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Abstract
This paper presents the design and validation of a new adaptive variable gain reaching law, integrated with sliding mode 
control (SMC), to control perturbed and unperturbed nonlinear systems. The novelty behind this law stems from its capa-
bility to overcome the main limitations involved with SMC. In contrast to existing reaching laws, system’s performance 
can be substantially enhanced via this law, with significant reduction in the chattering phenomenon, along ensuring rapid 
convergence time of system’s trajectories towards equilibrium. The designed law not only integrates the features of both the 
exponential reaching law (ERL) and the power rate reaching law (PRL), but also overcomes their limitations. Simulation 
and comparison studies against ERL and PRL were carried out to validate the effectiveness and advantages of the proposed 
reaching law scheme (Proposed-RL). Furthermore, controlled experimental investigations were conducted using an exoskel-
eton robot (ETS-MARSE) to validate the scheme in real-time.

Keywords  Reaching law · Sliding mode control · Chattering · Perturbed and unperturbed system · Exoskeleton robot

1  Introduction

Robust control usually addresses the complex system 
analysis and control design for imperfectly known process 
models. It refers to the control of unknown systems with 
unknown dynamics subject to unknown perturbations. 
Major objectives of robust control are to ensure the over-
all stability and satisfactory system’s performance in the 
presence of dynamic disturbances. However, a critical issue 
that usually emerges when adopting robust control schemes 
is the involved uncertainties, raising the question of how 
to overcome those. Sliding mode control (SMC) is one of 
the widely common employed robust strategies in robotics 
systems [11, 14, 17, 20] due to its prominent features. One 
significant, perhaps the leading, feature of SMC is its com-
plete insensitiveness to parametric uncertainties and external 
disturbances during sliding mode. To achieve this, in SMC, a 
switching surface is chosen so that system’s trajectories can 
begin from anywhere but are constrained to reach a neigh-
borhood of the selected switching function in a reasonable 
finite time. Once on the surface, the dynamic behavior is 
reduced to a stable linear time-invariant system, which in 
turn is insensitive to parametric uncertainties and external 
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disturbances [24]. Consequently, asymptotic convergence 
of the system’s state is then readily accomplished. Despite 
these various advantages of SMC, it still suffers from several 
shortcomings.

One of SMC’s limitations involves the control strategy’s 
gains. SMC’s gains play a dominant role in determining 
system’s trajectories asymptotic convergence time to the 
equilibrium point. Several control approaches have been 
proposed to solve this issue, with Terminal Sliding Mode 
Control (TSMC) [7] being one of those. TSMC uses a non-
linear fractional-order of switching function to guarantee 
finite-time convergence, permitting the state trajectories 
to converge to an equilibrium point faster. Lately, attempts 
were successful to enhance the performance of TSMC, via 
strategies such as the fast TSMC [21] and the non-singular 
TSMC [23].

Another limitation involved with SMC is that the control 
input holds the switching function signum [ sign(.) ]. That 
is, in real-time, the switching function produces high fre-
quencies, which induce undesirable chattering in the control 
input. As a result, system’s performance degrades and loses 
its precision, as well as the possibility of other problems 
appearing in the plant (motors). As a remedy, the switching 
function [ sign(.) ] has been replaced by continuous approxi-
mations, such as a saturation function [17]. However, this 
solution comes with the cost of SMC losing its robustness, 
even under small disturbances and parametric uncertainties 
[17]. Still, many control approaches have been developed 
to reduce the chattering problem and enhance the time con-
vergence of the system’s state trajectories. Such approaches 
included the second-order sliding mode control (SOSMC) 
[18, 22], along with its different types such as the super 
twisting control [5, 10] and the modified super twisting 
algorithm [4, 8]. Nonetheless, the second derivative of the 
system’s dynamics might result with plant instability, a risk 
that the parametric uncertainties and external disturbances 
further expand.

On the other hand, conventional reaching laws are numer-
ous in literature [9]. Those include the constant reaching law, 
the constant plus proportional reaching law, and the power 
rate reaching law. Researchers often integrate the constant 
reaching law (CRL) in SMC due to the ability of CRL to 
force system’s trajectories to converge to the desired equilib-
rium state in a reasonable convergence time. However, one 
major concern is the emergence of high undesirable chat-
tering as a result of choosing high control gain values, caus-
ing the time convergence to increase as well. In this case, 
the attenuation issue of the undesirable chattering becomes 
more attractive than the convergence speed option. In efforts 
of overcoming the aforementioned restriction, the constant 
plus proportional reaching law (CPPRL) was formulated 
as an improvement over CRL, which relatively succeeded 
in reducing the chattering problem [9]. Yet, the power rate 

reaching law (PRL) was one of the compelling suggestions 
to deal with convergence rate speed which, based on its sur-
face, guarantees a chattering free process along with fast 
convergence speed. However, there is still the possibility 
of a reduction in its robustness nearby the selected surface. 
Lastly, the Exponential reaching law (ERL) [6] is considered 
one of the imperative solutions that were proposed to over-
come the limitation involved with CRL. Essentially, the ERL 
was able to reduce the undesirable chattering, for the same 
CRL convergence speed, via using a simple exponential tun-
ing. Thus, effectively achieving excellent performance with 
different robotics systems [12, 13, 15, 25]. Nonetheless, one 
of the shortcomings involved with ERL is its incapability to 
improve the convergence speed without inevitably stimulat-
ing the chattering phenomenon.

