and 
MLPC respectively. Here, impedance control which needs 
measurements of interaction forces (torques) is chosen to 
validate the efficiency of MLPC in reducing sensors. With 
respect to RBD model-based controller, a 15% error in 

Fig. 7   Control performance during online learning using LWPR through motion cycles at knee joint. a nMSE on the test data for each subject; 
and b the PD control/partitioned control rate
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the inertial parameters was introduced. In Table 2, we can 
see how the proposed control law can partly compensate 
the dynamics and interaction effects while the impedance 
control cannot attenuate the interaction from human, and 
result in the larger tracking error at the hip joint. Similar 
results were also achieved at the knee joint. In Table 2, the 
terms “int. fact.” stands for “interaction factor”. It is more 
apparent to realize this effect in Fig. 8. The algorithm pro-
vided the robot with the ability to typically reduce the 
interaction torque greater than 30% whether this torque is 
described as a spring-like linear or an increasing nonlinear 

function of the deviation q̃ . This effect can be clearly seen 
after 3 iterations as from the position control switched to 
the partitioned control law (after 20.5 s) at the hip joint. 
Note that these results were achieved when movement pat-
tern during training and predicting are not significantly 
different.

A drawback of simulation results in this case is that they 
cannot evaluate the function of load transfer through the 
stance leg which is one of the main targets in HUALEX. 
Besides, the assumption of the resulting interaction forces 
is impractical. Therefore, experimental sessions would be 

Fig. 8   MLPC tracking performance and partitioned command at the 
hip joint for subject B. a Tracking performance before and after fif-
teen motion cycles (3 iterations); b Comparison of feed-forward and 

partitioned commands based on the model being learned as from the 
15th motion cycle (20.5  s); Here, walking speed during training is 
0.65 m/s and during prediction is 0.75 m/s

Table 2   Human-exoskeleton 
tracking error as nMSE

Tracking error (nMSE [%]) Subject A Subject B Subject C

Hip joint Knee joint Hip joint Knee joint Hip joint Knee joint

Impedance control 5.39 5.08 5.91 4.54 6.04 5.87
RBD-model control 5.70 5.26 6.33 4.92 6.91 5.32
MLPC without int. fact 3.21 ± 0.53 3.15 ± 0.41 3.05 ± 0.27 2.85 ± 0.34 3.97 ± 0.25 3.69 ± 0.38
MLPC with int. fact 1.36 ± 0.32 1.22 ± 0.18 1.18 ± 0.15 1.03 ± 0.21 1.45 ± 0.19 1.31 ± 0.13

Fig. 9   Interaction torques before and after fifteen walking cycles of learning for subject B. Interaction torques were modeled by linear spring-like 
(a) and increasing nonlinear functions (b)
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progressed to validate MLPC on HUALEX, as discussed in 
the next section.

5 � Experimental Evaluation

5.1 � Experimental Procedure

In this work, a preliminary evaluation of the combined learn-
ing-control approach has been performed on real system 
as seen in Fig. 11. Only offline learned models have been 
used for tracking control of the human-exoskeleton system 
because online learning are incapable of executing on our 
embedded system. The online learning incorporated in con-
trol is significantly extensive to perform hence will be evalu-
ated in the future work. In the experiments, the operators 
(A–C) were instructed by the author to wear HUALEX and 
to walk with a 40 kg load-carrying contained in the backpack 
at a given speed (0.6 m/s to 0.8 m/s) that was adjusted on 
the bench-testing monitor. Besides there are differences in 
anthropomorphic and dynamic parameters among the opera-
tors, their cadences which are determined to be from 75 to 
80 steps/min at 0.75 m/s are also different from operators A 
to C. MLPC was applied for any leg in swing phase, there-
fore evaluation data was herein showed for the left leg as 
a representative. The operators alternately carried out the 
walking sessions and had break times among these sessions 
so that their muscles were not fatigued.

In order to collect data for training, duration of each ses-
sion was conducted to be 15 s (8 to 12 strides) while duration 
of each session for testing the control methods is Tc = 30 s . 
As discussed above, each collected data set consists of four 
input vectors q, q̇, q̈, q̃ and one output vector �A . Note that 
the joint torques �A was obtained by measuring the motor 
currents using an inner PID current control of the driver. 
Besides, the interaction forces between the exoskeleton 
and operator at the thigh and shank were also stored for the 
subjective evaluation of experimental results. A common 

impedance control was also implemented on HUALEX to 
validate the efficiency of MLPC in reducing sensors. This 
control approach come with the interaction force sensors at 
the shanks and thigh cuffs as feedback signals to regulate 
impedance characteristics according to the walking task, as 
discussed in [51].

