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Abstract
Traction power fluctuations have economic and environmental effects on high-speed railway system (HSRS). The combina-
tion of energy storage system (ESS) and HSRS shows a promising potential for utilization of regenerative braking energy 
and peak shaving and valley filling. This paper studies a hybrid energy storage system (HESS) for traction substation (TS) 
which integrates super-capacitor (SC) and vanadium redox battery (VRB). According to the characteristics of the traction 
load under actual operating conditions, an energy management strategy with fixed-period control (FPC) is proposed, which 
fully leverages the periodicity and regularity of HSRS operation. To achieve the optimal size, economic feasibility is selected 
as the optimization objective, which is fully assessed in terms of Net Present Value (NPV). The optimization constraints are 
formulated in which the Discrete Fourier Transform (DFT) is performed for power allocation between SC and VRB. Besides, 
an improved mutation-based particle swarm optimization (IMBPSO) is proposed to efficiently solve the optimization and 
enhance convergence performance. Finally, combined with the measured traction load data, the effectiveness of the FPC 
energy management strategy is verified and the optimal scale of the HESS is provided.

Keywords  High-speed Railway · Hybrid Energy Storage System · Fixed-period control energy management strategy · 
Improved particle swarm optimization

1  Introduction

China’s high-speed railway construction has achieved a 
significant breakthrough and distinguished achievement 
[1]. In China, the mileage of railways in service reached 
131,000 km in 2018, of which 29,000 km are high-speed 
lines. Meanwhile, it should be noted that the energy con-
sumption of the railway system is high. The statistics indi-
cated that the total energy consumption in 2018 was equiva-
lent to 16.2 million tons of standard coal [2]. Huge energy 
procurement costs prompt railway system to seek a lower 
energy consumption. Massive actual operating data demon-
strate that, for high-speed railway system (HSRS), regenera-
tive braking energy (RBE) accounts for about 5% of total 
energy [3]. On the other hand, the high-speed trains (HSTs) 
adopt pulse width modulation (PWM)-based four-quadrant 
converter (four QC), thereby the regenerative braking power 

(RBP) generated by the train may be up to 20 MW instan-
taneously [4]. Public power grid would suffer from intense 
impact when high-frequency power is directly fed back to 
the power grid. At the same time, power quality problems 
such as voltage imbalance, voltage reduction and frequency 
fluctuation are inevitably encountered [5]. Consequently, the 
energy storage system (ESS) has been considered as a key 
factor in solving these problems [6].

Energy storage utilization of regenerative braking energy 
in urban rail transit system has been widely applied. A case 
study confirms the effectiveness of reducing energy-con-
suming by 10% to 45% by means of regenerative braking 
systems [7]. Considering that the AC power supply of high-
speed railway with characteristic of bi-directional energy 
flow, researches about energy storage and energy recycling 
for electrified railway have been put forward [8]9. A novel 
energy storage traction power supply system is examined 
for peak clipping and valley filling, and the validity of the 
control method and the excellent performance of the sys-
tem are indicated by a case study in an electrified railway 
[10]. A co-phase traction power supply system with SC ESS 
was proposed in [11], and the conclusions validated that 
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the structure effectively realized the energy management 
of electrified railway, including four working modes: trac-
tion, regenerative braking, peak shaving and valley filling. 
In [12], an ESS sizing method for peak-demand reduction 
of an urban railway system is proposed, and a numerical 
example considering data from railway systems shows the 
suitable performance of the ESS for railway systems. A 
supervision strategy based on multi-criteria approach was 
proposed and the results showed the good investment value 
of ESS in railway [13].

The energy management strategy plays an important role 
of reasonable configuration of ESS, and previous studies 
offered quite a few important insights for reference [9–13]. 
In [14] two different connection topologies of the ESS 
technologies were examined, and the system efficiency and 
performance were compared in an example wind farm. A 
knowledge-based approach was further proposed to sched-
ule the power of a two-stage ESS, to minimize the nega-
tive impact of wind energy on the grid [15]. According to 
a hybrid centralized-decentralized concept, a new railway 
energy management system (REM-S) combining with the 
smart grid (SG) concept was proposed for partial energy 
management [16]. Based on the frame of REM-S, a proto-
type software suite for REM-S was developed and simulated 
in a suburban 3 kV DC supply railway line in Spain, where 
the effectiveness and reliability were validated [17]. A posi-
tion-based Takagi–Sugeno fuzzy (T-S fuzzy) power man-
agement for trams equipped with ESS was proposed, and 
the simulation based on real traffic data indicated that the 
strategy allowed a 14.9% decrease in the energy consump-
tion [18]. The management strategies proposed in above 
papers mostly ignored the periodicity and violent fluctua-
tion of traction load, and simultaneously led to an excess in 
ESS capacity. Energy management with higher accuracy and 
efficiency is mandated by HSRS.