In response to the different limitations involved with the 
aforementioned reaching laws, the motivation behind this 
paper was to improve system trajectories’ convergence time 
without inducing any chattering reduction. Therefore, the 
aim of this research is to propose a new reaching law to 
address the mentioned problem; primarily, to improve the 
convergence speed of the system trajectories, along with 
enhancing the chattering attenuation process. The proposed 
law benefits from the properties of both ERL and PRL. 
That is, it employs a power rate term to reduce the chat-
tering while utilizing ERL’s characteristic of providing a 
fast reaching time to the origin. In addition, in efforts of 
maintaining system’s robustness, a novel adaptive term 
was also integrated. Thereafter, simulation and comparison 
studies were conducted to investigate the robustness of the 
proposed reaching law (Proposed-RL) as well as potentially 
showing its faster convergence speed compared to PRL and 
ERL. Lastly, Experiments were performed by a real subject 
using an exoskeleton robot [2] to prove the feasibility and 
ease of implementation of the proposed law in real-time 
applications.

This paper is organized as follows: Problem formula-
tion and motivation are described in Sect. 2. Section 3 pre-
sents the proposed reaching law in details. Simulation and 
comparison studies against ERL and PRL are presented in 
Sect. 4. An experimental study using the exoskeleton robot 
is given in Sect. 5. Section 6 concludes the research.

2 � Problem Formulation and Motivation

Although the theory of SMC of non-linear systems is well-
known in literature [19], a brief description highlighting 
its main advantages and shortcomings is still presented in 
this chapter. Fundamentally, such limitations were highly 
prompting to propose the novel, effective, reaching law 
approach detailed in the next section. To start, consider a 
general non-linear second-order dynamic system:
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where f ∈ ℜn and g ∈ ℜn×n are two non-linear functions, 
with g being an invertible matrix. w ∈ ℜn represents the 
unknown bounded uncertainty and disturbance forces. 
The tracking position error, which tends to zero, can be 
defined as: e = x − xd ,where xd ∈ ℜn is the desired trajec-
tory. Selecting a switching function S to track position and 
velocity errors is often one of the first steps in designing 
SMC controllers. Commonly, this sliding surface is chosen 
as follows:

where � ∈ ℜn×n is a diagonal positive definite matrix. It is 
worth mentioning that the value of � plays a crucial role in 
the error tracking convergence rate to zero.

Consider the Lyapunov function: V(S) = 1

2
STS , with its 

time derivative given by:

The criterion for stability is therefore: V̇ < 0 . This requires 
Ṡ < 0 for S > 0 and Ṡ > 0 for S < 0 , which gives rise to 
the commonly known control law switching phenomenon 
around S = 0 . Based on (2) and its derivative, the following 
control input is proposed:

It is noteworthy, from (4), that the control input is highly 
dependant on Ṡ , which in turn determines the rate of S. That 
is, if Ṡ ≪ 0 for S > 0 (with the opposite being also true), 
the system’s forced trajectory converges to S = 0 . Hence, 
commonly referring to Ṡ as the ”reaching” law. When sys-
tem’s trajectory is in the vicinity of S = 0 , with V̇ < 0 , Ṡ < 0 
dictates how close is the system exactly from the sliding 
manifold S = 0 . Consequently, a ”switching” phenomenon 
emerges in order to maintain the condition: SṠ < 0.

That being said, numerous reaching laws that took into 
account the speed of the reaching time have been proposed 
in literature. These reaching laws can be summarized as 
follows [9]:

•	 Constant rate reaching law (CRL) [9]: 

 where K1i > 0 with i = 1ldotsn being a positive constant. 
The reaching law (5) forces the system’s trajectory ( ei, ėi ) 
to converge to the switching surface Si in a reaching time 

given by: Tri =
||Si(0)||
K1i

 , where Si(0) is the initial condition 

of Si . Thus, a higher K1i value is necessary for fast con-
vergence. However, this comes with the cost of a 

(1)ẍ = f (x, ẋ) + g(x, ẋ)u + w(x, ẋ)

(2)S = ė + 𝜆e

(3)V̇ = STṠ

(4)u = g−1[ẍd − 𝜆ė − f − w + Ṡ]

(5)Ṡi = −K1isign(Si)

worsened chattering when the system’s trajectory moves 
in the sliding manifold.

•	 Constant plus proportional rate reaching law (CPPRL)
[9]: 

 where K1i,K2i are positive constants. The CPPRL law 
e n s u r e s  a  c o n v e r g e n c e  r a t e  o f : 

Tr1i =
1

K1i

ln
K2i

||Si(0)|| + K1i

K1i

 . Unlike the CRL, expression 

(6) improves the chattering phenomenon while maintain-
ing a relatively fast convergence rate, which makes it one 
of the most powerful reaching law candidates.

