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Abstract
This paper addresses the multiobjective optimization of a brake end beam of a bogie frame with consideration of three 
elements: the stress, fatigue, and weight. A finite-element analysis (FEA) is performed to obtain the stress distribution of 
the component, and the stress-life method and fatigue notch factor are used for fatigue-life assessment based on the FEA 
results. Subsequently, the multiobjective optimization problem in the form of mathematical functions, which considers 
three objectives, is handled using the design of experiments, approximation technique, analysis of variance, multiobjective 
algorithm, and Pareto-optimal solution. Finally, the FEA is validated according to the optimal result to verify the accuracy 
of the optimization. The results of this study indicate that the proposed approach is very available and has potential for the 
optimal design of the components of the bogie frame and/or the bogie itself.

Keywords Fatigue optimization · Bogie frame · Notch effect · Chebyshev polynomial model · Goal programming

1 Introduction

A bogie is a basic assembly that is needed for railway car-
riages/cars and locomotives. It serves many purposes, e.g., 
providing support of the rail vehicle body, providing stability 
on both straight and curved tracks, and ensuring ride comfort 
by absorbing vibration [1]. As shown in Fig. 1, a typical 
bogie includes several key components: the bogie frame, 
the suspension system to absorb shocks between the bogie 
frame and the rail vehicle body, two wheelsets composed 
of two axles with bearings and a wheel at each end, an axle 
box suspension to absorb shocks between the axle bearings 
and the bogie frame, brake equipment, and traction motors.

As the framework, the bogie frame significantly affects 
the vehicle safety, running performance, and ride quality. 

It is usually designed and manufactured to serve for a long 
time; thus, sufficient static strength and fatigue life must be 
ensured, as well as sufficient static strength under static and 
dynamic loading conditions. In traditional design, they can 
only be tested after the bogie frame is built as a real physical 
hardware; the design and test will not stop until the bogie 
frame satisfies all the engineering requirements. Currently, 
with the demand for shorter product cycles and the develop-
ment of numerical methods and computer technology, the 
finite-element method (FEM) has been widely used in the 
design of bogie frames, particularly the estimation of the 
stress and fatigue life.

2  Related Works

Over the past decades, many studies have been performed 
on the stress and fatigue analysis in the design of bogies and 
relative welded products. In 1998, Dietz et al. [2] presented a 
new approach for predicting the fatigue lifetime of the bogie 
of a freight locomotive. It is based on the combination of fre-
quency- and time-domain calculations and is implemented 
together with a computer-aided design, an FEM, and a multi-
body system program. Oyan [3] conducted a finite-element 
analysis (FEA) of the bogie frame in Taipei rapid transit 
systems to confirm the technical strength requirements for 
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static and dynamic loadings. The von Mises stresses were 
adopted as equivalent stresses in the static strength calcula-
tion, and the principal stresses were adopted in the fatigue-
strength evaluation. In 2000, Ferguson [4] analyzed the 
bogie using FEMs to cover the lower-frequency range. The 
wagon has been analyzed using a statistical energy analysis 
approach. In 2007, the structural safety of a tilting bolster 
was investigated via experiments and FEAs by Kim et al. [5]. 
The structural safety of the bolster frame was evaluated via 
a static test under static loads, and the fatigue strength was 
assessed using a Goodman diagram. Baek et al. [6] predicted 
the fatigue life of an end beam in a freight car bogie by using 
the rainflow cycle counting method. The fatigue life calcu-
lated via the rainflow cycle counting method, the P–S–N 
curve, and the modified Miner’s rule agreed well with the 
actual fatigue life. Two- and three-dimensional finite-ele-
ment simulations of the T-type fillet weld frequently used 
in the heavy vehicle machine industry were performed by 
Barsoum and Lundback [7]. The residual stress predicted 
via FEA agrees well with measurements and hence is suit-
able for residual stress predictions and for incorporation in 
further fatigue crack growth analysis. Kim and Yoon [8, 
9] investigated the static behaviors and fatigue strength of 
a glass fiber-reinforced plastic (GFRP) composite bogie 
frame for urban subway trains under critical load condi-
tions. The stress and strain distribution for the whole bogie 
frame was evaluated through FEA and compared with the 
experimental results. The fatigue strength of the bogie frame 
was evaluated using a Goodman diagram according to JIS 
E4207. Various fatigue assessment methods were applied 
to the vertical main loading of a bogie frame for a light rail 
vehicle by Kassner [10]. Comparative stress analyses for 
selected stress points indicated the potential and advantages 
of fatigue assessment with the real loading assumptions and 

with different evaluation methods. A fatigue-strength analy-
sis of welded joints in closed steel sections in rail vehicles 
was performed by Esdert et al. [11]. The applicability of the 
notch stress concept to the fatigue design of typical, line 
welded, closed section steel parts (which are used in railway 
vehicle construction) was analyzed and improved.