The designed interface was used to display and store the 
collected data for each operator on the PC [45]. Due to the 
set of FSRs distributed on the exoskeleton insoles, only data 
captured from swing leg was stored for training. These sen-
sors also served to distinguish walking phases and switch to 
a specific control mode (PD position control/ MLPC) cor-
responding to the current phase of the exoskeleton legs. The 
offline learning was also executed on the PC using the open-
source LWPR package modified in C. After training, these 
learned models were then aided to control the exoskeleton 
under interacting with the corresponding subject in swing 
phase. Note that the position control was always utilized for 
stance leg. The feed-forward commands ĝLWPR were updated 
at every sampling step and the control algorithm was run at 
the sampling frequency of 100 Hz. This feed-forward com-
mand was computed based on joint position measurements 
(from the inclinometers, the encoders) and their differentia-
tions. For each subject, five trials of training and control 

Fig. 10   Performance comparison of impedance control, RBD model 
based control, and the proposed method MLPC (after 50 walking 
cycles of learning)

Fig. 11   Experimental session on the testing-bench. A: Monitor for 
visual feedback; B: Parallel bars; C: User Interface of testing-bench 
for modulating walking speeds; D: PC for data acquisition; E: Back-
pack; F: Hip and knee motors; G: testing-bench
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were performed so that the control can be evaluated under 
the same conditions (before and after learning). For exam-
ple, only the data gathered by the walking sessions with 
speed range of [0.6 m/s, 0.8 m/s] has been stored for training 
and then the subjects would be instructed to walking with 
the similar walking speeds constrained to the above range.

5.2 � Results and Discussion

Figure 12 shows the human–robot tracking performances 
of the classical impedance control and MLPC lasting ini-
tial four seconds, while subject B performed walking ses-
sion with specified speed of 0.75 m/s. Here, MLPC gets the 
off-line trained model from the data which was captured 
from his own walking sessions at speed of 0.9 m/s. It can be 
observed from the graph how the hip joint tracking error and 
the interaction force at the thigh cuff with MLPC decreases 
compared to the impedance control. The small difference in 
walking speeds for learning and control processes assure the 
learning would not be overestimated. In these experiments, 

the axial transfer loads through stance legs were also stored 
as shown in Fig. 13. Both control methods satisfied the func-
tion of load transfer on HUALEX, yet it seems likely that 
MLPC brings more smoothly transfer through the exoskel-
eton than the impedance control. This explained why subject 
B could walk without any significant discomfort when wear-
ing HUALEX controlled by MLPC.

In order to show the adaptation to different user dynam-
ics, the responses of the exoskeleton using MLPC with dif-
ferent learned models were also compared. Figure 14 shows 
the human-exoskeleton tracking performance and the cor-
respondingly resulting interaction forces in two experiments: 
(1) Subject B wearing HUALEX was instructed to walk at 
speed of 0.75 m/s in which MLPC is applied but with the 
learned model from experiments with subject A. (2) Similar 
to experiment 1 for subject B but MLPC is applied with 
the learned model from experiments with subject B. Track-
ing performance in Fig. 14b show that the tracking error 
and interaction force is significantly reduced when learned 
dynamics model is corresponding to the current subject. 

Fig. 12   Operator-exoskeleton tracking performance and the correspondingly resulting interaction forces when using different control methods. 
The performance was obtained from experiments with Sub.B around the hip joint at walking speed of 0.75 m/s using the impedance control (a) 
and MLPC (b)

Fig. 13   Axial transfer force during walking when using the impedance control and MLPC. The data was obtained from experiments with Sub.B 
using the impedance control (a) and MLPC (b) corresponding to Fig. 12
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On the contrary, MLPC implemented with incompatible 
models, as seen in Fig. 14a, produced many discomforts 
due to large resulting interaction and low compliance. The 
term “incompatible models” is defined as the models are 
learned from different individuals, or the models were not 
captured enough information about dynamics and interac-
tion properties. These control performances demonstrate that 
learned models indeed contained rich information about the 
individual dynamics of each own user, and that MLPC pro-
vided the exoskeleton with ability to adapt to changes in the 
corresponding dynamic information. Moreover, due to the 
above discomfort, MLPC with incompatible model inter-
fered with the load-carrying transfer to the ground through 
HUALEX as seen in Fig. 15. The load transfer efficiency is 
reduced 15–20% when we used MLPC with incompatible 
model compared to that with compatible model.