•	 Power rate reaching law (PRL)[9]: 

 where 0 < 𝜎 < 1 . The PRL law (7) is able to provide a 

reaching time of: Tr2i =
||Si(0)||(1−�)
(1 − �)K1i

 . The primary advan-

tage of this law is its capability to adjust the reaching 
time, a parameter that depends on the position of the state 
system relative to the sliding surface. In other words, 
when the system’s trajectory is distant from the surface, 
the PRL increases its reaching speed, with the opposite 
being true. The term ||Si||� guarantees a chattering-free 
process along fast convergence of the desired state. 
Depending on the choice of the power term � , this might 
further lead to a loss in system’s robustness.

Remark 1  The control law defined by (4) is inputted to sys-
tem (1) if it is unperturbed, i.e. for a given known w(x, ẋ) . 
However, in real-time, system (1) will be subject to uncer-
tainties and external disturbances. In such a case, an estima-
tion of w(x, ẋ) will be integrated into control law (4) (see 
Sect. 3.2).

After closely assessing all three reaching laws, they 
have proven to be highly helpful and applicable in design-
ing SMCs. Yet, adopting any of the aforementioned 
reaching laws seems to come with an inevitable trade-off 
between either the convergence rate and chattering reduc-
tion, or the chattering reduction and controller’s robust-
ness. One common behavior between the three is that the 
choice of a large gain value K1i (coefficient of sign(Si) ) is 
necessary to ensure a fast convergence rate to the desired 
surface. Though, this leads to chattering, the damaging 
effect that produces high-frequency dynamics. As a result, 
an adaptive reaching law has been proposed, namely the 
Exponential Reaching law (ERL) [6], as a remedy to the 
drawbacks of choosing a large gain value. The ERL is 
given by:

(6)Ṡi = −K1isign(Si) − K2iSi

(7)Ṡi = −K1i
||Si||𝜎sign(Si)
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where �i , �i and pi are strictly positive constants with 𝜇i < 1 . 
As a consequence of (8), the limitation related to the gain 
value can be easily overcome with the controller dynami-
cally self-adjusting to the variations resulting from the 
switching function Si . This operation permits the gain K1i 
to smoothly vary between K1i and K1i∕�i . Thus, the ERL 
method can ensure a reaching time of [6]:

if �i in (8) abides by the following condition [6]:

Indeed, the ERL focuses primarily on reducing chattering 
using the innovative law defined by (8). However, com-
pletely eliminating this chattering effect remains question-
able, especially when the term K1isign(Si) is conserved, thus 
putting restrictions on improving the chattering. Besides, as 
can be inferred from (9), it is almost impossible to increase 
the convergence speed without causing chattering attenua-
tion. That is, any decrease in the reaching time drives the 
term K1i higher, which again causes the chattering phenom-
enon. It was further noticed that the state of the control sys-
tem does not perfectly overlap with the reference trajectory 
due to the continuous low chattering degree.

As a promising solution in this paper, integrating a power 
rate adjustment technique allowed for a significant enhance-
ment in reducing the chattering, nearly eliminating such a 
phenomenon, with a remarkable improvement in the reach-
ing speed without any direct effect on the chattering. The 
proposed reaching law was formulated such that it would be 
able to benefit from all reaching laws (6), (7) and (8) advan-
tages. That is, the proposed law adopted the advantages of 
PRL and CPPRL, which outweigh the limitation of ERL, as 
well as integrating the feature of ERL, which in turn over-
comes the restriction of both PRL and CPPRL.

3 � Proposed Reaching law

The proposal of the adaptive reaching law, along compar-
ing it against ERL, will be presented in Sect. 3.1. However, 
as mentioned in Remark 1, the uncertainties and external 
disturbances might cause some losses in the proposed reach-
ing law robustness. In this case, reformulating some of the 
parameters is necessary as shown Sect. 3.2.

(8)Ṡi = −
K1i

𝜇i +
(
1 − 𝜇i

)
e−𝛼i|Si|pi

sign(Si)

(9)Tr3i ≈ �i

||Si(0)||
K1i

(10)𝛼i ≫

(
1 − 𝜇i

𝜇i
||Si(0)||

)1∕pi

3.1 � System Without Uncertainties and External 
Disturbances

This section presents the mathematical formulation of the 
proposed reaching law that would make use of ERL’s and 
PRL’s advantages, in addition to ensuring a convergence 
time less than that provided by ERL and PRL. The pro-
posed reaching law is given by:

where �i , �i and pi are strictly positive constants with 𝜇i < 1 
and 0 < 𝛾 < 0.5 . �i is determined by limt→∞(�i) = 0 and 
∫ t

0
𝜚i(w)dw = Qi < ∞ , where �i = 1∕(1 + t2

i
) and ti being the 

execution time of the exercise. In fact, the second term of the 
proposed law (11) is responsible for maintaining the robust-
ness of the control input, especially around the starting point 
of the trajectory. It is worth mentioning that, as time elapses, 
this term would vanish according to the definition of �i.

