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Abstract
The installation of distributed generation (DG) units with optimal capacities at optimal locations is becoming an essential 
issue in a distribution power network to reduce total power loss and to enhance voltage profile. In this paper, a recently 
included optimization technique called ant lion optimizer (ALO) has been presented for assessing the optimal size of mul-
tiple DG units in a balanced radial distribution system. An integrated methodology of loss sensitivity factor and voltage 
sensitivity factor is utilized for finding the optimal bus locations for the multiple DG unit installation. The optimal size of 
DG units at the identified bus locations are computed using ALO algorithm by minimizing the total real power loss of dis-
tribution network. The minimization of total real power loss will lead to considerable enhancement in voltage profile. The 
performance of the proposed algorithm has been evaluated against IEEE 33, 69 and 119 bus balanced radial distribution 
systems. Furthermore, to outline the superiority of proposed ALO algorithm, the attained results are related with the results 
of hybrid optimization techniques such as GA-PSO, ABC-CSO and ABC-BAT in terms of total real power reduction and 
voltage profile improvement.

Keywords Radial distribution network · Distributed generation · Loss sensitivity factor · Voltage sensitivity factor · Ant 
lion optimization

1 Introduction

Distributed generation or dispersed generation is a small 
scale power generation where power generation takes place 
at or near the load centre [1]. Typical DG units are generally 
rated from few kilowatts to few megawatts. Presently solar 
photovoltaic, wind turbine generator, small hydro, biomass, 
gas turbine, etc., are used as DG technologies. The role of 
DGs is to inject real and reactive power into the distribution 
power network. Inclusion of the DG unit offers numerous 
benefits to electric utilities and consumers [1].

Among the available DG technologies, renewable energy 
based DG units are capable of minimizing the greenhouse 
gases emission which is responsible for global warming. 
Moreover, DG units provide significant economic and 
technical benefits such as deferred transmission and distri-
bution investment, line loss reduction and voltage profile 

enhancement [1]. Furthermore, DG units give saving on fuel 
investment and thus minimize the electricity prices. Also, 
DG units improve the voltage stability and voltage stability 
margin of the system [2]. The aforementioned benefits can 
be availed only by selecting the optimal site and size of DG 
units. On the other hand, inappropriate placement of DG 
units leads to an increase in line losses, system cost and volt-
age profile beyond the secure limit. Voltage enhancement 
above the secure limit causes voltage instability problems in 
the system. Consequently, reliability and security problem 
may arise. Hence, the optimal placement of DG units in 
the radial distribution power networks becomes a vital for 
electric utilities and consumers [1–7].

Various numerical techniques had been proposed in [3–8] 
for determining the optimal location and size of the DG unit 
in the distribution network. From the literature, these tech-
niques give encouraging solution only for the linear prob-
lems and are not appropriate for the nonlinear problems. 
Moreover, suitable initial convergence value should be cho-
sen to yield a global solution.

Different optimization based techniques have been 
adopted to overcome the shortcomings of the numerical 
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techniques. Particle swarm optimization (PSO) algorithm 
has been applied in [9] to compute the optimal location 
and size of multiple DG units for various load models. The 
reference [10] proposed a Cat Swarm optimization (CSO) 
algorithm to find the optimal capacity of DG units to reduce 
the total power loss of the radial distribution system (RDS). 
Bacterial foraging algorithm (BFOA) has been applied in 
[11] to determine the optimal size of DG units by employ-
ing LSF based approach for identifying the optimal location. 
Tabu search technique has been embedded in [12] for obtain-
ing the optimal size of an isolated hybrid power system. 
Power loss minimization, voltage profile, and voltage stabil-
ity enhancement have been done in [13] using hybrid GA/
PSO technique where GA is used for the optimal site selec-
tion of DG units and PSO is used for optimizing the size 
of the DG unit. A multi-objective based BAT optimization 
algorithm was proposed in [14] to find the optimal location 
and capacity of DG units in a radial distribution network. 
Ant colony optimization (ACO) algorithm was utilized in 
[15] to compute the optimal capacity of the DG unit. The 
reference [16] proposed artificial bee colony (ABC) algo-
rithm for the computation of optimal location and size of 
DG units to minimize the total real power loss of the system.

