
Vol.:(0123456789)1 3

Journal of Electrical Engineering & Technology (2021) 16:1273–1284 
https://doi.org/10.1007/s42835-021-00670-3

ORIGINAL ARTICLE

Cooperative Operation Schedules of Energy Storage System 
and Demand Response Resources Considering Urban Railway Load 
Characteristic under a Time‑of‑Use Tariff

Hye Ji Kim2 · Hosung Jung1 · Young Jun Ko2 · Eun Su Chae2 · Hyo Jin Kim2 · Il Seo Hwang2 · Jae‑Haeng Heo2 · 
Jong‑young Park1 

Received: 16 September 2020 / Revised: 6 December 2020 / Accepted: 22 January 2021 / Published online: 15 February 2021 
© The Author(s) 2021

Abstract
This paper proposes an algorithm for the cooperative operation of air conditioning facilities and the energy storage system 
(ESS) in railway stations to minimize electricity. Unlike traditional load patterns, load patterns of an urban railway station 
can peak where energy charge rates are not high. Due to this possibility, if applying the traditional peak-reduction algorithm 
to railway loads, energy changes can increase, resulting in higher electricity bills. Therefore, it is required to develop a new 
method for minimizing the sum of capacity charges and energy charges, which is a non-linear problem. To get a feasible 
solution for this problem, we suggest an algorithm that optimizes the facility operation through two optimizations (primary 
and secondary). This method is applied to the air-quality change model for operating air conditioning facilities as demand-
response (DR) resources in railway stations. This algorithm makes it possible to estimate operable DR capacity every hour, 
rather than calculating the capacity of DR resources conservatively in advance. Finally, we perform a simulation for the 
application of the proposed method to the operation of DR resources and ESS together. The simulation shows that electricity 
bills become lowered, and the number of charging and discharging processes of ESS is also reduced.

Keywords  Cooperative operation · Demand response · Time-of-use · Energy storage system · Urban railway load

1  Introduction

As introducing the concept of the demand response (DR), 
the behavior of electricity consumers has changed from 
naively saving electricity to reduce electricity bills, to set-
ting up a cost-saving strategy based on the price of electric-
ity [1–4].

The basic strategy of DR is to reduce electricity bills by 
regulating the usage of electricity; i.e., one can reduce power 
consumption when the electricity price is high, and supple-
ment it later when the price becomes lower. Research on 
applying this strategy to the operation of railway stations, 
especially for the possibility of using railway station loads as 
DR resources, has been vigorously conducted, where most 
studies focus on saving the total expense [5–7].

However, power consumption is directly related to the 
utility of consumers in a railway station. If power con-
sumption is insufficient due to its high cost, the utility of 
consumers can decrease. In the case of railway stations, 
the level of particulates and temperature in a station are 
the key factors in determining customer satisfaction. In 
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South Korea, for this purpose, it is recommended, by gov-
ernment regulation, that railway stations should lower the 
density of particulates below a certain level and maintain 
a comfortable temperature [8]. Therefore, station facilities 
should be operated in consideration of customer satisfac-
tion and utility.

One of the ways to achieve both the saving electricity cost 
and customer utility is using energy storage system (ESS). 
ESS can support or replace power consumption of a railway 
station so that the air-conditioning and ventilation facilities 
in a station can be in operation as it was, while the power 
consumption pattern of the railway station can be managed 
according to electricity bills. Therefore, the Operation of 
ESS, can maximize saving electricity costs without degrad-
ing customer satisfaction [9–12].

However, this leads to excessive use of ESS. As ESS deg-
radation/aging becomes an issue, it is required to operate 
ESS in consideration of the State of Health (SOH). Even 
though several studies considered the SOH of ESS, they 
cannot be a feasible solution. In reality, various factors such 
as type/capacity/installation environment affect the SOH of 
ESS, and it is impossible to consider all factors [13–17].

Accordingly, strategies of cooperative operation between 
DR and ESS are inevitable to alleviate those problems such 
as ESS degradation, reduction of customer’s utility. This 
paper proposes a method for minimizing electricity bills as 
well as maintaining customer satisfaction with a cooperative 
operation between DR resources and ESS in railway stations. 
We also expect excessive ESS operation can be avoided.