In the preceding section, the advantages of each term, 
such as ERL and power rate, were briefly explained. It was 
noticed that the term � is usually assigned a high value in 
the conventional power rate law to ensure fast convergence 
to the equilibrium point, however resulting with undesira-
ble chattering. In efforts of improving this, in the proposed 
law, a limit on � was enforced such that: 0 < 𝛾 < 0.5 . This 
would not only ensure fast convergence, but also minimize 
the chattering.

Proposition 1  For the same gain value K1i, and in accord-
ance with the choice of � defined earlier, the reaching law 
given by (11) always provides faster convergence to the equi-
librium point than ERL [6].

Proof  The reaching time of the ERL is given by [6]:

To find the reaching time ( Tr4i ) of the proposed reaching law 
(11), it is first rewritten as follows:

Integrating (13) from zero to Tr4i , with Si(Tr4i = 0) , the fol-
lowing can be found:

(11)

Ṡi = −
K1i

𝜇i +
(
1 − 𝜇i

)
e−𝛼i|Si|pi

|Si|𝛾sign(Si)

− 𝜚i
K1i(1 − 𝛾)

𝜇i

sign(Si)

(12)Tr3i =
1

Ki

(
�i|Si(0)| + (1 − �i)∫

|Si(0)|

0

e−�i|Si|pi dSi
)

(13)
dti =

(�i + (1 − �i)e
−�i|Si|pi )dSi

−K1i|Si|�sign(Si)
+

�idSi

−�iK1i(1 − �)sign(Si)
.
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In the first case, if Si < 0 for all ti < Tr4i , then:

Otherwise, if Si > 0 for all ti < Tr4i , this would result with:

According to (15) and (16):

Integrating (17), the reaching time is then given by:

In [6] the authors used the properties of Euler’s gamma func-
tion ( Γ ) to prove that the the reaching time Tr3i satisfies the 
following:

Using a similar approach for the proposed reaching law, the 
last term of (18) can be rewritten in terms of the Γ function 
such that:

(14)

Tr4i = ∫
0

Si(0)

(
�i +

(
1 − �i

)
e−�i|Si|pi

)
dSi

−K1i|Si|�sign(Si)
+ ∫

0

Si(0)

�idSi

−�iK1i(1 − �)sign(Si)
.

= ∫
Si(0)

0

(
�i +

(
1 − �i

)
e−�i|Si|pi

)
dSi

K1i|Si|�sign(Si)
+ ∫

Si(0)

0

�idSi

�iK1i(1 − �)sign(Si)
.

(15)
Tr4i = ∫

−Si(0)

0

(
�i +

(
1 − �i

)
e−�i|Si|pi

)
dSi

K1i|Si|�

+ ∫
−Si(0)

0

�idSi

�iK1i(1 − �)
.

(16)
Tr4i = ∫

Si(0)

0

(
�i +

(
1 − �i

)
e−�i|Si|pi

)
dSi

K1i|Si|�

+ ∫
Si(0)

0

�idSi

�iK1i(1 − �)
.

(17)
Tr4i = ∫

|Si(0)|

0

�idSi

K1i|Si|� + ∫
|Si(0)|

0

(
1 − �i

)
e−�|Si|pi dSi

K1i|Si|�

+ ∫
|Si(0)|

0

�idSi

�iK1i(1 − �)
.

(18)
Tr4i =

1

K1i

(�i

|Si(0)|(1−�)
(1 − �)

+
�i|Si(0)|
�i(1 − �)

+ (1 − �i)∫
|Si(0)|

0

e−�i|Si|pi |Si|−�dSi).

(19)Tr3i ≤ �i

K1i

|Si(0)| +
(1 − �i)

K1i�
1∕pi
i

.

Based on the properties of the Γ function:

T h e r e fo r e ,  i t  i s  va l i d  t o  a s s u m e  t h a t : 

Γ

(
−

(
� − 1

pi

)
, �i|Si(0)|pi

)
≈ 0 , and hence:

substituting (22) into (18), it is found that the reaching time 
fulfills the following condition:

To prove that the proposed reaching law provides a reach-
ing time less than that provided by ERL [6], it is essential 
to rewrite the reaching time of the proposed law as follows:

Therefore, the reaching time Tr4i should be less than the 
desired reaching time Tr4di for every value of � such that:

Thus, the desired reaching law can be re-approximated as 
follows:

(20)

∫
|Si(0)|

0

e−�i|Si|pi |Si|−�dSi

= �
�∕pi
i

[
Γ−

(
� − 1

pi

)
− Γ

(
−

(
� − 1

pi

)
, �i|Si(0)|pi

)]

pi�
1∕pi
i

.

(21)Γ

(
−

(
𝛾 − 1

pi

)
, 𝛼i|Si(0)|pi

)
≪ Γ−

(
𝛾 − 1

pi

)
.

(22)∫
|Si(0)|

0

e−�i|Si|pi |Si|−�dSi = �
�∕pi
i

Γ−

(
� − 1

pi

)

pi�
1∕pi
i

.

(23)

Tr4i ≤ �i

K1i

[|Si(0)|(1−�) + �i|Si(0)|
(1 − �)

]

+

(
1 − �i

K1i

)Γ−

(
� − 1

pi

)

pi�

(
1 − �

pi

)

i

.