Fatigue optimization began in the early 1970s [12] 
and was extensively applied to railway structures. Park 
[13] presented a paper addressing the optimum design of 
the tilting bogie frame with consideration of the fatigue 
strength and weight. An FEA was performed to calculate 
the stress distribution and fatigue strength of the bogie 
frame. An artificial neural network was used to approxi-
mate the function, and a genetic algorithm (GA) was 
used for optimization. Wang et al. [14] used the stochas-
tic response surface method to predict the relationship 
between the fatigue life and the load capacity coefficient 
in the standard Gaussian space. Mrzyglob and Zielinski 
[15, 16] conducted research on parametric structural opti-
mization with respect to the multiaxial high-cycle fatigue 
criterion. The work focused on three principle areas: the 
fatigue of the material, parametric optimization of the 
structures, and application of the FEM. In the computa-
tional examples, the proposed optimization methodology 
allowed the mass of the studied structure to be signifi-
cantly reduced while its durability was maintained at an 
established level. Similarly, Song et al. [17] optimized 
a control arm in an automotive suspension with consid-
eration of the static strength and fatigue life by using the 
metamodel method. Two metamodels were used for the 
approximation of the objective functions. Bosnjak et al. 
[18] performed failure analysis and redesign of the bucket 
wheel excavator two-wheel bogie. The cause of the fail-
ure was first discussed, and then the two-wheel bogie was 
redesigned to satisfy the strength criterion.

Despite the foregoing significant research, the bogie 
frame design remains a complex and multidisciplinary task 
(particularly with the high demand for lightweight struc-
tures for saving energy) where the structural factors, fatigue, 
weight, and many other aspects must be taken into account 
simultaneously, leading to a very challenging problem for 
designers. For instance, numerous different calculations are 
necessary for the strength assessment, which are compu-
tationally expensive. The loading condition on the bogie 
frame is random and complex to derive; although there are 
international standards, many assumptions must be made. 
The stress, fatigue, weight, and other factors cannot be 
expressed as an analytical function in terms of the design 
variables, making the optimization impracticable. Addition-
ally, designers cannot identify a single solution that simulta-
neously optimizes two or more conflicting objectives, such 
as maximizing the fatigue life and minimizing the weight of 
the bogie frame.

Fig. 1  Structure of a typical bogie
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To resolve all the difficulties, the FEA and multiobjective 
optimization technique, including the Chebyshev orthogonal 
polynomial model and the multiobjective optimization algo-
rithm, should be utilized for the optimal design of the bogie 
frame satisfying many imposed requirements. In this study, 
multiobjective optimization considering the static strength, 
fatigue strength, and weight reduction for the brake end beam 
in the bogie frame design is examined. FEAs of the end beam 
and bogie frame are performed to derive the static strength and 
distribution, and the notch stress is used for fatigue assessment. 
The optimization problem has three objectives: maximizing 
the fatigue life and minimizing the maximum stress and weight 
of an end beam in the bogie frame. Specially, the Chebyshev 
orthogonal polynomial model is used to construct response 
surface approximations for the stress, fatigue life, and weight 
of the bogie frames with complex geometries and/or loading 
conditions. Compromise decision support problem formula-
tion is utilized for the multiobjective optimization. After the 
optimization, a stress and fatigue analysis is performed to 
verify the optimal design.