When considering loads of railway station facilities as DR 
resources, an analysis of how much the loads can be used 
as DR resources should precede. Two methods can be sug-
gested. Firstly, we can classify railway station loads based 
on interviews and analyze the historical data to estimate the 
amount of loads that can be used for the DR resources in 
advance [18, 19]. With this method, it is relatively easy to 
estimate the DR capacity. This pre-calculation method, how-
ever, does not take into account the utility of railway users 
at the time when DR is active.

Alternatively, we can estimate the DR capacity by mod-
eling the correlation between power consumption and user 
utility. This method can adjust the DR capacity to provide 
the desired utility level of a railway station [9, 18, 20]. How-
ever, it is difficult to estimate the DR capacity, compared to 
the pre-calculation method. It is because a large amount of 
data is required to be analyzed in order to fully understand 
the relation between power consumption and user utility. 
Even though there is another difficulty on modeling cus-
tomer satisfaction, the merit of the modeling method is that 
the DR capacity for user utility can be calculated by taking 
into account the situation at the time of the DR; i.e., the 
amount of DR resources can be adjusted based on external 
conditions at a particular time.

In this study, customer satisfaction of railway users is 
assumed to be determined by temperature and particulate 
density in a railway station. They are strictly regulated by 
government regulations and are well controlled in South 
Korea. From multiple regression analysis, a regression equa-
tion, representing the relationship between power consump-
tion and the factors (temperature and particulate density), 
is derived. As a result, the maximum DR capacity is com-
puted, where temperature and particulate density are within 
the proper ranges.

Based on the regression result, we propose a method to 
minimize electricity bills for operating railway stations with 
the cooperative operation between DR resources and ESS. 
With this method, we expect to suppress possible customer 
complaints caused by excessive DR usage and to extend the 
life of ESS, implying a feasible solution for managing rail-
way loads effectively and efficiently.

The paper is organized as follows. We present an over-
view of the characteristics of Time-Of-Use (TOU) fares, 
railway loads, and facilities in Chapter 2. The formalization 
of the proposed method and the results of applying it to 
actual data from South Korea subway stations are described 
in Chapter 3 and 4, respectively. We conclude in Chapter 5.

2 � Background

2.1 � TOU(Time‑of‑Use) Pricing

The TOU pricing is a rate plan that the unit price of electric-
ity is divided into two or three sectors depending on power 
consumption by season or the time of day [9]. This plan 
consists of capacity charges and energy charges [9], and 
is designed to recover those charges in the power supply 
[14]. The TOU pricing belongs to a typical price-based DR 
program, balancing electricity usage by shifting demand 
from the peak time to off-peak times. Also, this pricing 
plan provides an incentive for consumers who reduce their 
power consumption [9]. In other words, this pricing plan 
allows power suppliers to compensate for the cost of gener-
ating energy and to induce to load patterns as the supplier 
intended.

Ideally, the unit price of electricity should be derived 
from load patterns at the time of use, where power con-
figuration depends on such patterns and changes to handle 
demands. However, it is difficult to get real-time pricing 
based on varying load patterns because of realistic con-
straints. Electricity pricing is, therefore, divided into three 
sectors depending on the load level; peak load, mid-peak 
load, and off-peak load. This TOU structured rate is applied 
to industrial loads, where the price of each sector reflects the 
average cost fluctuation [21]. This tariff system strengthens 
demand management, contributing to stabilizing the power 
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supply [21]. Also, the system makes it possible to reduce 
new investment costs and to utilize resources optimally with 
demand management [21].

In South Korea, industrial electricity tariff induces DR to 
consumers with the TOU rate plan (see Table 1 as an exam-
ple) [9]. The capacity charge is set to the highest amount of 
power demand during the previous 12 months when the peak 
load occurred [9, 22]. The capacity charge can be reduced 
when the peak load decreases. The energy charge is gener-
ally designed to reflect variability between wholesale and 
retail markets [23].

2.2 � Characteristics of an Urban Railway Load

Comparing railway station loads and general loads, the peak 
time is different from one another [9, 18]. The general load 
peaks from 10 am to 5 pm whereas the railway station load 
peaks at a rush hour (7 to 9 am and 7 to 9 pm). Figure 1 
shows that the peak duration of railway station loads is 
shorter than that of general loads. Since railway station loads 
depend on the number of trains in operation, the amount of 
loads is significantly different at the peak and off-peak times. 
Therefore, unlike the general loads, it is possible to estimate 
the power demand at its peak relatively accurately by using 
the railway timetable [18].

