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Abstract
Power quality disturbances are one of the main problems in an electric power system, where deviations in the voltage and 
current signals can be evidenced. These sudden changes are potential causes of malfunctions and could affect equipment 
performance at different demand locations. For this reason, a classification strategy is essential to provide relevant informa-
tion related to the occurrence of the disturbance. Nevertheless, traditional data extraction and detection methods have failed 
to carry out the classification process with the performance required, in terms of accuracy and efficiency, due to the presence 
of a non-stationary and non-linear dynamics, specific of these signals. This paper proposes a hybrid approach that involves 
the implementation of the Hilbert–Huang Transform (HHT) and long short-term memory (LSTM), recurrent neural networks 
(RNN) to detect and classify power quality disturbances. Nine types of synthetic signals were reproduced and pre-processed 
taking into account the mathematical models and their specifications established in the IEEE 1159 standard. In order to 
eliminate the presence of mode mixing, the ensemble empirical decomposition (EEMD) and masking signal methods were 
implemented. Additionally, based on the successful benefits of LSTM RNNs reported in the literature, associated to the high 
accuracy rates achieved at learning long short-term dependencies, this classification technique is implemented to analyze the 
sequences obtained from the HHT. Based on the experimental results, it is possible to show that the ensemble recognition 
approach using the EEMD yields a better classification accuracy rate (98.85%) compared with the masking signal and the 
traditional HHT approach.

Keywords Long short term memory · Recurrent neural networks · Disturbances classification · Hilbert–Huang Transform · 
Power Quality · Mode mixing

1 Introduction

Nowadays, based on the society’s increasing dependence 
on electrical devices, concerns about equipment malfunc-
tions due to the presence of power quality disturbances have 
become an interesting subject for many research studies 
around the world. As such, disturbances in Power Quality 
(PQ) are characterized as a change in current, voltage, or 
frequency wave forms that interfere wit the normal opera-
tion of the power system [1, 2]. Recently, the application of 
this topic has grown, mainly based on the integration of vast 
amounts of photovoltaic generation, which leads the distri-
bution feeder to shift towards higher voltages and frequency 
changes. In this context, it has been shown that the use of 
renewable power generation brings new challenges related to 
power quality issues, such as voltage and frequency stability.

For many years, Fourier Series-based analysis were 
enough to study signals in power systems and the notion of 
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Instantaneous Frequency (IF) has scarcely been explored in 
these kinds of systems. The arrival of new technologies such 
as distributed generation, nonlinear loads, and electronic 
devices, created new problems in power quality and this 
has generated the necessity to develop new methodologies 
for analyzing signals which have different characteristics to 
previously studied [1]. Some of the most common strategies 
used in power systems for signal analysis have been the Fast 
Fourier Transform (FFT), the Short Time Fourier Trans-
form (STFT), the Wavelet Transform (WT), the S-transform, 
Wigner-Ville distribution, among others. Most of them with 
their inherent time limitation or frequency resolutions [2, 
3]. In this context, in [4] and [5], the energy distribution of 
seven power quality events at different decomposition levels 
(11, and 13, respectively) of wavelet and the time duration of 
each disturbance have been analyzed. Results have shown a 
notable improvement during the detection and localization 
of PQ disturbances. Alternatively, in [6], the S-transform 
has been implemented to extract the features required for 
the classification of 11 PQ events. Although, this approach 
has reported successful results in the presence of noise, one 
of the main disadvantages lies on its high computational 
complexity (O(N3 )) [7]. In order to overcome this limitation, 
several variations of the fast discrete S-transform (FDST) 
have been proposed in the context of the PQ disturbances 
recognition [8, 9]. Recently, the Variational Mode Decom-
position (VMD) has been proposed as well to separate the 
band-limited intrinsic mode functions (BLIMFs) from the 
non-stationary PQ disturbances [10, 11] as an alternative 
solution to characterize PQ events.

As such, different methods based on the principle of 
instantaneous frequency were targeted, searching for an 
accurate and instantaneous disturbance detection. The Hil-
bert–Huang Transform (HHT) is an alternative method 
that emerged as an attempt to contribute to this problem 
in multi-component signals [12]. The disturbance detec-
tion method for power systems application needs to analyze 
harmonic signals and also nonlinear and non-stationary 
signals. Hilbert–Huang Transform is an adaptive time-fre-
quency analysis method which can deal with these kinds 
of signals. Compared with FFT, HHT can analyze non-
stationary and non-periodic signals [13]. WT is a power-
ful signal-processing tool that is particularly useful for the 
analysis of non-stationary signals [14], and WT has always 
better resolution than STFT [3]. These techniques have been 
generally used independently and sometimes such as hybrid 
combinations to obtain a better performance. It is necessary 
however to continue seeking for solutions to power qual-
ity problems to establish a methodology that allows better 
detection of disturbances in the power system that is under-
going transformation.