3  Method of Fatigue Analysis

3.1  Material Properties

The bogie frame comprises several parts, such as end beams, 
side beams, and cross beams, which are made of two types of 
materials. The brake end beams considered in this study are 
made of SS400, and the other parts (including the cross beams 
and side beams) are made of SM490A, which have a higher 
strength than SS400. For the fatigue data, extensive testing of 
10-mm-thick flat specimens of SS400 was conducted under 
alternating bending stresses (R = 1) in a previous study [6], 
and the results were used in the present study even though 
the geometry of the brake end beam was significantly differ-
ent from that of the specimens. Figure 2 plots the fatigue-life 
curves of SS400 with 5%, 50%, and 95% probability of failure. 
To account for uncertainties, the average fatigue-life curve, 
i.e., that with 50% probability of failure, was used; thus, the 
fatigue life Nf can be modeled as a function of the stress level:

where Sf  represents the failure stress, and the mean of the 
fatigue limit obtained via the JSME statistical S–N testing 
method is 52.8 MPa.

3.2  Fatigue‑Life Calculation

Many methods have been used to assess the fatigue lives of 
structures over the years. However, most of the fatigue cal-
culations in engineering are based on the three-core method, 
i.e., the stress-life, strain-life, and crack-propagation methods. 

(1)logNf = 6.728 − 0.094Sf∕2 ± 0.405

The first two methods do not model the crack growth process, 
and the third one deals with crack propagation and relies on 
the initial crack. In this study, the first method, i.e., the stress-
life method, is used, because the stress at any location within 
a model can be determined easily via FEA. Furthermore, 
because the virtual bogie frame contains notches in one form 
or another, the treatment of the fatigue notch must be taken 
into account for estimating the effect of the weld geometry.

Almost all machine components and structures contain 
stress concentrators, which can cause cracks to form. The 
theoretical stress concentration depends on the geometry and 
the mode of loading (axial, in-plane bending, etc.) and relates 
through a stress concentration factor defined in Eq. (2).

Here, Smax represents the local maximum stress, and S 
represents the nominal or average stress. This is a useful 
way to describe the stress concentration. However, when 
a notch exists, the stress field becomes a singularity, and 
the stress concentration factor, Kt, is no longer an effective 
way of describing the feature. Instead, the fatigue notch fac-
tor (also called the fatigue stress concentration factor) Kf is 
introduced to describe the intensity of the stress field around 
the singularity.

Here, q is the notch sensitivity factor containing the mate-
rial parameter with a unit of length C and notch root radius r.

The value of q varies from 0 (corresponding to no influ-
ence of Kt) to 1 (corresponding to a full contribution). For 

(2)Kt =
Smax

S

(3)Kf = q
(
Kt − 1

)
+ 1

(4)q =
1

1 + C∕r

Fig. 2  P–S–N curve for SS400 alloys
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ferrous-based wrought metals, the constant C is given as 
follows:

where Su represents the tensile yield stress in units of ksi, 
and BHN represents the Brinell hardness number of the 
material. Hence, the real stress value, Sf, including the notch 
influence can be corrected as follows:

where S′
f
 represents the stress values measured in experi-

ments or obtained from the FEA.

3.3  FEA

Figure 3 shows the real bogie frame, including the end beam 
and the failure location of the end beam. The welded bogie 
frame of the freight locomotive is approximately 3.5 m long 
and 2.4 m wide, and its mass is approximately 2200 kg. The 
fatigue fractures of the end beam occur at the end of the 
welding zone between the beam with a C-shaped end and 
the gusset plate.

As mentioned previously, the objective of this study was 
to develop a multiobjective optimization method considering 
the stress, fatigue, and weight for the brake end beam in the 
bogie frame. To obtain high-fidelity results, half of the entire 
bogie frame including the brake end beam and other main 
parts were modeled for the FEA, as shown in Fig. 4. The 
model was first constructed in CATIA and then imported 
into ANSYS for the generation of the finite-element model 
and the next simulation. The model was freely meshed with 
10-node tetrahedral elements (SOLID88, which is generally 
regarded as a good element type for generating high-quality 
meshes for complex structures). The mesh sizes were com-
pared to avoid mesh sensitivity and determine the appro-
priate element size with appropriate accuracy. Because the 
braking system was ignored in the model, 2-node beam ele-
ments (BEAM4) and coupling elements were used to model 
the load applied to the bracket hinge of the end beam, which 
was simpler and faster than the nonlinear contact analysis 
between two bodies. The corresponding finite-element 
model (ANSYS) consists of 275,027 finite elements and 
529,136 nodes.