(24)

Tr4di =
�i

K1i

[|Si(0)|(1−�) + �i|Si(0)|
(1 − �)

]

+

(
1 − �i

K1i

)Γ−

(
� − 1

pi

)

pi�

(
1 − �

pi

)

i

.

(25)𝛼i ≫

⎡⎢⎢⎢⎢⎣

(1 − 𝜇i)Γ
−

�
𝛾 − 1

pi

�
(1 − 𝛾)

𝜇i

��Si(0)�(1−𝛾) + 𝜚i�Si(0)�
�
⎤⎥⎥⎥⎥⎦

pi

1 − 𝛾

.



604	 Journal of Electrical Engineering & Technology (2021) 16:599–616

1 3

As a second condition, the gain K1i must satisfy:

If both conditions (25) and (27) are satisfied, it can then be 
ensured that Tr4i < Tr4di . Since the proposed reaching law 
will be against the ERL [6], it would be helpful to mention 
the desired reaching law, along with the tuning gain, given 
by the ERL proposition:

Subtracting (26) from (28) yields:

Since �i and K1i are positive constants, it is then remarked 
that the term 

�i

K1i

||Si(0)|| is always positive.

In addition, it is essential to prove that the second term 
of (30) is always positive. Based on the definition of �i in 
(11), as t ⟶ ∞ , the term �i ⟶ 0 . In this case, to ensure 
that the second term of (30) is always positive, the follow-
ing must hold:

This means that it is indispensable for the following to hold:

Hence,

Alternatively, (30) can be rewritten as follows:

(26)Tr4di ≈
�i

K1i

[|Si(0)|(1−�) + �i|Si(0)|
(1 − �)

]
.

(27)K1i ≈
�i

Tr4di

[|Si(0)|(1−�) + �i|Si(0)|
(1 − �)

]
.

(28)Tr3di ≈ �i

||Si(0)||
K1i

(29)K1i ≈ �i

||Si(0)||
Tr3di

(30)

Tr3di − Tr4di ≈ �i

||Si(0)||
K1i

−
�i

K1i

[|Si(0)|(1−�) + �i|Si(0)|
(1 − �)

]

≈
�i

K1i

||Si(0)||
[
1 −

(|Si(0)|−� + �i

(1 − �)

)]

(31)
1

|Si(0)|𝛾 (1 − 𝛾)
< 1

(32)|Si(0)| > (1 − 𝛾)−1∕𝛾

(33)
(
1 −

1

|Si(0)|𝛾 (1 − 𝛾)

)
> 0,∀|Si(0)| > (1 − 𝛾)−1∕𝛾

(34)
Tr3di − Tr4di ≈

𝜇i

K1i

||Si(0)||
[
1 −

(|Si(0)|−𝛾
(1 − 𝛾)

)]
> 0,

∀|Si(0)| > (1 − 𝛾)−1∕𝛾

It is noteworthy that, based on (23) and (24), Tr4i ≤ Tr4di . 
Furthermore, based on [6], Tr3i ≤ Tr3di . Thus, according to 
the condition given by (34), the following can be rewritten:

Consequently, depending on the value of � , the reaching time 
provided by the proposed law is less than that provided by 
the ERL. Therefore, the proof is complete. 	�  ◻

3.2 � System with Bounded Uncertainties 
and External Disturbances

To consider the system with unknown bounded uncertainties 
and external disturbances, this would indeed impose multiple 
constraints on the proposed adaptive reaching law parameters. 
Firstly, recall that a non-linear second-order system can be 
described by:

Let ŵ(x, ẋ) be the estimated value of w(x, ẋ) and BMAX be 
the upper bound of the estimation error, defined as follows:

Using the same sliding surface described by (2), the conven-
tional sliding mode control would be given by:

where K > 0 and sign(S) = [sign(Sii)⋯ sign(Snn)] . This 
results with:

From Equation (39), the convergence to zero can be achieved 
only if the following condition holds:

As illustrated by (5), the value of K1i is constant in conven-
tional sliding mode control. This implies that:

In fact, it is almost impossible to satisfy condition (41) with-
out causing other problems such as the chattering phenom-
enon. This is mainly because the gain value K1i is usually 
large enough to guarantee the convergence of the sliding 
surface. With the proposed adaptive reaching law defined 
by (11), since limt→∞(�i) = 0 and ∫ t

0
𝜚i(w)dw = Qi < ∞ , the 

condition given by (41) can be rewritten as:

(35)Tr3i − Tr4i > 0,∀|Si(0)| > (1 − 𝛾)−1∕𝛾

(36)ẍ = f (x, ẋ) + g(x, ẋ)u + w(x, ẋ)

(37)BMAX = sup
t

|w(x, ẋ) − ŵ(x, ẋ)|

(38)u = g−1
[
ẍd − 𝜆ė − f (x, ẋ) − ŵ(x, ẋ) − K1isign(S)

]

(39)Ṡ = (wi(x, ẋ) − ŵi(x, ẋ)) − K1isign(Si)

(40)K1i > (wi(x, ẋ) − ŵi(x, ẋ))∀t

(41)K1i > BMAX

(42)K1i > 𝜇iBMAX +
(
1 − 𝜇i

)
e−𝛼i|Si|pi BMAX
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It is obvious from (42) that the gain K1i has to be at least 
superior to BMAX�i . Satisfying this minimum Ki gain require-
ment, and subsequently solving for Si in (42), the following 
is obtained:

It can then be inferred from equation (43) that, to meet con-
dition (42), the sliding surface Si can vary in a boundary of 
width Q defined by:

Thus, this boundary width Q is directly affected by the 
choice of �i.