To quantitative comparison, performance index of the 
resulting interaction forces for the control methods are 
shown in Table 3 in which it can be seen that the result-
ing interaction forces when using MLPC with compatible 

model are significantly smaller than the impedance control 
and MLPC with incompatible model. In this table, perfor-
mance index of the resulting interaction force is defined 
as follows:

where Fi(i = 1,2) is the normalized square sum of the sagittal 
plane interaction force at the thigh cuff ( F1 ) and the shank 
cuff ( F2 ). Fi are averaged over Tc = 30 seconds walking for 
subjects A-C. In Table 3, we can see that F1, F2 reaches the 
lowest value of around 3.21; 1.15 respectively with the case 
of MLPC using compatible model. In experiments, the RBD 
model based control related to some works on identifica-
tion has not been implemented for the comparison since it 
is inconsistent with our approach. Although it can be seen 
that the interaction torque did not regularly changed in all 
walking cycles as shown in Fig. 12, it is typically reduced 
greater than 25% to 30% when using the proposed MLPC. 

(22)Fi =
∫ Tc
0

f 2
hi
(t)dt

∫ Tc
0

q2
hi
(t)dt

,

Fig. 14   Operator-exoskeleton tracking performance and the correspondingly resulting interaction forces when using MLPC with different 
learned models. The performance was obtained from experiments with Sub.B around the knee joint at walking speed of 0.65  m/s using (a) 
MLPC with incompatible model (from Sub. A); (b) MLPC with compatible model

Fig. 15   Axial transfer force during walking when when using MLPC with different learned models corresponding to Fig. 14. (a) MLPC with 
incompatible model; (b) MLPC with compatible model
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Clearly, as the dynamics and the interaction factors have 
been learned, the controller successfully acquires the ability 
to predict and compensate for these factors during opera-
tor’s motion, and effective closed-loop control response was 
achieved.

6 � Discussion and Conclusion

We have developed a control algorithm that takes advantage 
of the incremental learning technique to improve the control 
of the lower exoskeleton and to compensate the resulting 
physical human–machine interaction. Satisfactory results of 
the simulation and experiments on a prototype of developed 
lower exoskeleton have been achieved in almost all cases, 
with the convergence of the learning algorithm and the sig-
nificant reduction of the interaction torque. Compared to 
other conventional control methods, the proposed method 
provided considerable compliance in human–robot track-
ing error, and thus the exoskeleton could assist/support the 
operator without discomfort. Nevertheless, the results from 
the experiments in all cases were not as good as those from 
the simulation. This is because the control performance 
during experimental sessions was affected by the error in 
calibration process of the inclinometer and accelerometer, 
and time delay to reach operator’s pattern. Especially, only 
offline learned model of the human–robot system used for 
control of real system is not sufficiently efficient, since the 
dynamics and interaction factors continually change dur-
ing locomotion. This encourages us to validate the online 
learning process on the real system with the need to improve 
hardware configuration in the future work.

During implementation of this investigation, we have 
faced three major drawbacks. The first one is how to achieve 
rich enough information in order to significantly capture the 
dynamic property of the whole system in a wide range of 
motion. Although we are assured that the test data is dif-
ferent from the training data, the limitation of this choice 
is that the difference is not so large. For example, when we 
chose the walking speed of 1.0 m/s (normal walking move-
ment) for training data, the prediction from learned model 

could not be over a range of [0.75 m/s, 1.25 m/s] (equiva-
lent to running movement). It was less accurate when we 
performed the experiments with a large difference in these 
values before and after learning, even the prediction error 
did not converge. Besides, the initial duration N1(using the 
master–slave control) was appropriately chosen because it 
affects the computation cost and the motion periods in which 
the human-exoskeleton system is subject to certain difficul-
ties and discomfort. The second challenge is the trade-off 
between the accuracy and computation cost of the nonlinear 
regression technique. The literature showed the comparisons 
of learning accuracy and computation speed to present us 
with a suitable choice among state-of-the-art nonparametric 
regression networks [22, 52]. As a preamble for combination 
of a control scheme for the exoskeleton and model learning, 
this study utilized a local regression technique that provides 
high computation speed but less accuracy compared to other 
global learning methods (e.g. GPR). Moreover, the manual 
tuning for parameters of the algorithm, such as metric D 
or coefficient �gen give rise to tediousness for designers by 
trial-and-error. This also encourages us innovate the above 
regression methods in order to enhance the efficiency of 
these methods in the application of the human–robot sys-
tem. Finally, in order to evaluate the proposed algorithm, 
the tracking error, resulting interaction forces, and transfer 
forces have been provided as basic criterions. However, with 
respect to the human-enhancement system like the lower 
exoskeleton, it would be more persuasive if we expand the 
evaluation to flexor–extensor muscle of the operator, or 
metabolic effect of forces exerted onto the operator during 
movement.
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