The ESS size is highly correlated with technical per-
formance and economic investment, hence this series of 
problems have been attracting broad interests throughout 
the world. In [19] the cost–benefit analysis of ESS was for-
mulated as a mixed linear integer problem (MLIP), in order 
to quantitatively determine the optimal capacity of ESS. The 
reliability criterion was considered further to calculate the 
optimal size of ESS and the problem was transformed into a 
mixed-integer programming (MIP) model [20]. With regard 
to the traction power supply system, an optimal operation 
model which takes the impedance of the traction network 
into account is brought forward, but the mixed integer non-
linear programming model (MINLP) employed here involves 
complicated calculations. However, considering its high sus-
ceptibility to high-rate power cycling, the battery service 
life is also of concern [21]. For instance, a comprehensive 
ESS sizing model based on an MLIP of ESS was proposed, 
which considered the impact of depth of discharge and the 

number of charging and discharging (C&D) cycles on the 
battery degradation [22]. The rain-flow method is generally 
utilized to quantitatively investigate the service life of bat-
tery [23]24. A novel bi-level of energy management system 
was developed based on rain-flow method, in which simula-
tion power data of trains was employed [25]. The simulation 
conditions tended to be ideal, although the reduction in elec-
tricity costs demonstrated by the optimization results was 
satisfactory (about 30%). Likewise, the exploited algorithm 
has significant effects on optimization objective searching, 
thus an improved particle swarm optimization (PSO) is pro-
posed in this paper.

This paper explores size optimal method and energy man-
agement strategy of hybrid energy storage system (HESS) 
for HSRS. An energy management strategy train-working-
diagram-based is proposed by fully analyzing the daily cycle 
and predictability of traction load of HSRS. The HESS dis-
charge and release energy during power peak, while charge 
and store energy during power valley. The HESS size 
problem is cast as an optimization model with the optimal 
objective of economic returns, where the rain-flow method 
is assembled for vanadium redox battery (VRB) service life 
evaluation. The power allocation and operation limits are 
formulated as optimization constraints, in which the Dis-
crete Fourier Transform (DFT) is adopted to dispatch power 
between the VRB and the super-capacitor (SC). For the 
problems existing in the PSO solution process, an improved 
mutation-based particle swarm optimization (IMBPSO) 
incorporating the mutation-based operation is proposed to 
augment the global search ability and result reliability.

The rest of the paper proceeds as follows: Section II pre-
sents the energy management strategy of HESS. Section III 
discusses the optimal model of HESS. The results of the 
optimization are shown in Section IV and the related discus-
sion is given in Section V.

2 � Modeling and Scheduling of HESS

2.1 � System Description

As illustrated in Fig. 1, a co-phase power supply system 
which mainly consists of a traction transformer system (TSS) 
and an active power conditioner (APC) transmits power flow 
from grid (i.e., PGrid ) to traction network (i.e., PLoad ) [26], 
wherein VRB and SC are respectively connected to the APC 
via DC/DC converters. Generally, the length of power sup-
ply section is about 10 km, but in the HSRS equipped with 
co-phase power supply system the section extends to over 
20 km [11]. Under the same operation condition, the TS 
with a longer power supply section is responsible for han-
dling higher power flow, which shows a greater potential of 
HESS. When the HST is in traction mode, the HST power 
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flow PHST is greater than zero, and conversely, PHST is fed 
back to the catenary from the HST in regenerative braking 
mode. As the load power exceeds the threshold region, the 
power flow of HESS (i.e., PHESS ) is responsible for peak 
shaving or valley filling.

The energy procurement costs of HSRS are mainly elec-
tricity bills, which consists of basic tariff and electricity 
tariff. It is worth noting that there are two payment modes 
of basic tariff, separately based on transformer capacity and 
maximum load demand. In realistic operating conditions, 
an adequate margin of transformer capacity is provided for 
long-term planning, therefore the mode based on maximum 
load demand is chosen widely. Accounting for the payment 
mode, HESS is exploited to reduce peak power demand and 
stores energy during the low load periods.