HHT comprises the Empirical Mode Decomposition 
(EMD) and the Hilbert Transform (HT) which makes 

possible the computation of the Instantaneous Frequency 
(IF). The notion of IF has not been thoroughly explored in 
the analysis of electric power systems. Arguably, the reason 
for this has been that the century-old electric power system 
has been dominated by large electromechanical generators 
that produced an excellent voltage quality with an station-
ary constant frequency. However, due to the sustained inte-
gration of Renewable Energy Sources (RESs) and growing 
electricity demand, electric power systems are incorporating 
many new components with different properties than those 
of the past. For example, as the frequency of the voltage gen-
erated from RESs in general does not have the same behavior 
of the traditional power systems, power electronic converters 
are used as an interface to synchronize Photovoltaic (PV) 
generation with the electrical network [15, 16]. In this sense, 
the approach proposed in this paper can help to overcome 
the analysis difficulties generated by the complexity of the 
signals acquired in this field.

Based on these considerations, it is important to imple-
ment and develop systems which are able not only to charac-
terize the power quality disturbances, but also classify these 
fluctuations in order to take additional actions to solve the 
problematic. In this regard, a wide variety of power quality 
disturbances classifiers have been proposed in the litera-
ture. These strategies include Decision trees (DT), Artificial 
Neural Networks (ANN), Support Vector Machine (SVM), 
fuzzy logic (FL), among others. These approaches play a 
crucial role to classify power quality disturbances because 
their performance depends on both, the features extracted 
and the classifier implementation. In this sense, the perfor-
mance could be highly limited by the effectiveness of the 
disturbance characterization. ANNs have reported successful 
results in different classification, optimisation, and data clus-
tering tasks [3]. Likewise, back-propagation algorithm has 
been the most widely implemented strategy for the Multi-
Layer Perceptron Neural Network (MLPNN) training, being 
applied recently in the power quality disturbances classifi-
cation field together with the HHT results [13]. Additional 
ANNs configurations have been proposed in this area such as 
the Radial Basis Function (RBF) or the Probabilistic Neural 
Networks (PNN). These approaches have been implemented 
in conjunction with the WT and S-transform [6, 14, 17]. 
Likewise, a special type of single layer feed-forward neural 
network (SLFN) called an Extreme Learning Machine has 
been proposed to detect and classify PQ disturbances in real-
time [11, 18]. The results associated to these works have 
exhibited advantages such as a fast learning and a robust 
outliers detection during the classification process.

Alternatively, SVM has been effectively used for the auto-
matic classification of voltage disturbances [19]. Some vari-
ations of SVM have been reported in this field such as Least-
Square LS-SVM, Directed Acyclic Graph DAG-SVM, rank 
Wavelet rank-WSVM, among others [20–22]. Additional 
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solutions have involved the implementation of FL classifiers 
[23], initialized by Decision Trees (DT) [24] or refined by a 
combination with ANNs [25, 26]. However, for each of the 
previous approaches, the corresponding feature extraction 
strategy should be complemented to select scalar features 
such as maximum, minimum, or mean values. The reason 
is based on the inability of these classifiers to analyse com-
plete data sequences, which could allow information losses 
during the process. Likewise, the SVM and DT strategies 
generate cumulative errors during the iterative classification 
process. In this context, ANN-based classifiers have been 
widely implemented through an expeditious learning pro-
cess [27]. As such, more complex ANN architectures have 
emerged in deep learning algorithms, capable of learning 
optimal features from raw input data. From this perspective, 
in [28], a voltage sag estimation in sparsely monitored power 
systems is proposed by means of a Convolutional Neural 
Network (CNN) model. Li et al., on the other hand, proposes 
to utilize an approach of deep belief network (DBN) for the 
classification of PQ disturbances [29].