The peak-time difference between railway station loads 
and general loads can be used for building a strategy for 
reducing power consumption [18]. In the case of general 
loads, the peak demand occurs during the peak time zone 
of TOU, so that the traditional strategy, shifting peak 
loads, can reduce both capacity and energy charges. In 
the case of railway station loads, the peak-load time is, 
however, different from the time of the highest energy 
charge. Due to this feature, the traditional strategy cannot 
be applied; this may increase energy charges. Therefore, 
the strategy for reducing energy consumption in railway 
loads should be established separately and deliberately 
in consideration of the characteristics of railway station 
demands [18].

Currently, electricity pricing for the Urban Railway Cor-
poration in South Korea is the Class A High Voltage option 
II-type tariff (one of the TOU plans at industrial service). 
To minimize electricity bills, we need to minimize the sum 
of capacity and energy charges, rather than minimizing one 
of them. When the energy charge is forced to be lowest, 
the capacity charge can overwhelmingly increase due to 
excessive load in the off-peak period. In contrast, the lowest 
capacity charge does not ensure the lowest electricity bill, 
possibly due to a high energy charge [9, 18].

2.3 � Operational Facilities (DR resources and ESS)

In railway load, the DR and ESS operations are the rep-
resentative methods to reduce electricity bills [9]. In this 
paper, we propose the cooperative operation plan of ESS 
and DR resources in order to minimize electricity bills when 
operating railway stations.

The ESS operation doesn’t mean that power consumption 
changes, but rather the power consumption of air-condition-
ing facilities remains the same. Instead, the ESS operation 
strategy aims to reduce the capacity charge by reducing the 
peak load and reduce the energy charge by utilizing the TOU 
pricing. The successful operation strategy makes it possible 
to shift demand loads in railway stations and, consequently, 
to lower electricity bills without degradation of satisfaction 
in railway services. However, this may lead to excessive ESS 
operation [9].

The introduction of DR for railway station facilities, espe-
cially for air conditioning and ventilation, affects customer 
satisfaction significantly. When an operator uses less power 
for air-conditioning and ventilation facilities, an electricity 
bill can be reduced. However, the quality of user utilities 
(air quality and temperature) will be significantly degraded. 
Therefore, railway station operators, who want to use air 
conditioning facilities as DR resources, should consider both 
saving electricity bill and fulfilling customer satisfaction at 
the same time [18].

Table 1   An example of the industrial electricity TOU tariff in Korean

Time period Demand charge 
rate [KRW/kW]

Energy charge rates [KRW/kWh]

Summer Spring/fall Winter

Off peak load 7470 55.6 55.6 63
Mid load 81.4 60.4 79.9
Peak load 114.9 79.6 109.3

Fig. 1   Typical railway station load patterns and energy charges
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3 � Algorithm

As described earlier, railway station operators should 
consider reducing electricity bills while providing high-
quality services; if an operator focuses only on reducing 
electricity bills, it is hard to provide high-quality services 
to customers.

The important services for railway users are to provide 
a comfortable environment for customers as well as to 
make trains arrive or depart on time. Here, we focus on 
the former: providing the best environment for customers 
and lowering electricity bills. Note that the punctuality of 
trains is beyond the scope of this paper because it is not 
related to power consumption in railway stations.

In South Korea, there are government regulations on the 
level of temperature and particulates in railway stations. 
To follow the regulations, the operation of air-conditioning 
facilities is essential. Depending on operation strategies, 
power consumptions, peak loads, and, eventually, electric-
ity bills can change.

Some railway stations have introduced ESS to mini-
mize energy charges. ESS has been operated indepen-
dently from air-conditioning facilities, which causes the 
excessive number of charge cycles of ESS. Due to such 
excessive cycles, the life of ESS is reduced. Also, the 
independent operation of ESS doesn’t utilize controllable 
facilities, which may waste energy. This paper proposes 
an algorithm for the optimized cooperative operation of 
air-conditioning facilities and ESS. We expect that, with 
the proposed algorithm, electricity bills can be reduced 
and customer satisfaction is fulfilled.

3.1 � Structure of Algorithm

The proposed algorithm minimizes electricity bills based 
on the TOU pricing in South Korea. As described in Chap-
ter 2, electricity bills are divided into capacity and energy 
charges. Such characteristics of electricity bills leads to a 
non-linear problem that both capacity and energy charges 
should be considered simultaneously. This problem can be 
solved by the so-called Non-Linear Programming (NLP) 
process. To solve this complicated problem, we use two 
optimization steps: Quadratic Programming (primary) and 
Mixed-integer Programming (secondary).