As shown in Fig. 4, the gravitational acceleration was 
considered, and the load condition was in accordance with 
JIS E4207 (1984) [19]. The main loads acting on the bogie 
frame, i.e., the vertical load of 17,000 kg (Force9) and break-
ing load of 2875 kg (Force10), were applied to center pivot 
and end beam, respectively. Additionally, special boundary 
conditions were considered, as follows:

(5)C ≈

(
300

Su(ksi)

)1.8

inch ≈
(

300

0.5BHN

)1.8

inch,

(6)Sf = S�
f
× Kf ,

• The side frame suspension displacements were fixed in 
the three axial directions.

• The braking load arose from the friction between the 
wheel tread and the brake pad.

• The longitudinal load was 30% of the static vertical load.
• The transverse load was 40% of the static vertical load.

Figure 5 illustrates the von-Mises stress distribution on 
the bogie frame under the typical braking load condition, the 

Fig. 3  Bogie frame of the freight train and its fracture at the end 
beam

Fig. 4  Bogie frame model with coupled effects of the load and 
boundary conditions
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center pivot experienced the highest stress (approximately 
243.5 MPa), and there was no stress concentration in the 
connection of the bogie frame with end beam. As shown 
in Fig. 6, the maximum von-Mises stress for the end beam 
(75.4 MPa) occurred at the corner of the welded gusset plate, 
where accidents due to fatigue failure occurred. A fatigue 
crack was initiated again in this region after the reinforced 
end beam was installed at the bogie frame.

The high level of stress in the end beam area was the 
main reason for crack initiation. The fatigue loads (combi-
nation of the self-weight and braking load) caused the suc-
cessive propagation of the crack to the critical size, leading 
to rupture in the welded gusset plate. A significantly lower 
value of stress in the region of the side frame is observed in 
Fig. 5. Except for the center pivot, the center frame was not 
as highly loaded as the end beam. The maximum von-Mises 
stress in the region of the center frame was only 243.5 MPa, 
whereas in the side frame, the stresses were in the range of 
112.2 MPa.

4  Fatigue Optimization Method

4.1  Chebyshev Polynomials Approximation Model

Clearly, the stress and fatigue, as well as the weight of the 
brake end beam, are nonlinear and cannot be formulated 
analytically, owing to the complexity of the structures. 
This is the main challenge for the subsequent optimization. 
The Chebyshev polynomial response model is effective for 
formulating the relationship between the aforementioned 
properties and the design variables.

The Chebyshev polynomial response model, 
which is named after Pafnuty Chebyshev, features 
a  sequence of orthogonal polynomials  that are related 
to de Moivre’s formula and can be defined recursively. 
Mathematically, the exact functional relationship can be 
approximated as follows:

where pn(x) represents the basis functions that are dependent 
on the design variables (x).

Here, x represents the average value of the design vari-
able, a represents the level number, and h is the coefficient 
of the level interval. The order should be less than the 
level number, and the maximum order of the design vari-
able is a  − 1. The coefficients of regression b0 and bi are 
expressed by Eqs. (8) and (9), respectively.

(7)

y = b0 + b1
(
x − x

)
+ b2

[(
x − x

)2
−

a2 − 1

12
h

]

+ b3

[(
x − x

)3
−

3a2 − 7

20

(
x − x

)
h2
]

+ bnpn(x),

p0(x) = 1, n = 0

p1(x) = x − x, n = 1

p2(x) =
(
x − x

)2
−

(
a2 − 1

)
12

h2, n = 2

pn(x) = pn−1(x)p1(x) −

[
(n − 1)2

{
a2 − (n − 1)2

}

4
{
4(n − 1)2 − 1

}
]

h2pn−2(x), n = 3, 4, 5,⋯

(8)b0 = T∕lm = y

(9)bi =

a∑
k=1

pi
(
xk
)
yk∕

a∑
k=1

p2
i

(
xk
)
, k = 1, 2,… , a

Fig. 5  Stress distribution of the bogie frame

Fig. 6  Stress distribution of the end beam with a braking load
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where xk in pi(xk) represents the level number for each x, 
and yk represents the analysis average of each level. The 
advantage of the orthogonal polynomial is that it allows 
the analysis of variance (ANOVA). The use of the ANOVA 
with the orthogonal polynomial allows the total variance of 
the response to be divided into the 1st-, 2nd-, and n–1th-
order components. Thus, it is possible to judge the appropri-
ate maximum order by estimating the co-relationship and 
sensitivity.