To this end, a charging threshold line PL1 and a discharg-
ing threshold line PL2 are adopted to formulate the power 
allocation criterion. A section of the load power and demand 
curve of a TS has been shown in Fig. 2. When both lines 
are equal to the average value of traction load, the areas of 
peak region and valley region are equal. It is well known 

that HSTs travel according to the operation diagram which 
repeats every day, thereby the traction load follows the same 
cycle every day and is predictable in the normal condition. 
Based on this, an energy management strategy is proposed 
to realize demand reduction, and it is described in Sect. 2.2 
in detail.

2.2 � Energy Management Strategy

2.2.1 � Fixed‑Period Control Strategy

For electric utility industry, the maximum power demand 
tariff is deemed as an important charge pattern to maintain 
high efficiency of power supply equipment. Demand tariff 
is defined as the average power measured over a specified 
period (which has been appointed as 15 min by China metro-
logical verification regulation [27]), which can be described 
as:

 where PDem is the demand tariff of traction load; t (s) repre-
sents the index of time.

Compared with real-time power data, power demand data 
filters out violent fluctuations and becomes more stable. It 
can be speculated that the power demand data is cyclical 
thanks to the daily cycle of train operation diagram. In order 
to verify the periodicity of the power demand, massive data 
of power demand are investigated, and Fig. 3 shows power 
demand profiles in different days.

As is illustrated in Fig. 3, the probability value of power 
demand is adopted as the charging threshold. And with the 

(1)PDem(t) =

�
0, t < 0∑t

t−
900

Δt

PLoad(x), t ≥
900

Δt

Fig. 1   Traction power supply 
system with HESS structure

Fig. 2   Feeder traction load power curve
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higher threshold, the overlap degree of the curves increases. 
Therefore, a strategy that releases energy over a fixed time 
span is proposed and named fixed-period control (FPC) 
strategy. The historical data of power demand serving as 
the sample is analyzed to determine the control period. 
The power dispatch criterion of FPC strategy consists of 5 
processes:

	 i.	 Calculate X% probability value (typically over 80%) 
of sample data.

	 ii.	 Take X% probability value of demand data as the 
discharging threshold PL2 to calculate time segment 
in which the power demand exceeds the discharging 
threshold in historical data.

	 iii.	 Shift forward the starting point of each time horizon 
by 15 min as the final fixed discharge time segment.

	 iv.	 Read the power demand data of the next day. As for 
time point t in the final fixed discharge time segment, 
if PLoad(t) > MPL2 , set the state of HESS as discharg-
ing. M is defined as the coefficient of peak clipping.

	 v.	 As for time point t out of the final fixed discharge time 
segment, if PLoad(t) < PL1 , set the state of HESS as 
charging.

2.2.2 � Real‑Time Control Strategy

Another real-time control (RTC) strategy is proposed to com-
pare the performance with the FPC strategy. As shown in 
Fig. 2, two threshold lines are exploited to control the load 
power in real-time. In comparison, the implementation of the 
RTC strategy is much simpler but may lead to higher capital 
cost.

If the traction power is greater than PL2 , HESS is set in dis-
charging state. If the traction power is lower than PL1 , HESS 
is charging. In other cases, the HESS is in idle mode. It can be 
specifically expressed as formulas below:

where PH,r is the rated power of HESS, and PHESS > 0 indi-
cates HESS is discharging state.

3 � Optimization of HESS Capacity

3.1 � Objective Function

Onboard ESS and ESS for traction substation are two com-
mon schemes for HSRS. For onboard ESS, the effects of 
the vehicle operation performance are significant with the 
change of ESS volume and weight [28]. By contrast, traction 
substations are located in the suburbs with sufficient usable 
area, the ESS volume and weight do not constitute a major 
limitation [29]. Therefore, only the economic effectiveness 
is considered in this paper.