Most of the optimization techniques suggested in the 
above literature have considered only real power injected 
(PV) type DG unit alone. Therefore, the present study also 
includes a DG unit which is capable of injecting both real 
and reactive powers (Wind Turbine) in the distribution net-
work. Moreover, the optimum solution may not be a guaran-
tee from the aforementioned algorithms due to the complex 
nature of the nonlinear problem.

The present work proposes a recently added meta-heu-
ristic technique called ant lion optimization (ALO) [17] for 
determining the size of DG units in the radial distribution 
network. ALO algorithm simulates the hunting behavior 
of ant lions. It has the advantage of providing an optimal 
solution at higher speed with few parameters. Also, the use 
of random walks and the roulette wheel in ALO algorithm 
makes sure higher probability of resolving local optima stag-
nation. Moreover, local optima evasion is inherently high 
for ALO as it is a population-based algorithm. The conver-
gence is a guarantee one in the ALO algorithm by adaptively 
decreasing the intensity of ant’s movements. Most impor-
tantly ALO has only limited parameters to adjust. Due to 
the above mentioned reasons, the proposed ALO algorithm 
can able to provide a near global solution for the optimiza-
tion problems.

The supremacy of ALO algorithm in solving optimization 
problems in various fields [18–21] has motivated for finding 
solution for optimal installation of DG units in the radial distri-
bution system to reduce total real power loss. The present work 
uses an integrated methodology [22] of loss sensitivity fac-
tor (LSF) and voltage sensitivity factor (VSF) for computing 

the optimal bus location for DG placement. The performance 
of the proposed algorithm is evaluated against IEEE 33, 69 
and 119 bus balanced radial distribution power networks. The 
ALO results are compared with the results of GA-PSO; ABC-
CSO and ABC-BAT algorithms to outline its supremacy in 
determining optimal size of DG units with better convergence.

The remaining sections of this paper are organized as fol-
lows: Sect. 2 presents the problem formulation, while Sect. 3 
explains ALO algorithm for an optimization problem. In 
Sect. 4, an integrated methodology for computing the opti-
mal location of DG units is presented. The simulation results 
and conclusion are presented in Sects. 5 and 6 respectively.

2  Problem Formulation

The objective of the present work is to minimize the total 
real power losses of radial distribution power networks. The 
total real power loss reduction of distribution system is rep-
resented using a power loss index [23, 24]. The mathemati-
cal representation of objective function, F is expressed as 
follows:

From Eq. (1),  PDG,Tloss is the total real power loss of the 
system with DG units and  PTloss is the total real power loss 
of system without DG units. The minimum value of ILP 
indicates maximum reduction of total real power loss in the 
distribution network system.

The objective function of the proposed work is mini-
mized by satisfying the necessary equality and inequality 
constraints associated with the distribution power network 
system. The various constraints to be considered in the opti-
mization problem are described as follows:

2.1  Equality Constraints

2.1.1  Power Balance Constraint of DG Units

In a radial distribution power network, the total incoming 
power flow must be equal to the total outgoing power [25]. 
This can be mathematically represented in Eqs. (2) and (3)

where,  Ps and  Qs are real and reactive power of swing bus 
respectively.  PDG(j) and  QDG(j) are the real and reactive 

(1)F = min (ILP) = min

(
PDG,Tloss

PTloss

)

(2)PS +

NDG∑

j=1

PDG(j) =

L∑

j=1

Ploss(j) +

n∑

q=1

P(q)

(3)QS +

NDG∑

j=1

QDG(j) =

L∑

j=1

Qloss(j) +

n∑

q=1

Q(q)
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power capacity of a DG unit at  jth bus respectively.  Ploss(j) 
and  Qloss(j) are the active and reactive power line loss of 
 jth bus respectively. P(q) and Q(q) are the real and reactive 
power demand at bus q respectively.  NDG represents the 
number of installed DG units. L is a total number of trans-
mission lines in a given distribution network and n is a total 
number of buses in the system.

2.2  Inequality Constraints

2.2.1  Voltage Constraint

The voltage magnitude of a bus in a radial distribution net-
work should be maintained within the following limits to 
ensure stable operation.

From Eq. (4),  Vmin = 0.95 p.u. and  Vmax = 1.05 p.u. [17]. 
Where,  Vmin and  Vmax are the minimum and maximum 
allowable voltage of a bus respectively.