4.2  Design of Experiments (DOE)

For formulating the objective functions, sample points are 
needed to explore the design space. A typical method for 
generating sample points is DOE. Among the many differ-
ent DOEs, D-optimal design is considered to be effective 
for addressing the limitations of traditional designs, as it is 
expensive or infeasible to measure the combinations of fac-
tor levels for nonlinear models [20–22]. D-optimal designs 
do not require orthogonal design matrices. They are gener-
ated by an iterative search algorithm and seek to minimize the 
covariance of the parameter estimates for a specified model. 
This is equivalent to maximizing the determinant D =|XTX|, 
where X represents the design matrix of model terms (the col-
umns) evaluated at specific treatments in the design space (the 
rows).

4.3  ANVOA

After the approximate models are obtained, it is essential to 
examine the fitted or approximate model if the model provides 
an adequate approximation of the true response surface. In this 
case, a classical ANVOA of the regression is used to examine 
the accuracy of the fitted models. Table 1 presents detailed 
information such as the sum of squares of the model, DOF, 
mean square, and statistical hypothesis (F-statistics) [23].

SSR, SSE, SST, and  R2 are defined as follows:

(10)SSR =

N∑
i=1

(Ŷi − Yi)
2

(11)SSE =

N∑
i=1

(Ŷi − Yi)
2

where Y are the mean of, respectively.

4.4  Optimization Algorithm

The objective of this study was to optimize the end beam 
structure for improving its safety and weight in terms of 
different criteria simultaneously. Numerous multiobjective 
optimization methods and algorithms have been proposed. 
Among them, typical ones include multiobjective GAs, the 
weighted-sum method, the weighted min–max method, 
the lexicographic method, the bounded objective function 
method, and the goal programming (GP) method [24]. Each 
of these multiobjective optimization methods has advan-
tages and disadvantages. For example, multiobjective GAs 
explore all the objectives independently and simultaneously 
to search for the so-called Pareto-optimal set, but these algo-
rithms are expensive and take too much computation time. 
The weighted-sum method formulates different objective 
functions into a single objective function with alterable 
weight coefficients, and then a standard single-objective 
optimization routine is used to solve the consequent formula-
tion. This method is simple, but its limitation is apparent. It 
is impossible to know the correct weights needed to generate 
points evenly spread on the Pareto curve without knowing 
the shape of the Pareto curve [25]. Hence, deciding which 
one is most appropriate or most effective can be difficult and/
or unpractical. It depends on the nature of the user’s prefer-
ences and what type of solution might be acceptable [26]. 
In this study, the GP method was adopted for multiobjective 
optimization.

GP [27, 28] is a branch of multiobjective optimization, 
which in turn is a branch of multi-criteria decision analysis 
(also known as multiple-criteria decision making). GP 
allows several objectives to be considered simultaneously in 
a problem for choosing the most satisfactory solution within 
a set of feasible solutions. More precisely, the GP finds a 
solution that minimizes the deviations between the 

(12)SST =

N∑
i=1

(Yi − Yi)
2

(13)R2 =
SSR

SST
=

∑N

i=1
(Ŷi − Yi)

2

∑N

i=1
(Yi − Yi)

2
,

Table 1  ANOVA results Source of variation Sum of squares 
(SS)

DOF Mean square (MS) F-ratio (F)

Due to regression SSR p − 1 SSR/(p − 1) SSR (p – 1)/SSE(N–p)
Residual SSE N − p SSE/(N − p)
Total SST N − 1
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achievement level of the objectives and the goals set for 
them in the order arranged according to the function’s 
importance. With GP, goals ( f ∗

j
 ) are specified for each 

objective function fj(�) . Then, the total deviation 
∑k

j=1

���dj
��� 

from the goals is minimized, where dj represents the devia-
tion from the goal bj defined by the decision maker. dj is split 
into positive and negative parts such that dj = d+

j
− d−

j
 with 

d+
j
≥ 0 , d−

j
≥ 0 , and d+

j
d−
j
= 0 . Consequently, |||dj

||| = d+
j
d−
j
 , 

where d+
j
 and d−

j
 represent underachievement and overa-

chievement, respectively, and are defined as follows:

Therefore, the optimization problem is modified as 
follows:

Because the goal is predetermined before optimization 
in this study, it is easy to assess whether the predetermined 
goal has been reached. This is the main reason why GP was 
used rather than the multiobjective GA or other methods. 
The whole process of the fatigue optimization of the end 
beam in the bogie frame is illustrated in Fig. 7.