Cost constraints are generally used in the optimal problem of 
HESS capacity, where the capital cost and maintenance cost 
of HESS are considered. However, the HESS size also has 
remarkable effects on maximum demand and RBE utiliza-
tion, which indicates that the economic effectiveness of the 
case is insufficiently analyzed by means of cost constraint. 
The Net Present Value (NPV) is incorporated for economic 
effectiveness evaluation of HESS. The objective function 
(i.e., NPV) of HESS sizing problem can be described as 
Eq. (3).

where Np represents the project service period in years; 
CCC[i] refers to the cash flow of ESS capital cost; CMC[i] 
is the cash flow of operation and maintenance cost; CRC[i] 
represents the cash flow of replacement cost; ΔCEC[i] is the 
curtailment of electricity cost; SV[i] represents the salvage 
value of the VRB; F refers to the annualized discount rate.

The HESS is mainly composed of VRB device, SC device 
and power conversion systems (PCSs), which are recognized 
as the central components of HESS capital cost. The capital 
cost of power conversion systems is related to the power 
level of the two energy storage devices. The cash flow of 
ESS capital cost can be formulated as:

(2)P
HESS(t) =

⎧⎪⎨⎪⎩

P
H,r,PLoad

> P
L2

0,P
L1 < P

Load
≤ P

L2

P
Load

− P
L1,PL1 − P

H,r < P
Load

≤ P
L1

−P
H,r,PLoad

≤ P
L1 − P

H,r

(3)
minf = −NPV = −

Np∑
i=1

(−CCC[i] − CMC[i] − CRC[i]

+ ΔCEC[i] + SV [i]) × (1 + F)−i

Fig. 3   Power demand curves of three days
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where CESS is the capital cost per unit of capacity associated 
with VRB and SC; CPCS represents the capital cost per unit 
of power rating related to VRB and SC.

All through the project service period, the appropriate main-
tenance of energy storage devices is essential for prolonging 
their lifetime. The operation and maintenance cost is given 
as:

where CMC represents the maintenance cost per unit of 
capacity related to VRB and SC.

The project service period can hardly be satisfied by VRB 
ESS because of the limitation of number of the C&D cycles, 
hence the VRB ESS necessitates replacement of sulfuric 
acid electrolyte to keep its operational performance. And it 
is assumed that the operation demand can be met with the 
SC technology thanks to its large allowable number of C&D 
cycles (over 50 M). The replacement cost can be expressed 
as:

where k denotes the number of replacement times of ESS; 
YSL is the service lifetime of ESS in years; CRC is the replace-
ment cost per unit of capacity related to ESS.

The economic benefits generated by HESS incorporate cur-
tailment of electricity cost. The curtailment of electricity 
cost is described as:

where CEP represents the electricity price of power; CDCP 
refers to the demand charge price decided by maximum 
demand during a month; ΔEEC and ΔPDem are the elec-
tricity consumption reduction and peak demand reduction 
respectively.

Considering the expected recovery value of VRB in the 
final year of the project service period, the salvage value SV 
of the VRB can be expressed as follows.

(4)CCC,ESS[i] =

{
CESS × EESS,R + CPCS × PESS,R, i = 1

0, i = 2,⋯ ,Np

(5)CMC,ESS[i] =

{
0, i = 1

CMC × EESS,R, i = 2,⋯ ,Np

(6)CRC,ESS[i] =

{
CRC × EESS,R, i = (1,2, 3,⋯ , k)YSL

0, i ≠ (1,2, 3,⋯ , k)YSL

(7)ΔCEC[i] = CEP × ΔEEC + CDCP × ΔPDem, i = 1,… ,Np

(8)SV [i] =

{
0, i = 1,2,… ,Np − 1

CRCEESS,R

(k+1)YSL−Np

YSL
, i = Np

In order to measure the operating efficiency of the project, 
the return on investment (i.e. ROI ) was introduced as a com-
prehensive indicator, which can be expressed as:

3.2 � Problem Constraints

The optimization problem is primarily subject to the power 
balance, state of charge (SOC) limits and power alloca-
tion limits. The traction load,PLoad , should be met with 
the power supplied from the grid (i.e.,PGrid ) and the power 
delivered by HESS (i.e., PHESS ) at time interval t  , which 
can be depicted as:

where PSC(t) and PVRB(t) are the C&D power of SC and VRB 
respectively.

SOC limits of ESS desire consideration because of the 
negative effects induced by excessive C&D operations 
[30], which is described as Eq. (12).

where SOCESS(t) refer to the SOC of ESS at time interval t , 
respectively; SOCESS_min and SOCESS_max represent the mini-
mum and maximum SOC of ESS.