To sum up, all aforementioned constraints, in subsec-
tions 3.1 and 3.2, provided insightful relations to be used 
in choosing the proposed adaptive reaching law parameters. 
These relations can be summarized as follows:

4 � Simulation Study

In this section, three different numerical simulations were 
conducted, in Matlab(2018a)/Simulink software, to track 
the trajectory of a two degrees of freedom (2-DOFs) robot 
manipulator, as shown in Fig.1. The dynamics of 2-DOFs 
system is described by (1) with the applied control input 
given by (4). The simulation set consisted of substituting 
each of the reaching laws (7), (8) and the proposed one 
defined by (11). The primary goal was to create a compari-
son between all reaching laws, as well as to elaborate on the 
potential advantages of the suggested law.

The dynamic model of 2-DOfs robot manipulator is given 
by the following equation:

where q ∈ R2 denotes the generalized coordinates vector. 
M(q) ∈ R2×2 , C(q, q̇)q̇ ∈ R2 , and G(q) ∈ R2 are respectively 
the symmetric, bounded, inertia matrix, the Coriolis and 
centrifugal torques, and the gravitational torques. � ∈ R2 is 
the torque input vector and fdis ∈ R2 represents the uncer-
tainties and external disturbances. The earlier introduced 
matrices are defined as follows:

(43)||Si|| =p

√√√√√ ln(
BMAX(1−𝜇i)
K1i−BMAX𝜇i

)

𝛼i
,K1i > BMAX𝜇i

(44)
Q =p

√√√√√ ln(
BMAX(1−𝜇i)
K1i−BMAX𝜇i

)

𝛼i
,K1i > BMAX𝜇i,

(45)Ki

𝜇i

> BMAX , 𝛼i ≥
ln(

BMAX(1−𝜇i)
K1i−BMAX𝜇i

)

Qp

(46)M(q)q̈ + C(q, q̇)q̇ + G(q) + fdis = 𝜏

with, M(1, 1) = l2
2
m2 + 2l1l2m2c2 + l2

2
(m1 + m2) + J1;

M(1, 2) = M(2, 1) = l2m2(l1 + l2) ; M(2, 2) = l2
2
m2 + J2;

and,

where si , ci and cij are defined such that: si = sin(qi) , 
ci = sin(qi) , and cij = cos(qi + qj) . The parameters defining 
2-DOFs manipulator are given in Table  1.

Assuming that q = x and qd = xd , the robot’s dynamics 
(46) can be rewritten in accordance with the general form 
of nonlinear systems given by (1):

where, g(q) = M−1(q) , u = � , f (q, q̇) = −M−1(q)(C(q, q̇)q̇

+G(q)) , and w(q) = M−1(q)fdis.
The controller objective is to track the reference trajec-

tories given by:

M(q) =

(
M(1, 1) M(1, 2)

M(2, 1) M(2, 2)

)

C(q, q̇)q̇ =

(
−l1l2m2s2q̇

2
2
− 2l1l2m2s2q̇1q̇2

l1l2m2s2q̇
2
2

)

G(q) =

(
l2m2gc12 + (m1 + m2)l1gc1

l2m2gc12

)

fdis =

⎧
⎪⎪⎨⎪⎪⎩

�
4 sin(t) +

1

2
sin(200𝜋t)

cos(3t) +
1

2
sin(200𝜋t)

�
, If t < 2.5s

�
15 sin(t) + 6 sin(200𝜋t)

10 cos(3t) + 6 sin(200𝜋t)

�
, else

(47)q̈ = f (q, q̇) + g(q)u + w(q)

Fig. 1   Two-link robot manipulator
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All initial states (joint positions and velocities) were selected 
to be q1 = q2 = 0 rad and q̇1 = q̇2 = 0 rad/s.

The parameters used in simulating the control input 
(4), coupled with the proposed reaching law (11), were 
chosen as follows: K1i = diag(5, 5) ,  � = diag(2, 2) , 
�1 = �2 = 0.6 , �1 = �2 = 20 , p1 = p2 = 1 , and � = 0.5 . On 
the other hand, the parameter set for the case of the ERL 
(8) were: K1 = diag(5, 5) , � = diag(2, 2) , �1 = �2 = 0.6 , 
�1 = �2 = 20 and p1 = p2 = 1 . Lastly, for the case of PRL 

(48)
q1d = cos(t)

q2d = cos(t)

(7): K1i = diag(5, 5) , � = diag(2, 2) , and � = 0.5 . In addi-
tion, the same gain values were utilized in all cases.