(14)

d+
j
= max

[
0, fj(�) − f ∗

j

]

d−
j
= max

[
0, f ∗

j
− fj(�)

] or
d+
j
=

1

2

[|||f ∗j − fj(�)
||| + fj(�) − f ∗

j

]

d−
j
=

1

2

[|||f ∗j − fj(�)
||| + f ∗

j
− fj(�)

]

(15)

Min ∶
k∑

j=1

�
d+
j
+ d−

j

�

s.t. fj(�) + d+
j
+ d−

j
= bj, d+

j
, d−

j
≥ 0, d+

j
d−
j
= 0, j = 1… k

5  Multiobjective Optimization Results

5.1  Design Objectives and Variables

Five sizes ranging from x1 to x5 were taken as the design 
variables. The initial values and ranges/levels of the five 
design variables are presented in Table 2 and Fig. 8. The 
ranges of the design variables were defined by the equidis-
tance relative to their baseline values.

5.2  Optimization Formulation

For this multiobjective optimization, maximizing the fatigue 
life and minimizing the maximum stress, as well as mini-
mizing the weight of the end beam, are considered as the 
design objectives. Thus, the optimization problem can be 
formulated as follows:

Among these three design objectives, the objective having 
the highest priority is (1) Increasing the fatigue life, followed 
by (2) Reducing the maximum stress and (3) Reducing the 

(16)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Find ∶ X
�
x1,… , x5

�
⎧⎪⎨⎪⎩

Max ∶ fNf

Min ∶ fstress
Min ∶ fweight

s.t. ∶ xiL ≤ xi ≤ xiU i = 1,… , 5

.

Fig. 7  Flowchart of the fatigue optimization

Table 2  Optimal configuration of the design parameters with changes 
in the baseline values

Design variations Initial value Range

Lower Upper

Channel thickness ( x1) 9 mm 7 mm 11 mm
Channel thickness ( x2) 9 mm 7 mm 11 mm
Channel thickness ( x3) 7.5 mm 5 mm 10 mm
Gusset plate length ( x4) 250 mm 100 mm 400 mm
Gusset plate position ( x5) 710 mm 680 mm 740 mm

Fig. 8  Design variables of the end beam



1716 Journal of Electrical Engineering & Technology (2021) 16:1709–1719

1 3

frame weight, according to priority order of the objectives. 
The required levels for the design objectives are set at the 
beginning of the design and are as follows:

In this procedure, after the satisfactory level is set for 
each objective, the objective having the highest priority is 
optimized first, followed by the objective having the second 
priority. Then, the procedure is repeated for every objective 
in order of its priority. The optimal solution in each design 
stage is obtained using a feasible direction method.

(17)

⎧
⎪⎨⎪⎩

f ∗
Nf

= 10.06 cycle

f ∗
stress

= 52.0 MPa

f ∗
weight

= 35.0 Kg

.

5.3  DOE

A total of 31 sample points were generated using D-optimal 
design, which were considered adequate for evaluating 20 
coefficients of the Chebyshev polynomial model with five 
design variables. Table 3 presents the 31 runs and the cor-
responding results at the sampling points.

5.4  Chebyshev Polynomials and ANVOA

After the experimental results in Table 3 were obtained, the 
approximate models of the objective functions were con-
structed in the linear function with the interaction of each 
other, as follows:

Table 3  Layout and data for 
D-optimal design

No x1 x2 x3 x4 x5 Stress (MPa) Weight (kg)