With the advantages in power density and energy stor-
age capacity, VRB technology becomes justifiable employ-
ment as large-capacity energy storage [31, 32], whereas 
its sensitivity to high-rate power cycling would negatively 
affect its service lifetime. To this end, SC technology is 
incorporated as a good complement to VRB technology 
due to its high power density and fast charging, thus the 
power coordination becomes a concomitant issue to the 
HESS sizing. For this problem, the DFT technology is 
equipped to fulfill the power allocation demand, where 
the goal is to dispatch low-frequency power components 
to VRB and deliver high-frequency power components to 
SC. Equation (13) and Eq. (14) indicate the mathemati-
cal formulation of DFT technology, and the HESS power 
sequence in the frequency domain Pf

HESS
[k] can be calcu-

lated by Eq. (13).

(9)ROI =
NPV

∑Np

i=1
(CCC[i] + CMC[i] + CRC[i])

(10)PLoad(t) = PGrid(t) + PHESS(t)

(11)PHESS(t) = PSC(t) + PVRB(t)

(12)SOCESS_min ≤ SOCESS(t) ≤ SOCESS_max
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When fp is set as the index of the cutoff frequency the 
power of VRB and SC,Pf

VRB
[k] and Pf

SC
[k] can be expressed 

as Eq. (15) and Eq. (16), in which the demarcation point 
(i.e., ND ) corresponds to the cutoff frequency.

The ESS power sequence in time-domain (i.e. PESS(t) ) 
can be calculated by Eq. (14).

3.3 � Cycle Lifetime Model of VRB

It is generally believed that the number of cycle lifetime 
of SC can reach 500,000 – 1,000,000 times [33], which 
is sufficient to meet the C&D demand during the project 
service period. Therefore, only the service lifetime of VRB 
is calculated in this study. Paper [34] points out that the 
service lifetime of VRB is around 10 years, but it is related 
to many factors such as temperature, the peak C&D cur-
rent and C&D times. Hence, the rain-flow method serves 
as an accurate calculation basis for VRB service lifetime 
estimation in terms of the SOC-Time curve.

With the depth of discharge (DOD) increasing, the 
cycle lifetime of VRB is decreased nonlinearly, thus the 
sum of sine method is selected as an available applica-
tion for curve-fitting analysis in this study. Equation (17) 

(13)Xf [k] =

N−1∑
t=0

Xt[t]e
−i2�kt

N , k = 0,1,⋯ ,N − 1

(14)Xt[t] =
1

N

N−1∑
t=0

Xf [k]e
i2�kt

N , t = 0,1,⋯ ,N − 1

(15)
P
f

VRB
[k] =

{
1

2
P
f

H
[0],⋯ ,P

f

H

[
ND

]
, 0,⋯ , 0,P

f

H

[
N − ND

]
,⋯ ,

1

2
P
f

H
[0]

}

(16)
P
f

SC
[k] =

{
0,⋯ , 0,P

f

H

[
ND + 1

]
,⋯ ,P

f

H

[
N − ND − 1

]
, 0,⋯ , 0

}

describes the VRB cycle lifetime as a function of DOD. 
The corresponding fitting curve is shown in Fig. 4.

As DODbase is taken as a reference indicator, the VRB 
lifetime (i.e.,LE,i ) consumed by a specific depth (i.e., 
DODi ) can be expressed as:

The total equivalent cycle lifetime (i.e., L ) consumed 
during the whole operation period of VRB can be denoted 
as:

where N represents the number of cycles during the opera-
tion period.

3.4 � Improved PSO Algorithm and Solution

For HESS sizing optimization, economic effectiveness is 
selected as the optimization objective and is depicted as 
a function of HESS rated power and capacity. Generally, 
optimization algorithms such as genetic algorithm (GA) and 
PSO are employed for the complicated optimization prob-
lem solution [35]36. The GA for optimal solution search is 
available in the entire solution-space but possesses relatively 
low convergence speed due to the considerable calculation 
burden of the optimization problem. The PSO algorithm 
obtains improved convergence speed but can hardly avoid a 
local optimal solution. An IMBPSO with incorporation of 
crossover mutation is proposed to enhance computational 
efficiency and global optimization ability.