In order to analyze the signal dynamics from the complete 
time sequences, Recurrent Neural Networks (RNN) have 
been implemented [30]. Advantages are focused on their 
inherent capability to automatically learn optimal features 
from raw input data, reducing time consuming associated to 
the selection of scalar variables. However, the performance 
of this approach decreases when the duration of the tempo-
ral dependencies is large. In this way, recently it has been 
proved that deep learning based strategies, such as the use 
of gated recurrent units (Long Short Term Memory-LSTM-, 
Gated Recurrent Units-GRU-, among others) have success-
fully increased the accuracy results in these classification 
tasks [31]. Based on the promising results reported in the 
literature, this work aims to improve them by the combina-
tion of a HHT analysis with a gated RNN approach.

Therefore, in this paper, the classification of power qual-
ity disturbances is performed by an hybrid approach that 
involves a characterization and a classification stage. In the 
first step, the HHT implementation is carried out, taking 
into account the concepts of Empirical Mode Decomposi-
tion (EMD) and its Intrinsic Mode Functions (IMF). These 
whole data sequences feed the classifier defined as a Long 
Short-Term Memory (LSTM) RNN. In this way, the ensem-
ble strategy described in this work allows to use individual 
advantageous effects to improve the reported results during 
the automatic classification of power quality disturbances. 
Experiments were conducted through the analysis of a syn-
thetic database generated with the mathematical models and 
specifications reported in the IEEE 1159 standard [1]. The 
results obtained show a superior performance of the pro-
posed approach compared with conventional feature selec-
tion and RNN based classification strategies. This paper 
is organized as follows: Sect. 2 provides the mathematical 

foundation associated to the HHT and the EMD for distur-
bances detection, Sect. 3 describes the LSTM RNN archi-
tecture implemented for the classification stage, Sect. 4 
describes the synthetic data-set generated for the power 
quality disturbances analysis and Sect. 5 presents the results 
based on the analysis of the characteristic behavior of instan-
taneous frequencies, the confusion matrix and the classifica-
tion accuracy rates. Finally, in Sect. 6, conclusions are drawn 
and the future work is outlined.

2  Hilbert–Huang Transform (HHT)

The HHT integrates the empirical mode decomposition 
(EMD) with the Hilbert spectral (HS) analysis methods, 
developed by Huang et al. [32], specifically used to analyse 
data with nonlinear and non-stationary dynamics. The EMD 
can be defined as the decomposition process to represent 
multi-component non-stationary signals into a sum of sub-
signals called Intrinsic Mode Functions (IMF). Subsequently 
to this procedure, the Hilbert Transform is used to obtain the 
respective HS [32].

2.1  Empirical Mode Decomposition

According to the EMD approach, any time series can be 
decomposed into IMFs. The temporal sequences provided 
contain a set of simple oscillatory modes for certain fre-
quencies [32]. In particular, each IMF must comply with the 
following specifications:

• The quantity of crosses by zero and extremes should be 
the same. It could be different, at most in one.

• The average maximum and minimum envelopes value 
must be zero at any point.

• IMFs have equal numbers of extreme crosses per zero.
• IMFs have at least two extreme values that could be mini-

mum or maximum.
• Time scale should be characterized by the time between 

the extreme values.

In addition, the filtering process implemented to compute the 
IMFs is performed by following this procedure: 

1. Detection of each minimum or maximum value of the 
primary signal x(t).

2. Calculation of the respective envelopes, based on the 
connection between maximum and minimum points.

3. Mean value computation based on the upper and the 
lower envelope m(t).

4. Calculation of the new signal d(t) = x(t) − m(t).
5. Repetition of the previous steps until the final IMF 

becomes a zero-mean signal.
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6. Definition of the first IMF as the d(t) signal with zero 
mean.

7. New IMF considers the IMF extracted from the original 
signal and its corresponding residue.

8. When the residue becomes a monotonous function (with 
only one minimum and maximum), this process ends. 
From this point on, a new IMF can not be retrieved from 
the residue values.

The initial function can be reconstructed using the statement:

with Ci(t) as the IMFs extracted from the initial function and 
rn as the residues from the decomposition. When this pro-
cedure is completed, the Hilbert transform is calculated for 
each signal. As such, the respective amplitudes and instan-
taneous frequencies are obtained (see Fig. 1).