1 1 3 2 3 1 74.50 35.75
2 1 1 3 3 3 75.29 36.50
3 3 2 3 1 3 62.75 37.81
4 3 1 3 1 1 64.18 36.50
5 2 3 2 2 2 74.34 35.85
6 1 1 1 2 1 128.67 28.16
7 1 3 3 1 3 64.65 36.50
8 1 1 2 1 1 103.25 30.36
9 3 3 3 3 3 53.85 41.69
10 3 2 2 2 2 77.04 35.85
11 1 1 1 2 1 123.43 28.16
12 1 3 1 3 3 65.13 32.41
13 3 1 1 3 3 89.11 32.41
14 3 3 1 1 1 74.18 32.78
15 1 3 1 1 1 119.30 29.81
16 3 3 3 1 1 54.64 39.13
17 1 1 1 1 3 125.49 26.84
18 1 1 2 1 1 94.99 30.54
19 3 3 3 3 1 50.20 41.69
20 1 2 3 3 1 71.48 37.80
21 1 1 3 1 2 100.55 33.87
22 1 1 1 3 2 88.48 29.47
23 3 3 1 1 3 69.74 32.78
24 3 1 3 3 1 52.42 39.10
25 2 3 2 2 2 68.87 39.11
26 3 1 1 3 1 77.36 32.41
27 3 3 1 3 1 87.05 35.35
28 1 3 3 1 1 79.49 36.50
29 3 2 2 2 2 66.56 35.85
30 1 3 2 3 1 67.67 35.75
31 3 1 1 1 1 83.08 29.81
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Equations (6) was used to determine the fatigue life of the 
end beam. The fatigue notch factor Kf of the end beam was 
calculated using Eqs. (1)–(3), and its value was 1.3375. The 
fatigue life of the end beam was predicted by using the stress 
corrected using the fatigue notch factor Kf and P–S–N curve 
in Fig. 2. Equation (20) gives the ANVOA and approxima-
tion model for the fatigue life of the end beam.

Tables 4, 5, 6 present the ANOVA results for the fitted 
models. The total errors between the surrogate model and 
the computer analysis, i.e.,  R2 for fNf

, fstress , and fweight , were 
3.04%, 2.41%, and 0.35%, respectively, Hence, the accura-
cies of the approximation models were considered to be 
adequate for the present study.

5.5  Multiobjective Optimization Using GP

With GP, the entire optimization process can be dived into 
three steps for the three design variables. In each step, one 
objective is selected as the objective/cost function, and other 
two are used as constraints. The process is described as fol-
lows. The multiobjective optimization problem is turned 
into a constrained single-objective problem in this step, 
because maximizing the fatigue life is the first preference 
in this study.

Step 1:

(18)

fstress = −3080 − 86.41x1 + 93.93x2 − 68.97x3 + 2.7427 + 0.0808x4

− 0.001008 − 7.468x5 + 0.005314 + 0.4258x1x2

+ 0.024954x1x4 + 0.09918x1x5 − 0.4824x1x3 + 0.015682x2x4

− 0.14618x2x5 + 0.03680x3x5

(19)

fweight = −59 + 12.022x1 − 0.62919 + 0.9851x2 − 0.01607

+ 1.4618x3 + 0.00885 + 0.004897x4 + 0.000007 + 0.0539x5

− 0.000038

(20)

fNf
= −1384963 + 797718x1 − 1022452x2 + 461933x3 − 15263

− 854x4 + 7.098 + 768x5 + 612345x1x3 − 153.77x1x4

− 1116.9x1x5 + 7201x2x3 − 145.96x2x4 + 1504.3x2x5 + 76.14x3x4

− 506.1x3x5

Here, f ∗
fatigue

 < f �
fatigue

 , that is, the maximum value of the 
objective function ffatigue does not satisfy the required hard 

objective level f �
fatigue

 , and the designers can relax the set 
values of the required soft objective levels f �

stress
 and fweight 

and return the process to step (1). If f ∗
fatigue

 > f �
fatigue

 , the devi-
ation Δ1 is defined as the allowable limit for the relaxation 
range of ffatigue . Because two relaxations for ffatigue are 
required after the maximization of ffatigue , the deviation Δ1 
can be estimated using the following equation.

The minimum value f ∗
stress

 of the objective function fstress 
corresponding to the hard objective having the second pri-
ority is obtained by solving the following problem.

Step 2:

(21)

⎧
⎪⎪⎨⎪⎪⎩

Max. fNf

S.t.

⎧
⎪⎨⎪⎩

fstress ≤ 52

fweight ≤ 35

xiL ≤ xi ≤ xiU i = 1… 5

(22)Δ1 =
|||||
f �
fatigue

− f ∗
fatigue

2

|||||

(23)

⎧⎪⎪⎨⎪⎪⎩

Min. fstress

S.t.