The IMBPSO algorithm starts with a group of random 
particles which are formulated by two decision variables, 
i.e., velocity V1 and position X1 . For each iteration, parti-
cles keep following the leading particle. The process can 
be expressed as:

(17)

L
C
= 53130sin(2.21DOD + 1.32)

+ 49650sin(2.35DOD + 4.36)

+ 77.62sin(15.53DOD − 1.67)

(18)LE,i =
LC,base

LC,i
=

LC(DODbase)

LC,i(DODi)

(19)L =

N∑
i=1

LC(DODbase)

LC,i(DODi)

(20)V1 = Vmin + (Vmax − Vmin) × rand

(21)X1 = Xmin + (Xmax − Xmin) × rand

(22)
Vk+1 = Vk + c1 × rand ×

(
gbest − Xk

)
+ c2 × rand ×

(
zbest − Xk

)

(23)Xk+1 = Xk + Vk+1

Fig. 4   Fitting curve of cycle lifetime and DOD
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where Vmin and Vmax are the constraints of velocity; Xmin and 
Xmax are the constraints of position; rand is a random vector 
between 0 and 1; c1 and c2 are learning factors; gbest and 
zbest are individual optimal value and global optimal value 
respectively; k refers to the index of iteration.

For promoting diversity of particle swarm and avoid-
ing premature convergence, each particle is converted as a 
chromosome by binary coding under encoding constraints, 
the new mixed particle swarm is obtained through selection 
operation, crossover operation and mutation operation. The 
crossover mutation process is proposed as follows:

	 i.	 Convert each particle (i.e., PSOk ) as a chromosome 
(i.e., GAk = [k0, k1, k2,⋯ , ki−1] ) by binary coding;

	 ii.	 Randomly select two genes and generate a random 
number (i.e., j ) for gene segment selection. The cross-
over between two chosen genes with chosen segments 
is performed with crossover probability, repeating the 
operation until all the particles are investigated. The 
operation process can be indicated as:

	 iii.	 A random position of chromosome is operated for 
mutation with mutation probability, the operation 
process can be expressed as:

	 iv.	 Convert each chromosome as a mutation particle 
( PSOk

m);
	 v.	 Compare the fitnesses of PSOk and PSOk

m (i.e. fi and 
fmut ) calculated by Eq. (3), and preserve the particle 
with optimal fitness.

The dynamic procedure for the HESS sizing optimization 
by means of IMBPSO is illustrated in detail in Fig. 5.

4 � Case Study

4.1 � Case Description

To assess the performance of the proposed strategy, typi-
cal practical operation data from Danyang TS in Beijing-
Shanghai HSR is analyzed, and the TS is powered by 
220kV voltage with installed transformer capacity of 
100 MW . The electricity price and demand charge price 
of the considered substation are 0.0924 USD∕kWh and 
6.096 USD∕kWh∕month respectively, also the annual dis-
count rate is 3% . The relevant parameters of HESS are shown 

GAk =
[
k0, k1, k2,⋯ , ki−1

]
→ GAkj = [k0, k1, k2,⋯ , gj,⋯ , gi−1]

GAg = [g0, g1, g2,⋯ , gi−1] → GAgj = [g0, g1, g2,⋯ , kj,⋯ , ki−1]

GAk = [k0, k1, k2,⋯ , ki−1] → GAk
m = [k0, k1, k2,⋯ , kj

m
,⋯ , ki−1]

in Table 1 [37]. Load power and demand with sampling time 
interval of 1 min are illustrated in Fig. 6. The instantane-
ous load power fluctuated from −29MW to 94 MW with the 
maximum demand of 46 MVA.

The following cases are investigated:

Fig. 5   Dynamic procedure for HESS sizing optimization based on 
IMBPSO
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Case 1: Base case.
Case 2: Adding VRB installed RTC strategy to Case 1.
Case 3: Adding VRB installed FPC strategy to Case 1.
Case 4: Adding SC installed RTC strategy to Case 1.
Case 5: Adding SC installed FPC strategy to Case 1.
Case 6: Adding HESS installed RTC strategy to Case 1.
Case 7: Adding HESS installed FPC strategy to Case 1.

4.2 � Economic Analysis of Cases

The optimization results obtained by IMBPSO are provided 
in Table 2.

Case 1: as the base case, the total annualized electric-
ity charge is 16.36 M USD without HESS, which includes 
demand charge of 3.36 M USD and energy consumption 
charge of 13 M USD.

Case 2: in this case, VRB ESS is added to the base case, 
and the optimal size of 13.9 MWh at 11.36 MW is found 
for VRB ESS by means of the proposed approach. By add-
ing the VRB ESS, the total annualized electricity charge is 
15.38 M USD, which includes 2.87 M USD demand charge 
and 12.52 M USD energy consumption charge. Furthermore, 
the VRB lead to 36.39% return on investment (ROI) during 
the whole project service period.