Figure 2 shows a complete flowchart combining pri-
mary and secondary optimization. In the primary opti-
mization, we obtain the optimized peak load, which is 
a minimum peak load when operating air-conditioning 
facilities. Then, the peak from the primary optimization is 
compared with the previous primary peaks obtained within 
current month, and then we select the highest peak. This is 

because the capacity charge is determined by the highest 
peak within each calendar month. If a peak higher than 
the optimized peak of the target day has already appeared 
in the current month, there is no need to make an effort to 
reduce the peak of the target day. The selected peak is set 
to the peak constraint in the secondary optimization from 
which the energy charge is minimized.

3.2 � Primary Optimization

In the primary optimization, the capacity charge is mini-
mized without lowering consumer satisfaction. For this 
purpose, the primary optimization searches for the mini-
mum peak load of railway station including air-conditioning 
facilities.

Equation (1) indicates the objective function of opti-
mization and aims to minimize the sum of squares of the 
total power used in loads in every single hour. AHUn,t and 
Blowern,t indicate the output of air-conditioning facilities and 
ventilation facilities, respectively. Dbasen,t indicates base 
demand of railway station loads excluding air-conditioning 
and ventilation facilities. n and N indicates the day of inter-
est and the number of days in a month, respectively. t

indicates hours, and T  is equal to 24, which is the total 
hours in a day.

Constraint Eq.  (2) (Constraint Eq.  (3)) implies that 
the sum of temperature (particulates) for the previous 
hour, InTempn,t−1(InDustn,t−1) , and its current change, 
ΔInTempn,t(ΔInDustn,t) should be within the proper range. 
InTempmin(InDustmin) and InTempmax(InDustmax) refer to the 

(1)

min
AHUn,t ,BLowern,t

∑T

t=1
(AHUn,t + Blowern,t + Dbasen,t)

2
,∀n ∈ N, t ∈ T ,

(2)
InTempmin ≤ InTempn,t−1 + ΔInTempn,t ≤ InTempmax,∀n ∈ N, t ∈ T ,

(3)
InDustmin ≤ InDustn,t−1 + ΔInDustn,tn,t ≤ InDustmax,∀n ∈ N, t ∈ T ,

Fig. 2   Algorithm flow charts
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allowable minimum and maximum of the internal tempera-
ture (particulates), respectively.

3.3 � Primary Optimization

3.3.1 � Correlation and Regression of Air Quality 
and Facilities

The air quality of a railway station does not change when 
only ESS is operated, although electricity bills can change. 
It is because the charging and discharging processes of ESS 
don’t affect the output of railway station facilities such as 
air-conditioning and ventilation facilities. In contrast, if the 
facilities are controlled, both electricity bills and air quality 
can change.

A change in the air quality of a railway station affects 
customer satisfaction. It is important to provide a certain 
level of service to customers when operating railway sta-
tions. In other words, operators should not reduce power 
consumption of the railway station facilities too much to 
save on electricity bills, as customer satisfaction can be sig-
nificantly reduced.

To consider customer satisfaction, we derive the relation-
ship between the power consumption of air-conditioning 
facilities and air quality. Then, we apply constraints for 
maintaining the air-quality level. In addition to the air-con-
ditioning and ventilation facilities, air quality is affected by 
internal and external factors such as the number of passen-
gers, and they are also considered in this study.

4 � Factors Affecting Air Quality

In this paper, we model air quality in a station by taking into 
account controllable facilities and uncontrollable internal/
external factors. The controllable facilities are air-condi-
tioners and ventilators (blowers). The uncontrollable factors 
include the number of passengers inside railway stations, 
the number of incoming trains, and outside environments 
(temperature and particulates). Note that it is impossible to 
consider all factors that affect air quality so that we assume 
that the effect of other factors on air quality is negligible.

First, Internal power facilities (Air conditioning facilities, 
blower). Air-conditioning facilities are equipped with par-
ticulate filters; the amount of particulates in railway stations 
is reduced while air-conditioners are in operation. On the 
contrary, ventilation facilities don’t have such filters, so the 
internal and external particulate densities are synchronized 
while ventilators (or blowers) are in operation; i.e., if the 
external particulate density is lower than the density of par-
ticulates inside a railway station, the inside density will drop 

and vice versa. As for temperature control, air-conditioning 
facilities are set to operate at a certain temperature or above. 
In spring, the outside temperature is generally lower than 
the inside temperature of railway stations, so the operation 
of air-conditioning and ventilation facilities (e.g., circula-
tion, supply, and exhaust) results in decreasing the inside 
temperature.