⎧⎪⎨⎪⎩

fNf
≤ 1, 194, 300 + 97, 150.40

fweight ≤ 35

xiL ≤ xi ≤ xiU i=1…5

Table 4  ANOVA results for the model fitted to fNf

Model SS DOF MS F P

Regression 2.58649E + 12 1 2.58649E + 12 923.41 0
Residual 81,229,620,954 29 2,801,021,412
Total 2.66772E + 12 30

Table 5  ANOVA results for the model fitted to fstress

Model SS DOF MS F P

Regression 24,472 1 24,472 1176.15 0
Residual 603 29 21
Total 25,075 30

Table 6  ANOVA results for the model fitted to fweight

Model SS DOF MS F P

Regression 467.91 1 467.91 1992.75 0
Residual 6.81 29 0.23
Total 474.72 30
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where f ∗
stress

 > f �
stress

 , that is, the minimum value of the objec-
tive function, fstress , does not satisfy the required hard objec-
tive level f �

stress
 . The designers can relax the set values of the 

required soft objective levels f �
fatigue

 and f �
weight

 and try again. 
If f ∗

stress
 < f �

stress
 , the deviation Δ2 is defined as the allowable 

limit for the relaxation range of fstress . Because two relaxa-
tions for fstress are required after the maximization of fstress , 
the deviation Δ2 can be estimated using the following 
equation.

Similarly, minimization of the frame weight should be 
performed successively by solving the following problem.

Step 3:

(24)Δ1 =
|||||
f �
stress

− f ∗
stress

2

|||||

(25)

⎧⎪⎪⎨⎪⎪⎩

Min. fweight

S.t.

⎧⎪⎨⎪⎩

fNf
≤ 1, 194, 300 + 97, 150.40

fstress ≤ 56.84 + 2.42

xiL ≤ xi ≤ xiU i=1…5

Table 7 presents the final updated values obtained in the 
foregoing steps for each objective function. Clearly, all the 
required objective levels are satisfied.

Figure  9 shows the normalized objective functions 
obtained during three optimization cycles. The normal-
ized objective function f is defined as follows:

where f ∗ represents the optimum value at each stage, and f � 
represents the required objective-function value. If the nor-
malized objective function exceeds 1, the objective function 
satisfies the constraints. At the initial design stage, fatigue 
life and stress do not exist in a feasible design space, except 
for weight. This is because the relative importance between 
objective functions is not estimated quantitatively, and there 
is significant reliance on the intuition of the designer. The 
final optimization results indicate that all the objective func-
tions satisfy all the objective levels.

In Table 7, the objectives verified by FEA are com-
pared with those predicted by the fitted model. The esti-
mated optimal solutions are also verified by the FEA solu-
tions within the tolerance error. The difference between 
the verified and the estimated objective functions is due 
to the error from the structural analysis and approxima-
tion. Clearly, the bogie frame optimized using priority 
ranking design optimization has better performance than 
that obtained using the primitive design model.

6  Conclusions

Fatigue optimization was examined for a brake end beam of 
the bogie frame, which is widely used in freight trains. FEAs 
were performed instead of real experiments, which are typi-
cally expensive and unprintable. The fatigue life was calcu-
lated using the stress-life curve method, with consideration 
of the notch influence. For the optimization, the fatigue life, 
stress, and weight of the end beam were taken into account 
simultaneously (as a multiobjective optimization problem). 
The Chebyshev polynomial response surface model was 
adopted for approximating the response functions. The GP 
method was used to search for the Pareto-optimal solution. 
The results indicated that the fatigue life was significantly 
increased compared with the initial design, while the stress 
and weight were both reduced; i.e., compared with the initial 
structure, the optimized end beam structure had better safety 
performance and was lighter.

The proposed approach is suitable and effective for the 
fatigue optimization problem, which is usually time-con-
suming owing to the difficult fatigue analysis and three 

(26)f =

[
(f � − f ∗)

f �
+ 1

]

Table 7  Comparison between optimum and reanalysis results

Solution Fatigue life (cycle) Stress (MPa) Weight (kg)

Initial 603,095 75.4 28.4
Optimum 1,277,000 39.4 33.4
Reanalysis 1,231,000 42.1 34
Error (%) 3.5 4.9 1.8
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different criteria. Our method can be used for the optimal 
design of bogie frames under complex working conditions.
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