2.2  Hilbert Transform

The Hilbert Transform is a special case of the convolution 
process between x(t) and the function 1/ty [33]:

with this definition, x(t) and y(t) form the complex conjugate 
pair, so we can have an analytic signal, z(t) using the Euler’s 
identity, as

where:

The polar coordinate expression further clarifies the local 
nature of this representation: it is the best local fit of an 
amplitude and phase varying trigonometric function to x(t) 
[32]. Theoretically, there are infinite ways of defining the 
imaginary part, but the Hilbert transform provides a unique 
way using an analytic function. Considering the previous 
statements, the instantaneous frequency is calculated by:

It is important to note that the expressions to compute 
amplitude (Eq. 4) and frequency (Eq. 6) are time depend-
ent, allowing to express amplitude values based on time and 

(1)x(t) =

n
∑

i=1

Ci(t) + rn

(2)y(t) = ∫
∞

−∞

x(t)

t − �
d�,

(3)z(t) = x(t) + iy(t) = a(t)ei�(t),

(4)a(t) =
√

x(t)2 + y(t)2

(5)�(t) = tan−1
y(t)

x(t)
.

(6)� =
d�(t)

dt
.

frequency (H(�,t)) [33]. In order to adequately estimate the 
instantaneous frequency using the Hilbert transform, the ini-
tial time sequence is defined as a purely oscillatory signal 
with a zero reference level. Based on this concept, x(t) can be 
represented by a sum of purely oscillatory signals (Empirical 
Mode Decomposition-EMD-) [33].

2.3  Ensemble Empirical Mode Decomposition 
method (EEMD)

The EEMD arose as an alternative to eliminate mode 
mixing, which is one of the biggest problems for the 
EMD. The EEMD consist of the addition of white 
Gaussian noise (WGN) to the signal in order to sepa-
rate the closest IMFs. The ensemble can be described 

Fig. 1  IMF empirical decomposition mode algorithm
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as sn(t)Nn=1 = x(t) + wn(t)
N
n=1

 , where x(t) is the original 
signal, wn(t)

N
n=1

∼ N(0, �2)) are independent realizations 
of (WGN), and the averaging is performed across same-
index IMFs over the ensemble. Since the added noise is 
different for each test, the resulting IMF does not show 
any correlation with the corresponding IMFs from other 
analysis. Since, the averaging effects of added WGN 
can be reduced with an increase in the ensemble size N 
(samples) according to �2∕N2 , the EEMD benefits from 
enhanced local mean estimation in noisy data to yield 
IMFs that are less prone to mode mixing. If the value of N 
is adequate, the aggregate noise can be eliminated by the 
ensemble average of the IMF obtained [34]. The ensemble 
size of N = 1000 was implemented because the resulting 
IMFs exhibited less residual noise than the IMFs obtained 
with the EMD, whose IMFs still contained oscillations. 
The EEMD process is described in Algorithm 1.

Algorithm 1: Ensemble Empirical Decomposition Method (EEMD)

algorithm
Result: IMFs, Residues

Initialization;

Addition of white noise series to x(t);

Call Standard EMD method to obtain the IMFs;

if Stopping Critera ==1 then

Obtain the components of the corresponding IMF;

else

Series of white noise are added;

Call Standard EMD method to obtain the IMFs;

end

Calculation of the average of the final IMF;

Calculation of the average of the residues;

The white noise series included in the process cancel 
each other out at the final average of the corresponding 
IMF, plus the average of the IMF remain within the natu-
ral dyadic filter limits. Therefore, it significantly reduces 
the possibility of mode mixing and it preserves the dyadic 
property [34]. The added white noise effect must decrease 
according to the following statistical rule (stop criteria):

where N is the number of set elements, � is the added noise 
amplitude, and �n is the errors’ final standard deviation , 
which is defined as the difference between the input signal 
and the corresponding IMFs. It is recommended according 
to [34], to repeat three times the “sifting” number (N) or set 
it to 10 as stop criteria.

(7)�n =
�

√

N
,

2.4  Masking Signal

The mode mixing phenomenon can be managed by adding 
a masking signal, which can impose a controlled artificial 
mode by mixing it with one of the signal’s components. 
This operation leaves the other element free of mode mix-
ing [35]. If a masking signal of appropriate frequency and 
amplitude is added to the original signal, this masking sig-
nal will attract just one of the mixed signals. The principle 
of attraction between the spectral tones of closed space 
will create a new controlled mixture of artificial mode. 
This way, one of the mixed signals is originally separated 
from the mix of modes and comes out as a pure mode 
(IMF) from the EMD process [35]. Algorithm 2 shows the 
main stages of this method:

Algorithm 2: Masking signal method algorithm
Result: IMFs

Initialization;

Masking signal construction s(t, ω);

Call EMD Method to compute the IMF z+ = x(t) + s(t);

IMF calculation z−(t) = x(t)− s(t);

Final IMF Calculation z(t) = z+−z−
2 ;

The masking signal selection procedure is detailed in 
[35], where the Boundary Conditions map presented by 
Flandrin in [36] has been used . This work presents a guide 
to choose the masking signal’s frequency and amplitude. It 
is important to highlight from this work, when selecting this 
frequency, the relationship principle between the original 
signal frequency and the the masking signal frequency must 
considered, which has to be located in the red area of the 
Boundary Conditions map. While the frequencies proportion 
must be located in the blue area of the map [35]. The same 
procedure must be completed for amplitude values.