Case 3: in this case, the FPC strategy is added to case 
2 for energy management. A 19.28 MWh VRB with rated 
power of 14.46 MW is installed with the substation. As the 
employment of VRB, the curtailment of the total annualized 
electricity charge is 1.49 M USD (i.e., 9.12% compared to 
the base case). Also, the VRB imposes 16.73 M USD total 
capital cost to the HSRS during the whole project service 
period and 50.81% ROI. Compared with the RTC strategy, a 
delightful profit is guaranteed by the FPC strategy.

Case 4: in this case, only SC ESS is added to Case1, with 
the optimal size of 0.4 MWh and 1.03 MW. The effects of 
ESS total cost reducing is significant with the application of 
SC ESS compared to Case 2, but it is also closely coupled 
with the increase in electricity charge (i.e. CEC ). In short, 
the benefit of electricity charge can hardly make up for the 
total cost of SC ESS.

Table 1   Parameters of HESS

Parameter Unit VRB SC

Capital cost of ESS USD/kWh 152.4 4114.8
Capital cost of PCS USD/kW 228.6 228.6
Maintenance cost of ESS USD/kWh 4.6 4.6
Replacement cost of ESS USD/kWh 152.4 -
SOC range - 10% ~ 90% 5% ~ 95%

Fig. 6   Instantaneous power and demand

Table 2   Optimization results of ESS sizing problem

Case No P
VRB,R ( MW) E

VRB,R (MWh) P
SC,R ( MW) E

SC,R (MWh)

1 - - - -
2 11.36 13.9 0 0
3 14.46 19.28 0 0
4 0 0 1.03 0.4
5 0 0 3.03 0.97
6 17.01 19.44 5.8 0.11
7 18.43 19.58 6.39 0.12

Case No HESS total cost (M USD) C
EC

 (M USD/year) NPV (M USD) ROI

1 - 16.36 - -
2 12.28 15.38 4.47 36.39%
3 16.73 14.87 8.5 50.81%
4 1.92 16.3 -0.99 -51.87%
5 4.76 16.15 -1.48 -31.8%
6 10.32 15.11 8.92 86.4%
7 10.88 14.85 12.33 113.35%
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Case 5: A 0.97 MWh SC ESS with rated power of 
3.03 MW is installed with the substation, which incurs a 
1.48 M USD loss and -31.8% ROI similar to Case 4.

Case 6: SC ESS is added to Case 2, with the optimal size 
of 0.11 MWh and 5.8 MW. The optimal size of VRB ESS 
searched by IMBPSO is 19.44 MWh and 17.01 MW. The 
total electricity charge is reduced by 7.62% compared to that 
in Case 1, and the economic returns provided by HESS are 
8.92 M USD during all the project service period.

Case 7: in this scenario, the FPC strategy substitutes the 
RTC strategy in Case 6. The optimal sizes of 19.58 MWh at 
18.43 MW and 0.12 MWh at 6.39 MW are found for VRB 
and SC, respectively. By adding the HESS, the total annual-
ized electricity charge is 14.85 M USD, which is reduced 
by 9.24% compared to that in the base case. The economic 
benefits provided by HESS are 12.32 M USD through all 
the project service period, increased by 38.28% compared 
to that in Case 6.

The economical comparison of different cases is intui-
tively demonstrated in Fig. 7. It can be seen that the FPC 
strategy is conducive to decreasing the electricity cost and 
increasing project NPV. By contrast, whatever strategy is 
adopted, the VRB ESS without SC ESS has a higher replace-
ment cost and provides less economic benefits for the HSRS 
considering Case 2 and Case 3. Due to the high cost of SC, 
the cases (i.e. Case 4 and Case 5) with only SC ESS tend to 
choose smaller capacity, which can hardly achieve effective 
maximum demand reduction and further has adverse effects 
on economic benefits. The economic benefits augmentation 
of Case 6 and Case 7 reveal that the SC ESS which handles 
high-frequency power transients plays a vital role in system 
efficiency enhancement and total cost reduction. Accord-
ingly, the maximum economic effectiveness and ROI of 
HESS are provided by Case 7, with an annualized benefit of 
0.62 M USD and an ROI of 113.35%.