Second, Internal factors (passengers, incoming trains). 
Air quality is affected not only by the controllable facilities 
but also by uncontrollable various factors inside and outside 
railway stations. There are various internal factors such as 
the number of passengers, the number of incoming trains, 
humidity, station design, passenger movement patterns, and 
so on. In this paper, the number of passengers and incoming 
trains is considered due to the limitations of data acquisition. 
Incoming passengers and trains to a railway station bring 
external particulates into the station and raise the internal 
density of particulates. In the case of temperature in railway 
stations, temperature increases as the number of passengers 
increases, and decreases as the number of incoming trains 
increases.

Third, External factors (external temperature, external 
particulates). Air quality is influenced by external conditions 
as well; temperature and particulate density inside a railway 
station can be affected by outside values. This effect can 
be quantified by correlation analysis. We find a correlation 
between air quality and the external factors with data from 
railway stations and meteorological administration. Also, we 
perform a regression analysis with the same dataset to model 
air quality, considering time delay.

5 � Air Quality Modeling

The following equations show the changes in tempera-
ture and particulates with multiple regression, taking into 
account time delay for each factor [16].

ΔInTemp(ΔInDust) and ΔOutTemp(ΔOutDust) are the 
changes in internal and external temperature (particulates), 
respectively. There are four variables affecting temperature 
and particulates: AHU is the air-conditioning facilities out-
put, Blower is the ventilator output, PAX is the number of 
passengers, and Train is the number of incoming trains. T 
and D refer to temperature and dust (particulates), respec-
tively. bT0 ∼ bT5 and bD0 ~ bD5 are coefficients (or a constant 

(4)

ΔInTempt =bT0 + bT1ΔOutTempt−kT1 + bT2AHUt−kT2

+ bT3Blowert−kT3 + bT4PAXt−kT4 + bT5Traint−kT5

(5)

ΔInDust
t
=b

D0
+ b

D1
ΔOutDust

t−kD1 + b
D2
AHU

t−kD2

+ b
D3
Blower

t−kD3 + b
D4
PAX

t−kD4 + b
D5
Train

t−kD5
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coefficient), which are estimated from a regression analysis. 
kT1 ∼ kT5 and kD1 ∼ kD5 are time delay of variables. For 
the two equations, we perform a regression analysis with 
data from March of the spring season. Note that multiple 
regression coefficients and time delay are based on several 
assumptions because of the limitations of data acquisition 
and the limited number of variables that can be considered.

6 � Constraint on the Peak Load

Equation (6) indicates the maximum load of a day after 
the primary optimization. As explained earlier, the capac-
ity charge is determined by the highest load in a specified 
period. Due to the TOU pricing plan, if the previous peak 
load is higher than today peak load, the peak load is not 
renewed; conversely, if the today peak load is higher than the 
previous peak load, today peak load becomes the peak load. 
The peak load determined from this procedure becomes the 
peak constraint in the secondary optimization.

6.1 � Secondary Optimization

The secondary optimization minimizes energy charges of a 
cooperative operation between DR resources and ESS.

(6)
PeakDR

n
= max

t

(

AHUn,t + Blowern,t + Dbasen,t
)

,∀n ∈ N, t ∈ T ,

(7)min
pn,t

∑T

t=1
(�n,t ∙ pn,t),∀n ∈ N, t ∈ T ,

(8)

pn,t =AHUn,t + Blowern,t + Dbasen,t

+ ESS+
n,t

− ESS−
n,t
,∀n ∈ N, t ∈ T ,

(9)Peakn = PeakDR
n

− ESSmax,∀n ∈ N, t ∈ T ,

(10)pn,t ≤ Peakn,∀n ∈ N, t ∈ T ,

(11)
InTempmin ≤ InTempn,t−1 + ΔInTempn,t ≤ InTempmax,∀n ∈ N, t ∈ T ,

(12)
InDustmin ≤ InDustn,t−1 + ΔInDustn,tn,t ≤ InDustmax,∀n ∈ N, t ∈ T ,

(13)ESS+
n,t

≤ ESSmax ∙ �n,t,∀n ∈ N, t ∈ T ,

(14)ESS−
n,t

≤ ESSmax ∙ (1 − �n,t),∀n ∈ N, t ∈ T ,

(15)SoCmin
≤ SoCn,t ≤ SoCmax

,∀n ∈ N, t ∈ T ,

Equation  (7) represents the objective function of 
secondary optimization. �n,t in Eq. (8) is hourly energy 
charges, and pn,t is the total load in railway stations includ-
ing uncontrollable, controllable loads (air conditioning 
and ventilation facilities), and the power of charging and 
discharging ESS. The secondary optimization minimizes 
the sum of �n,t times pn,t which represents the total energy 
charges.