3  Long Short‑Term Memory (LSTM) 
Recurrent Neural Networks

Recurrent neural networks (RNN) analyses data sequences, 
in comparison with traditional neural networks, where 
every input and output is defined as a scalar variable. This 
type of network has been called recurrent, because it per-
forms the same task for each sequence sample and the 
output depends on previous calculations. Based on this 
idea, RNNs are represented as memory units that captures 
and processes information based on previous calculations 
[37]. A RNN can be represented as follows (Fig. 2):
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Where xt is the input in the instant t, ht is defined as the 
neural network memory and yclass is the respective output. 
It is important to point out that in contrast to a traditional 
neural network, a RNN shares the same parameters for each 
layer [37]. Several investigations have proposed alterna-
tive structures for the memory units of the traditional RNN 
model in order to improve its performance. Remarkable 
results have been found with bidirectional, deep and LSTM 
RNNs.

Specifically, traditional structures for the recurrent neural 
networks can model the correlations between different seg-
ments of the sequences, however, problems arise when han-
dling dependencies for a significant number of samples [38].

LSTM networks overcome this problem, since each net-
work allows to record information for long periods of time. 
As such, in this paper, LSTM RNNs are implemented based 
on their inherent advantages during the memory calculation, 
which combines the previous state, the current memory, and 
inputs values. In particular, LSTM unit has a chain structure, 
where its flow chart depicts the specific process of the mem-
ory generation (see Fig. 3). This formulation significantly 
improves the RNNs performance [38].

Each line of the diagram represents a complete vector, 
from one node’s output to the input of the next. LSTMs 
are characterized because they have the ability to add or 
remove module status information structures called gates. 
Each model has an input gate i, a memory gate, f and an 
output gate o. First, the input is limited between values of 
−1 and 1, by means of the activation function tanh [38]:

where Ug and Vg are the input and output weights of the pre-
vious module respectively and bg represents the input bias. 
Thus, the input is multiplied by the output of the input gate 
defined by a sigmoid function:

The LSTM output module input section is defined by g◦i . 
The memory gate output is defined as:

The output gate is represented as:

(8)g = tanh(bg + xtU
g + ht−1V

g)

(9)i = �(bi + xtU
i + ht−1V

i).

(10)f = �(bf + xtU
f + ht−1V

f ).

Fig. 2  Recurrent Neural Net-
work Structure
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4  Data‑Set Generation

In order to characterize the power system behavior, distur-
bance signals are usually categorized in terms of their period 
and their magnitude. In this work, the mathematical models 
associated to these phenomena, described on IEEE 1159, 
were taken as reference [1]. Taken into account the para-
metric equations and the parameter range variations reported 
for each disturbance model, one hundred variations were 
generated for each signal (see Table 1) [1].

The disturbance generation is carried out using a sam-
pling frequency of 1kHz. For every mathematical model 
associated to the PQ disturbances, the parameter A depicts 
the signal amplitude and it is represented as constant (equal 
to 1). The parameter � , on the other hand, characterizes the 
intensity of a sag, swell, or interruption disturbance. Like-
wise, the step function �(t) represents the duration of the 
event on the signal. Parameters � and �f  specify the flicker 
frequency and the magnitude variation for a range from 5 to 
20 Hz and 0.1 to 0.2 per unit, respectively. Finally, the 3rd, 
5th, and 7th order harmonic component per unit values rang-
ing from 0.05 to 0.15 per unit are taken into consideration 
for each disturbance.

5  Classification Results

During the experimental evaluation, the HHT is imple-
mented for each of the synthetic signals, taking into account 
the instantaneous values for the frequency. Figures 4, 5, 6, 

(11)o = �(b◦ + xtU
◦ + ht−1V

◦) 7, 8, 9, 10 and 11 expose the characteristic dynamics for 
each disturbance in the frequency domain. In order to carry 
out the classification process for each type of disturbance, 
the second IMF is analyzed. Although the first IMF pro-
vides the base frequency (60 Hz), it is important to highlight 
the presence of noise, which makes it difficult to ensure an 
adequate representation of the analyzed disturbance’s real 
dynamics. As such, the second IMF for each disturbance 
reduces the noise, providing a more accurate signal charac-
terization. Four random signals A, B, C, and D are presented 
in order to evidence the instantaneous frequency’s behavior 
that characterizes each signal.