It is evident from Fig. 2, which tracks the joints position, 
that both the ERL and the proposed RL controllers closely 
matches the reference trajectory. On the other hand, the PRL 
seems to lose its accuracy in the first two seconds. Thereaf-
ter, it provides a similar performance compared to the ERL 
and the proposed RL. Figure 3 clearly shows that all control-
lers are able to drive the surface to the origin in a finite time, 
with the proposed RL being the fastest to do so among the 
other two controllers. Nevertheless, all controllers are able to 
reduce the chattering problem as shown by the torque inputs 
given by Fig. 4. Lastly, Fig. 5 shows the performance of 
each controller in the phase plane. All the state trajectories 
converge to the origin of the phase plane, with evidently the 
proposed RL again being the fastest among the other two. 
Such results support the high efficiency of the proposed RL.

5 � Experimental Study

5.1 � System Characterization

ETS-MARSE (Ecole de Technologie Supérieure—Motion 
Assistive Robotic-exoskeleton for Superior Extremity) is 

Table 1   Parameters of 2-DOFs robot manipulator [3]

Symbol Definition Value Unit (s)

l1 Length of the first link 1 (m)
l2 Length of the second link 0.85 (m)
J1 Moment of inertia of the first motor 5 (kg m 2)
J2 Moment of inertia of the second motor 5 (kg m 2)
m1 Mass of link 1 0.5 (kg)
m2 Mass of link 2 1.5 (kg)
g Gravitational constant 9.81 (m/s2)

Fig. 2   Joints position tracking
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a 7 degrees of freedom (DOFs) exoskeleton robot (Fig. 6). 
This robot is fundamentally built to support in rehabili-
tation treatments provided to persons with an impaired 
upper-limb. Its mechanical design is inspired from the 
anatomy of the human upper-limb. The primary purpose 
is for it to be comfortably attached to the arm, permitting 

the subject’s arm to freely move. It consists of three joints 
shaping the shoulder member, one joint modelling the 
elbow member and three other joints shaping the wrist 
member. As described in Table 2, the motion each part 
of the exoskeleton manipulator is able to perform mimics 
human upper limb movements. All exceptional features 

Fig. 3   Evolution of the surfaces

Fig. 4   Evolution of the torques
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Fig. 5   Convergence of the states 
on phase plane

Fig. 6   a Human-exoskeleton 
robot. b Coordinate defining 
ETS-MARSE movements
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of ETS-MARS, along with its comparison against other 
popular rehabilitation robots, can be found in [1, 16]. 
Table 2 presents the modified Denavit-Hartenberg (DH) 
parameters obtained from the coordinate frames attached 
to the robot as shown in Fig. 6. Those are later used to find 
the homogeneous transformation matrices.

5.2 � Dynamic Model of ETS‑MARSE Robot

The dynamic model of ETS-MARSE robot is expressed in 
joint space as follows:

where � ∈ ℜ7 denotes a 7-vector of generalized coordinates. 
M(�) ∈ ℜ7×7 , C(𝜃, 𝜃̇)𝜃̇ ∈ ℜ7 , and G(�) ∈ ℜ7 are respec-
tively the symmetric, bounded, inertia matrix, the Corio-
lis and centrifugal torques, and the gravitational torques. 
� ∈ ℜ7 is the torque input vector and fdis ∈ ℜ7 represents 
the external disturbances. Introducing x = � and ẋ = 𝜃̇ , the 
dynamic model expressed in Eq. 49 can be rewritten in the 
form of Eq. 1 as follows:

with:

•	 u = �

•	 g(x) = M−1
0
(�)

•	 f (x, ẋ) = M−1
0
(𝜃)

[
−C0

(
𝜃, 𝜃̇

)
𝜃̇ − G0(𝜃)

]
•	 w(x, ẋ) = M−1

0
(𝜃)

[
−fex − ΔM(𝜃)𝜃̈ − ΔC

(
𝜃, 𝜃̇

)
𝜃̇ − ΔG(𝜃)

]

where M0(�) , C0

(
𝜃, 𝜃̇

)
 and G0(�) are respectively the known 

inertia matrix, the Coriolis/centrifugal matrix, and the gravi-
tational forces vector. ΔM(�) , ΔC

(
𝜃, 𝜃̇

)
 and ΔG(�) are the 

associated uncertainties.
Coupling the control input (4) with the reaching law 

(11), the robot system should be able to follow the refer-
ence trajectory with the promising characteristics given by 
Proposition 1.