Peakn in Eq. (9) represents the maximum load obtained 
from the primary optimization minus the Power Conver-
sion System (PCS) capacity of ESS. Constraint Eq. (10) 
is the maximum peak that the load of a railway station 
cannot exceed in each hour. Constraint Eqs. (11)–(12) are 
constraints for the temperature and particulates, which 
correspond to the constraint Eqs. (2)–(3) in the primary 
optimization. Constraint Eqs. (13)–(17) are related to ESS. 
Constraint Eqs. (13)–(14) are limits of the charging and 
discharging capacity.

ESSmax is the maximum charge/discharge capacity [W] 
of ESS, and ESS+

n,t
 ( ESS−

n,t
 ) represents charging (discharg-

ing) power [kW] at t-hours of n-days. �n,t is an integer 
value (1 or 0): the charging state is 1 and the discharging 
state is 0. For example, �n,t of 1 means that ESS is in the 
charging state at t-hours of n-days.

Constraint Eq. (15) is the State of Charge (SOC) con-
straint of ESS. SoCmin and SoCmax are the minimum and 
maximum constraints [%] of SOC, respectively. SoCn,t is 
the charging state [%] of ESS at t-hours of n-days. Con-
straint Eq.  (16) is a daily boundary condition, where 
the SOC of ESS maintains 20% of operational capacity 
( SoCmax − SoCmin ) at the beginning and end of a day. Con-
straint Eq. (17) represents the SOC constraint in considera-
tion of the battery efficiency, � . ESScap is the PCS capacity 
of ESS, which is assumed to be equal to ESSmax in this 
paper.

6.2 � Summary and Contribution of the Proposed 
Algorithm

In Chapter 3, we propose the operational algorithm that min-
imizes electricity bills of railway stations while maintaining 
customer satisfaction. We consider not only ESS but also 
DR resources. Air-conditioning and ventilation facilities are 
considered as DR resources in railway stations.

(16)

SoCinit = SoCn,96 =
1

5

(

SoC
max − SoC

min
)

,∀n ∈ N, t ∈ T ,

(17)

SoCn,t =SoCn,t−1 + � ∙ ESS+
n,t
∕ESScap −

1

�

∙ ESS−
n,t
∕ESScap,∀n ∈ N, t ∈ T ,
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It is important to consider maintaining customer sat-
isfaction when DR resources are used. In the proposed 
algorithm, the air-quality change model is applied, where 
customer satisfaction is described with the output change 
of DR resources. This model uses a multiple regression 
equation of air-quality change, considering time delay 
based on actual data from railway stations. In this analysis, 
there are several assumptions in coefficients and time delay 
values due to the limitation of data acquisition. Since the 
proposed model takes into account current circumstances, 
railway stations can be operated within the maximum 
DR resources available at each hour. With this modeling 
method, it is possible to utilize DR resources optimally, 
compared to that of using the pre-calculated amount of 
DR resources. Also, this modeling method is expected to 
help to estimate the possible capacity of Fast/Flexible DR 
resources in the future.

7 � Simulation

7.1 � Simulation Settings

In this chapter, we perform a simulation, based on actual 
data, for confirming the effectiveness of the cooperative 
operation of DR resources and ESS in the context of man-
aging loads and reducing electricity bills. For this simula-
tion, we use one-hour unit data of railway stations of actual 
Korean local city on March 19th.

Also, we use data of external temperature and particu-
late density, which is adopted from the external institution 
[24, 25]. The number of passengers and incoming trains is 
estimated, based on railway station data. Base demand, the 
base power consumption, refers to the total railway station 
loads excluding air-conditioning and ventilation facilities, 
whereas actual demand includes air-conditioning and ven-
tilation facilities.