4.3 � Performance Analysis of HESS

The HESS performance in Case 7 is in detail investigated 
as a typical example in this section due to the advantage of 
Case 7 in economic effectiveness.

Figure 8 further demonstrates the curtailment of system 
power demand in different ESS cases. The large-capacity 
VRB exhibits good capabilities of peak shaving as shown 
in Fig. 8a. However, In Fig. 8b, only little power demand 
of 1 MW is reduced due to the small capacity of the SC. In 
Fig. 8c,the HESS absorbs electric energy from the power 
grid in the period from 00:00 to 06:00, and releases elec-
tric energy during the peak period of the traction load, thus 
realizing the transfer of electric energy in time horizon and 
reducing the maximum demand.

A 17.71% reduction of maximum demand is allowed 
by approach obtained in Case 6, likewise, the maximum 
demand in Case 7 is decreased by 25.53% compared to the 
base case, resulting in a remarkable decrease in electric-
ity cost. Compared to Case 6, a larger reduction of maxi-
mum demand and a higher economic benefit is obtained in 
Case 7. Accordingly, it can be inferred that the FPC strat-
egy possesses higher economic viability and a more suit-
able operation criterion compared to the RTC strategy. It is 
also worth noting that although the results of system power 
demand reduction in Case 3 and Case 7 are similar, which 
is also reflected in the annualized electricity charge, but the 

Fig. 7   Economic comparison of different cases

Fig. 8   Demand of substation in different cases
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adoption of SC ESS have affects on the ESS working status, 
which lead to different investment costs and project NPV.

The power of TS in the base case and Case 7 at the time 
span from 12:30 to 15:30 are demonstrated in Fig. 9, which 
also depicts the C&D power of VRB and SC in Case 7 in the 
same period. As shown in Fig. 9a, the HESS power is nega-
tive when the TS power is lower than the charging threshold, 
whereas the HESS power is positive when the TS power and 
demand satisfied the peak shaving criterion. It can be seen 
that the VRB C&D process outlined in Fig. 9b possesses 
a smooth C&D operation and ensures the power shaving 
demand, meanwhile, the installed SC is conducive to alle-
viating the aggressive stress on VRB.

4.4 � Convergence Performance of IMBPSO

In this section, both GA and PSO are exploited for solving 
the proposed optimization problem to compare their conver-
gence velocity to that in IMBPSO, and Case 7 serves as an 
example here. Regarding the GA, the chromosome length 
is set as 20 with a population size of 40. As for PSO and 
IMBPSO, the size of particle swarm is selected as 40. For 
a clear demonstration of the iteration processes, only a part 
of them is illustrated in Fig. 10.

As is observed in Fig.  10, the optimization result of 
IMBPSO is achieved at the 5th iterations with best fitness of 
12.33 M USD, and the PSO and GA attain the optimization 
solution at the 13th and 22nd iterations respectively. The best 
fitness obtained by PSO and GA are both 12.33 M USD. Con-
sequently, the IMBPSO reveals a higher accuracy level and a 
faster convergence compared to the GA and PSO. In addition, 
it has shown that the proposed optimization problem is met 
with the PSO combined with the mutation-based method.

5 � Conclusion

In this paper, an accurate optimal HESS sizing model is 
proposed, in which the economic viability serves as the 
optimization objective. For system efficiency improving, a 
practical energy management strategy is formulated with 
historical data analysis, suitable for HSRS. According to 
the characteristics of the proposed optimization problem, 
a mutation-based operation is incorporated for the PSO 
improvement. The feasibility of the proposed optimization 
model is justified through a realistic case study. The obtained 
conclusion can be outlined as follows:

•	 The efficiency of system demand curtailment and RBE 
recovery is enhanced with the proposed FPC energy man-
agement strategy, which allows a 31.18% ROI increase 
compared to RTC strategy.

•	 The VRB degradation is effectively subdued due to the 
SC application, resulting in VRB lifetime promoting and 
a 34.98% HESS total cost dropping.

•	 The proposed IMBPSO can satisfy the computational 
requirements of the proposed optimization problem, 
which also enhances the convergence performance and 
accuracy level due to the incorporation of the mutation-
based operation.
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Fig. 9   (a) power of TS; (b) C&D power of VRB and SC

Fig. 10   Comparison of computational performance of IMBPSO, PSO 
and GA for Case 7
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