Taking into account the computed frequencies, the classi-
fication process using the LSTM recurrent neural networks is 
carried out. The confusion matrix shown in Fig. 12 provides 
the percentage of correctly classified signals, represented 
by green boxes. Likewise, erroneously classified signals are 
presented in red boxes. The total percentage of correctly 
(96.86%) and erroneously (3.14%) classified disturbances 
are shown in blue boxes. Each element located in the the 
left and bottom sides of the confusion matrix, provide the 
signal’s output (see Table 2).

The instantaneous frequency behavior of each distur-
bance is analyzed in order to understand the reason why 
rates below an acceptable percentage were obtained for 
some kinds of disturbances. It can be seen that different 
disturbances have similar frequency values in similar 
ranges which can be the main cause of error. This can 
be evidenced in the confusion matrix, where only twenty 
four out of the fifty interruption disturbances were cor-
rectly classified, the rest were classified as high frequency 
transients. While analyzing different disturbances, it was 
discovered that many presented mode mixing. In order to 
study the impact of this phenomenon on the classification 

Table 1  Disturbance output 
type

Class Disturbance Model Parameter

C1 Sag A(1 − �(�(t − t1) − �(t − t2))) sin(�t) 0.1 < 𝛼 < 0.9

T ≤ t2 − t1 ≤ 9T

C2 Swell A(1 + �(�(t − t1) − �(t − t2)))sin(�t) 0.1 < 𝛼 < 0.9

T ≤ t2 − t1 ≤ 9T

C3 Harmonics A(�1 sin(�t) + �3sin(�t) + �5 sin(�t)) 0.05 ≤ �3, �5, �7 ≤ 0.15

C4 Interruption A(1 − �(�(t − t1) − �(t − t2))) sin(�t) 0.9 < 𝛼 < 1.0

T ≤ t2 − t1 ≤ 9T

C5 Flicker A + �f sin(�t)(1 + � sin(��t)) 0.1 < 𝛽 < 0.9, 0.1 < 𝛾 < 0.2

C6 Transients A(sin(�t) + �e
−

1

� sin(b�t)) 5 ≤ b ≤ 80, 0.1 ≤ � ≤ 0.2

0.1 ≤ � ≤ 0.9,T ≤ t2t1 ≤ 3T

300Hz < fn < 1000Hz

C7 Sag with A(1 − �(�(t − t1) − �(t − t2)))× 0.1 < 𝛼 < 0.9, 0.05 ≤ 𝛼3

harmonics (sin(�t) + �3 sin(�t) + �5 sin(�t)) �5 ≤ 0.15 , T ≤ t2 − t1 ≤ 9T

C8 Swell with A(1 + �(�(t − t1) − �(t − t2)))× 0.1 < 𝛼 < 0.8, 0.05 ≤ 𝛼3

harmonics (sin(�t) + �3 sin(�t) + �5 sin(�t)) �5 ≤ 0.15,T ≤ t2 − t1 ≤ 9T



256 Journal of Electrical Engineering & Technology (2021) 16:249–266

1 3

results, the two electromagnetic phenomena that evidenced 
the highest amount of mode mixing cases were selected. 
These signals were the high frequency transients (HFT) 
and low frequency transients (LFT). To begin with the 
analysis, the signal samples with mode mixing for each of 
the analysed disturbances (high and low frequency tran-
sients) were selected and their intrinsic functions were 
obtained by applying the empirical mode decomposition 
method (see Fig. 13).

As Fig. 13 shows, in the second and third IMF, mode 
mixing occurs due to the sudden change in frequency. In 
order to solve this problem the masking signal and EEMD 
methods are applied to compare and determine which 
method successfully eliminates mode mixing.

Fig. 4  Instantaneous values of 
the sags’ frequency
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Fig. 5  Instantaneous values of 
the swells’ frequency
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5.1  Ensemble Empirical Mode Decomposition 
(EEMD) Results

In the EEMD case, the standard deviation parameters, 
maximum number of sifting, and the number of iterations 
are established. These values are selected by performing 
different tests and sequentially alternating their properties. 
For the standard deviation, the value suggested by Huang 

[34] of 0.2 was selected. In Fig. 14 the IMF obtained using 
the EEMD method can be observed.