Table 2 shows the hypothetical ESS characteristics used 
in the secondary optimization. The capacity of this ESS is 
20[kW]. The maximum charging and discharging capac-
ity of ESS is the PCS capacity. The SOC capacity is set to 
be in the range of 10[%] to 90[%], taking into account the 
battery life. The SOC capacity is set to have 20[%] of the 

operational capacity ( SoCmax − SoCmin ) at the beginning 
and end of the day. The ESS efficiency is set to 90[%].

7.2 � Simulation Results I—Constraint Dependence

Table 3 shows the operational conditions of temperature 
and particulates for each case, based on actual data. Case 0 
is derived from actual data on temperature and particulates 
of railway stations on March 19th. Case I-1 is set to have 
the same constraints as case 0. Case I-2 is when tempera-
ture and particulates are set to be more strictly constrained. 
Case I-3 is when temperature and particulates are set to 
be more loosely constrained. For each case in Table 3, we 
perform a simulation with its constraints.

Figures 3 and 4 show the changes of temperature and 
particulate density for each case on March 19th, respec-
tively. In both figures, all cases satisfy the constraints of 
temperature and particulates.

Figure 5 shows the energy consumption for each case 
on March 19th. As shown in Table  4, the simulation 
results show that the peak energy, which occurs at 9 am, 
is reduced in all cases.

Table 2   ESS characteristic

ESS parameters Value

PCS capacity [W] 10,000
Min. SOC capacity [Wh] 2,000
Max. SOC capacity [Wh] 18,000
Efficiency of ESS charging and discharging [%] 90

Table 3   Classification by temperature and particulate matter con-
straints for each case

Simulation 
case

Tem-
perature 
constraint

Particulate matter constraint

Min. [°C] Max. [°C] Min. [µg/m3] Max. [µg/m3]

Case 0 11.94 14.72 0 66.23
Case I-1 11.94 14.72 0 66.23
Case I-2 13 14 0 54
Case I-3 10 18 0 80

Fig. 3   Internal temperature of railway stations for each case
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Table 4 shows the estimated electricity bill for each 
case. When calculating electricity bills, the aforementioned 
payment system, Industrial A, High voltage A, select 2, is 
selected. The capacity charge is 240.9 [KRW/kW], where 
a monthly rate (7470[KRW/kW]) is divided by (assumed) 
31 days in order to get a daily rate. The total energy charge is 
calculated by summing up energy charges for each hour in a 
day. The energy charge for each hour is given by multiplying 
power consumption by its corresponding energy charge rate.

As in Table  5, the electricity bill of case 0 is 
261,990[KRW], which is higher than that of other cases. 
Case I-2 have lower capacity charges and energy charges 
than Case 0. It implies that they can provide a more comfort-
able environment for customers as well as reduce electricity 
bills. In Case I-3, it is possible to reduce electricity bills sig-
nificantly compared to the other cases. From this simulation 
study, we found that customer satisfaction and electricity 
bills depend on operational constraints (or conditions) of 
temperature and particulate density in railway stations. This 
result implies the importance of the consideration of these 
constraints when a railway station operator operates railway 
station facilities.

7.3 � Simulation Results II—Operational Facility 
Dependence

Abbreviation and acronyms should be defined the first time 
they appear in the text even after the have already been 
defined in the abstract. Do not use abbreviations in the title 
unless they are unavoidable.

7.3.1 � Comparison of Load Patterns and Electricity Bills

In this section, the optimization results for four operation 
strategies are compared: not operating both DR resources 
and ESS (Case0), operating only DR resources (Case II-1), 
operating only ESS (Case II-2), and a cooperating operation 
of DR resources and ESS (Case II-3). We perform a simula-
tion for four cases (Table 6).

Figure 6 shows the change of load patterns in time for 
each case. The traditional method (Case0) has a higher peak 
than that of the other methods (Case II-1, Case II-2, and 
Case II-3) and uses electricity when the energy charge is 
high. From this simulation, we found that the peak of energy 

Fig. 4   Internal particulate matter of railway stations for each case

Fig. 5   Energy of railway stations for each case

Table 4   ESS characteristic

Case 0 Case I-1 Case I-2 Case I-3

Peak [kW] 196.37 177.22 180.86 170.9
Energy [kWh] 3022.12 2968.44 3005.49 2881.37

Table 5   Electricity bill for each 
case

Simulation case Capacity 
charges 
[KRW]

Energy 
charges 
[KRW]

Electricity bill (capacity 
charges + energy charges) 
[KRW]

Electricity bill difference 
(based on case 0) [KRW]

Case 0 49,730 212,260 261,990 0
Case I-1 42,705 204,626 247,332 − 14,658
Case I-2 43,581 207,660 251,242 − 10,748
Case I-3 41,181 198,121 239,303 − 22,687
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consumption can be reduced in all cases, compared to the 
traditional method.