(49)M(𝜃)𝜃̈ + C(𝜃, 𝜃̇)𝜃̇ + G(𝜃) + fdis = 𝜏

(50)ẍ = f (x, ẋ) + g(x)u + w(x, ẋ)

5.3 � Real Time Setup

The rehabilitation robot system is composed of three pro-
cessing units. The first is a PC unit where the top-level 
commands are transmitted to the exoskeleton robot using 
LabVIEW interface, i.e. to select the type of physiotherapy 
exercise and type of rehabilitation protocol to be specified. 
The performance of the exoskeleton robot is further evalu-
ated at the level of this unit (PC). That is, it is also respon-
sible for receiving all feedback data sent by the robot. The 
other two processing units are parts of a National Instru-
ments PXI. One of those is a board (NI-PXI 8081 controller 
board), responsible for the management of the exoskeleton 
system, as well as executing the top-level command algo-
rithms. In this case, the proposed control strategy was set to 
operate at a sampling time of 500 μ s . Lastly, at the input/
output level, a NI PXI-7813R remote input/output board 
with a Field Programmable Gate Array (FPGA) executes 
the low-level control; i.e., a PI current control loop (sam-
pling rate of 50 μ s ) responsible for stabilizing the current 
of the motors as required by the main nonlinear controller. 
Furthermore, joints position is measured via Hall-sensors, 
where input/output tasks are executed at the level of this 
FPGA. The joints of ETS-MARSE are powered by Brush-
less DC motors (Maxon EC-45 and Maxon EC-90) coupled 
with harmonic drives (a gear ratio of 120:1 for motor-1 and 
motor-2, while a gear ratio of 100:1 for motors 3-7)[2].

5.4 � Experimental Results

5.4.1 � Joint Space

For the earlier mentioned purpose, a basic physiotherapy 
exercise was chosen (Elbow: Flexion/Extension; Shoulder 
Joint: Internal/External Rotation) in joint space. All experi-
ments were performed by a real subject (age: 29 years; 
height: 176 cm; weight: 78 kg). The conducted exercise 
started from a 90◦ Elbow joint initial position. For all con-
trollers, the same gain values were manually chosen as fol-
lows: K1 = 150I7×7 , � = 15I7×7,�i = 0.5 , �i = 0.03 , pi = 5 , 
and � = 0.5.

5.4.2 � Discussion of Joint Space Results

As shown by the first set of data of Figs. 7, 8 and 9, all 
controllers were able to provide a good tracking trajectory. 
Interestingly, looking at the second and third sets of data 
of Fig. 7 (surface and control input evolution respectively), 
the proposed controller (Proposed-RL) was uniquely able to 

Table 2   Modified Denavit–
Hartenberg parameters

joint (i) �i−1 ai−1 di−1 �i

1 0 0 ds �1

2 −�

2
0 0 �2

3 �

2
0 de �3

4 −�

2
0 0 �4

5 �

2
0 dw �5

6 −�

2
0 0 �6 −

�

2

7 −�

2
0 0 �7
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both, track the trajectory to a very good extinct while signifi-
cantly reducing the chattering. On the other hand, SMC with 
PRL (Fig. 8) was only efficient in reducing the chattering as 
compared to ERL (Fig. 9), as described by the second and 
third sets of data of both figures. Conversely, SMC with 
ERL was mainly efficient in providing high performance as 
compared to PRL, as illustrated by the second set of data of 
Figs. 8 and 9.

5.4.3 � Cartesian Space

In this section, an exercise in 3D Cartesian space (Start-
ing position → Target-A → Target-B) was performed using 
the proposed controller. This experiment was conducted by 
the same subject, starting from the same elbow joint ini-
tial position (Described in the previous Joint Space subsec-
tion). All controllers’ gains were also manually chosen as 

follows: K1 = 180I7×7 , � = 20I7×7,�i = 0.7 , �i = 2 , pi = 15 , 
and � = 0.5.

5.4.4 � Discussion of Cartesian Space Results

The performance of the proposed control approach on ETS-
MARSE in 3D Cartesian space is summarized in Figs 10, 
11 and 12. Concisely, collected results highly support the 
smooth and effective operation of the proposed controller. 
In details, Fig. 10 shows the high rate of convergence to 
the desired trajectory. Concurrently, Fig. 11 clearly shows 
that all errors eventually diminish to around zero. Evidently, 
Fig. 12 proves the satisfactory smooth control input. It is 
noteworthy that the control input is further smoother than 
that of SMCERL [15] which has been applied on the same 
robot (ETS-MARSE). Hence, the control scheme renders 
satisfactory outcomes.

Fig. 7   Performance of the 
proposed controller
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6 � Conclusion

In this paper, a sliding mode control (SMC) with a novel 
proposed reaching law were employed to control a perturbed 
and unperturbed nonlinear system. The proposed reaching 
law proved its capability to overcome and enhance the per-
formance of SMC. It also assisted SMC in achieving high 
performance with a significant reduction in the chattering 
problem. It further proved to drive system’s trajectories 

towards the origin in a substantially fast convergence time 
as compared to existing reaching laws. Simulation and com-
parison results against existing successful approaches clearly 
supported the advantages of the proposed reaching law. 
Lastly, experimental results, with the aid of an exoskeleton 
robot, as performed by a real subject, proved the feasibility 
of the proposed reaching law for real-time implementation 
applications.

Fig. 8   Performance of the 
Sliding Mode Control (SMC) 
coupled with the Power Rate 
Reaching Law (PRL)
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Fig. 9   Performance of the 
Sliding Mode Control (SMC) 
coupled with the Exponential 
Reaching Law (ERL) (Red 
color is the desired trajectory 
and blue one is the measured 
trajectory)
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Fig. 10   Performance of the 
proposed controller on ETS-
MARSE robot in 3D space
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