5.2  Masking Signal Results

In this case, a masking signal of the form xm = A sin(2�fmt) 
was selected. To obtain the frequency and amplitude val-
ues, the Boundary Map [36] technique is applied. The 

Fig. 6  Instantaneous values of 
the harmonics’ frequency
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Fig. 7  Instantaneous values of 
the interruptions’ frequency
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instantaneous frequencies (see Fig. 15) and amplitude of the 
transformed signal are obtained using the Hilbert transform.

Based on the obtained instantaneous frequencies, the val-
ues calculated from the proposed equations are replaced for 
the masking signal selection shown in [35]. The correspond-
ing results are summarized in Table 3.

Where estimated F1 and F2 are the frequencies where 
mode mixing appears, estimated A and B are the ampli-
tude components that present mode mixing. The estimated 

frequency is the minimum instantaneous frequency detected 
and Δf  is the number of peaks/seconds in the instantaneous 
frequency graphs. Replacing the equations, the resulting 
masking signal is:

With the selected masking signal, the characteristic IMFs 
are calculated (see Fig. 16).

xmasking = 2.5 ∗ sin (2�90t).

Fig. 8  Instantaneous values 
of the frequency for high-fre-
quency transients
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Fig. 9  Instantaneous values of 
the frequency for low-frequency 
transients disturbances
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In order to compare the three methods, the resulting IMFs 
are plotted on the same graph as shown in Fig. 17. Like-
wise, a similar procedure is performed with the low fre-
quency transient signals (LFT). For the implementation of 
the EEMD method in both scenarios, the parameters remain 
the same. For the experiments associated to the masking 
signal method, the values used are described in Table 4. By 
replacing the equations, the resulting masking signal is rep-
resented as:

It can be seen that both implemented methods dissipate 
the mode mixing feature. However, the EEMD has a better 
performance as it can be seen in Fig. 18, where the mask-
ing signal shows difficulties processing low frequency 
transients since it can not establish a constant behavior.

xmasking = 2.5 ∗ sin (2�39t).

Fig. 10  Instantaneous values 
of the sag with harmonics 
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Fig. 11  Instantaneous values 
of the swell with harmonics 
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Another factor to take into account is the parameter selec-
tion for each type of model. In the case of the EEMD, it is 
not required to make a representative change in the number 
of samples of white noise, the standard deviation, and the 
number of sifting. For both cases, the values used were the 
same and the expected results were obtained, since the ana-
lyzed signals are synthetic and they do not present signifi-
cant changes in mode mixing.

For the masking signal, the proposed method in [39] pre-
sents a wide range of frequencies where significant changes 
are observed on a small scale, expanding the samples based 
on the frequency selection. To choose the amplitude, it must 
satisfy the restrictions presented in the Boundary map.

Based on the map shown in Fig. 19, it can be seen that 
the selected signals meet the parameters, since they are 
in the blue band. In order to verify if the elimination of 
mode mixing has a direct impact in the classification of 
every disturbance, two case scenarios of classification 
throughout the LSTM recurrent neural networks are per-
formed. For both scenarios, the classification was carried 
out implementing the same methodology used with the 
empirical mode decomposition, the only difference lies in 
the instantaneous frequencies used for the HFT and LFT. 
In the first case, the EEMD frequencies for each transient 
were analyzed and in the second case, the respective mask-
ing signal frequencies. Classification results are presented 
in Fig. 20 (masking signal) and Fig. 21 (EEMD).

Based on these results, a better classification perfor-
mance is obtained using the EEMD method (98.85), show-
ing a significant improvement in the transients classifica-
tion by including the mixing mode reduction (from 48 to 
100%). The transients classification rates increase, in turn 
the global performance from 96.86 to 98.85%. Regard-
ing to the computational time, the feature extraction pro-
cess takes 9.14 and 4.53 s for the EEMD, and the mask-
ing signal, respectively. On the other hand, the classifier 
takes 54 s analyzing the signal obtained from the EEMD 
approach, and 54.5 s with the masking signal results.

Fig. 12  Classification results

Table 2  Classes of disturbances Class Disturbance

1 Sag
2 Swell
3 Harmonics
4 Flicker
5 HFT
6 Interruption
7 LFT
8 Sag with harmonics
9 Swell with harmonics
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5.3  Discussion

In order to compare our results with existing methodologies 
implemented in the PQ disturbance classification field, the 
Variational Mode Decomposition (VMD) and the Wavelet 
Transform (WT) are implemented as alternative feature 
extraction methods. The VMD decomposes the PQ distur-
bance into various modes using variation calculus. In this 

case, each obtained function is assumed to have compact 
frequency support around a central frequency. The WT, on 
the other hand, uses the mother wavelets to divide the 1-D 
disturbances signals to ND time series. Likewise, the pro-
posed model is compared with a simple LSTM-based clas-
sifier fed with the raw data.