Table 7 shows the peak load and energy consumption 
for each case during a day. Case II-1 has the peak load and 
energy consumption lower than Case II-2. This implies that 
operating DR resources alone can provide the same utility 
as that of operating ESS alone with maintaining the level of 
customer satisfaction. Case II-3 has the lowest peak value, 
but the lowest energy consumption is achieved in Case II-1. 

This result is based on the application of the TOU rate and 
ESS charging and discharging efficiency.

Table 8 shows an electricity bills for each case during 
a day. Case 0 has the highest electricity bill, implying that 
other methods (Case II-1, Case II-2, and Case II-3) can 
reduce electricity bills. Among the three cases, the lowest 
electricity bill is achieved in Case II-3. This is because the 
peak load is lowered so that the capacity charge is greatly 
reduced, though the energy charge of Case II-3 is slightly 
higher than that of Case II-1. More specifically, if DR 
resources and ESS are operated cooperatively, ESS makes 
it possible to use more resources at low-cost time sections, 
resulting in lowering the peak load.

7.3.2 � Comparison of ESS Operation Strategies

This chapter describes how the ESS operation pattern of a 
railway station changes depending on whether or not DR 
resources are operated.

Figures 7 and 8 show the ESS operation schedule of oper-
ating ESS alone (Case II-2) and the cooperative operation 
between DR resources and ESS (Case II-3), respectively. 
Comparing the two figures, the number of ESS charging 
cycles of Case II-2 is significantly higher than that of Case 
II-3. This result implies that operating ESS alone to mini-
mize electricity bills with fulfilling customer satisfaction can 
cause excessive use of ESS, which reduces the ESS life. 
Therefore, the cooperative operation of the DR resources 
and ESS is the best method in the context of not only mini-
mizing electricity bills but also extending the ESS life by 
avoiding unnecessary charging cycles.

8 � Conclusion

In this paper, we proposed an algorithm to save electric-
ity bills for railway station operators, which maximizes the 
DR effect with the cooperative operation of air-conditioning 
facilities and ESS. In the case of railway station loads, unlike 
general loads, the peak time of power consumption doesn’t 
usually occur at the peak section of energy charges in the 
TOU pricing. In other words, if the traditional method for 
reducing the peak load is applied in operating railway sta-
tions, the electricity bill is likely to increase due to higher 

Table 6   Classification by DR 
resources and ESS operation 
state

Simulation case Operation 
state

DR ESS

Case 0 X X
Case II-1 O X
Case II-2 X O
Case II-3 O O

Fig. 6   Comparison load patterns for each case

Table 7   Peak and energy for each case

Case 0 Case II-1 Case II-2 Case II-3

Peak [kW] 206.37 187.23 196.38 177.23
Energy [kWh] 3022.12 2968.44 3029.3 2971.8

Table 8   Electricity bill for each 
case

Simulation case Capacity 
charges 
[KRW]

Energy 
charges 
[KRW]

Electricity bill (capacity 
charges + energy charges) 
[KRW]

Electricity bill difference 
(based on case 0) [KRW]

Case 0 49,730 212,260 261,990 0
Case II-1 45,115 204,410 249,526 − 12,464
Case II-2 47,320 212,296 259,616 − 2,373
Case II-3 42,705 204,485 247,191 − 14,799
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energy charges. Therefore, we proposed a new method that 
minimizes the sum of capacity and energy charges through 
primary and secondary optimizations.

For the operation of air-conditioning and ventilation 
facilities as DR resources, we applied a model, which con-
siders the change in temperature and particulate density, to 
the proposed algorithm. In this analysis, internal and exter-
nal factors, which affect temperature and particulate density, 
were taken into account.

From the simulation study, we found that an electricity 
bill is minimized when operating DR resources and ESS 
cooperatively with constraints. Based on the result, railway 
station operators can maintain the air quality of railway 
stations within the proper range, considering a trade-off 
between the cost of operation and air-quality constraints. 
Compared to operating DR resources or ESS independently, 
the cooperative operation of DR resources and ESS can 

maximize the cost-saving effect. Furthermore, the number 
of ESS charging cycles decreases when using DR resources 
and ESS together, compared to operating ESS alone.
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