For the VMD implementation, � is the balancing param-
eter of the data-fidelity constraint, which is set to 2000. It 

Fig. 13  Decomposition using standard EMD
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Fig. 14  Decomposition using EEMD
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has been proved that a low value of � injects high amount of 
noise in the decomposed modes. To extract features in DWT 
domain, the signal decomposition is carried out using Morlet 
as the mother wavelet.

It is noticed that the time complexity of VMD is higher 
than WT. VMD takes a computational time of approximately 
357 s for feature extraction, while WT requires around 100 s. 
The LSTM-based classification takes around 3673 and 
3592 s, for both approaches, respectively. All the experi-
ments carried out in this work are developed on Windows 
system having 2.50 GHz Core i5 with 8 GB RAM. The accu-
racy metrics for the approaches, considered in this stage, are 
summarized in Table 5.

From Table 5, it is noticed that the EEMD feature extrac-
tion outperforms the VMD and WT. In addition, it is shown 
that a single LSTM can not achieve the same performance 
results compared with the ensemble method proposed in 
this paper (90.52%, compared with 98.85%, respectively). 
Regarding our previous work [13], the proposed approach 
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Fig. 15  Instantaneous frequencies of the third IMF where mode mixing exists

Table 3  Estimated values for the HFT masking signal

Parameters Numerical value

Estimated frequency 21.94 Hz
Estimated A 0.225 pu
Estimated B 0.525 pu
Estimated F1 28.94 Hz
Estimated F2 18.24 Hz
Δf 6

Fig. 16  Decomposition using masking signal



263Journal of Electrical Engineering & Technology (2021) 16:249–266 

1 3

outperforms the results reported (accuracy of 98.85% com-
pared to 94.6%). The main reason relies on the fact that in 
[13], a different approach is proposed, considering only a 
fixed number of instantaneous frequency values from the 
EEMD signal, in contrast with the current strategy where the 
whole frequency sequence and its internal dependencies are 
modeled to carry out the classification process.
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Fig. 17  Comparison of resulting IMF with each method implemented to the HFT. In green, the EEMD is presented, in purple the masking sig-
nal, in blue and red the IMF with mode mixing

Table 4  Estimated values for the HFT masking signal

Parameters Numerical value

Estimated frequency 27 Hz
Estimated A 0.63 pu
Estimated B 0.62  pu
Estimated F1 20.952 Hz
Estimated F2 32.952 Hz
Δf 12
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Fig. 18  Comparison of resulting IMF with each method implemented to the LFT. In green the EEMD is presented, in blue the masking signal 
and in red the IMF with mode mixing
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6  Conclusions

Power disturbances can cause innumerable problems in 
industrial and residential demand points that can damage 
equipment, causing economic losses in a variety of ways. 

For this reason, different strategies have been implemented 
to detect power disturbances in order to manage and miti-
gate its effects. Most of the methods reported on the lit-
erature show poor results in terms of efficiency, computer 
load, and performance. As such, the implementation of 
the Hilbert–Huang transform facilitates the detection pro-
cedure of power quality disturbances, providing a better 
analysis of the signal dynamics. These results are based 
on the fact that this mathematical tool allows the analysis 
of non-stationary signals, revealing significant informa-
tion of the intrinsic decompositions for each disturbance. 
The EEMD presents satisfactory results obtaining a final 
classification rate of 98.85 %, which was the highest com-
pared to the rest of the techniques implemented. These 
results provide evidence that the classification strategy 
is effective when analyzing the similarity features in the 
frequency domain between the disturbance signals. Our 
ongoing work is focused on studying the size of the win-
dow used for the selection of the frequencies, as well as its 
characteristic variables. In addition, it is important to keep 
analyzing alternative deep learning configurations in order 
to improve the efficacy of the classification process in real-
time events. The adoption of these algorithms, on a large 
scale, could increase the disturbances classification rates, 
and in this way improve the quality of the power system.

Fig. 19  Map of boundary conditions. Taken from [36]. The green dot 
represents the frequency for the LFT signal and the purple dot the fre-
quency for the HFT signal

Fig. 20  Classification results 
(masking signal)
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