2.3  Capacity Limit of DG Units

The installed capacity of the DG units in distribution power 
network is constrained in a way not exceed total power 
delivered by the substation to prevent reverse power flow 
[25]. Equations (5) and (6) illustrates the total minimum 
and maximum real and reactive power capacity constraints 
of DG units respectively.

where

3  Ant Lion Optimization Algorithm

Ant lion optimization (ALO) algorithm is a recently added 
meta-heuristics technique introduced by Mirjalili [26] used 
for computing optimal solution to various engineering opti-
mization problems. ALO algorithm impersonates the hunt-
ing nature of ant lions, i.e. it mimics the hunting behavior 

(4)Vmin ≤
|
|Vi

|
| ≤ Vmax

(5)Pmin imum
TDG

= 0.1 ×

n∑

i=2

Pi and Pmax imum
TDG

= 0.6 ×

n∑

i=2

Pi

(6)

Qmin imum
TDG

= 0.1 ×

n∑

i=2

Qi and Qmax imum
TDG

= 0.6 ×

n∑

i=2

Qi

(7)Pmin imum
TDG

≤ PTDG ≤ Pmax imum
TDG

(8)Qmin imum
TDG

≤ QTDG ≤ Qmax imum
TDG

of ant lions. The interaction between the predator (ant lions) 
and the prey (ants) is utilized for solving optimization prob-
lems. The capability of balancing between exploration 
and exploitation makes ALO to be considered as a global 
optimizer for numerous applications. The hunting nature 
of ant lions involves five steps such as the random walk of 
agents, development of trap for ants, entrapment of ants in a 
trap, catching of prey and reconstruction of traps. The local 
optima problem in ALO is avoided by roulette wheel and 
random walks of ants. The mathematical modeling of differ-
ent phases ALO algorithm is described as follows:

3.1  Random Walk of Ants

Ants are normally moves stochastically in nature while 
searching of food. Hence, the movement of ants can be mod-
eled as a random walk as follows:

where, cums computes the cumulative sum, n is a number 
of iteration, t illustrates the step of random walk and r(t) is a 
stochastic function which can be defined as follows:

From Eq. (10), rand is a randomly generated number 
between 0 and 1. The position of ants is updated in each step 
of the optimization process by a random walk. However, the 
boundary condition of search space makes Eq. (9) cannot be 
used for updating the position of ants. Hence, the position of 
ants is normalized by using Eq. (11) in order to make sure 
that they are inside the given boundary condition.

 where,  ai and  bi represents the minimum and maximum 
random walk of ith variable respectively,  ci

t and  di
t repre-

sents the minimum and maximum value of ith variable at 
tth iteration respectively. The Eq. (11) should be applied in 
every iteration step to make sure the random walks inside 
the given search space.

3.2  Trapping in Ant Lions Traps

The random walks of ants in a search space get affected by 
ant lions traps. The effect of ant lions traps on the random 
walk of ants is mathematically represented using the follow-
ing equations:

(9)X(t) =

[
0, cums

(
2r
(
t1
)
− 1

)
, cums

(
2r
(
t2
)
− 1

)
,

............................., cums
(
2r
(
tn
)
− 1

)

]

(10)r(t) =

{
1 if rand > 0.5

0 if rand ≤ 0.5

}

(11)Xt
i
=

(
Xt
i
− ai

)
×
(
dt
i
− ct

i

)

(
bi − ai

) + ct
i
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where,  ct and  dt is a vector with the minimum and maximum 
values of all variables at tth iteration respectively and 
Ant liont

j
 indicates the position of jth ant lion for a tth itera-

tion. The Eqs. (12) and (13) illustrates the random walk of 
ants around a selected ant lion in a hyper sphere defined by 
c and d vectors.

3.3  Trap Building

The hunting behavior of ant lions is modeled by employing a 
roulette wheel operator. During the process of optimization, 
roulette wheel selection operator is utilized for selecting the 
ant lions according to their fitness value. This approach cre-
ates more possibility for the ant lions to catch the prey.

3.4  Sliding Ants Towards Ant Lion

The ant lions construct the traps according to their fitness 
value using the aforementioned mechanisms. Whenever, the 
randomly moving ants get caught near the traps, ant lions 
starts to shoot out the sands outward from the center of the 
trap. This makes sure there is no chance for ants to escape 
from the trap. To mathematically represent this process, 
the radius of random walks of ants in the hyper sphere is 
adaptively reduced. The mathematical representation of this 
process is given using the following equations:

where,  ct and  dt is a vector with the minimum and maximum 
values of all variables at  tth iteration respectively and I is a 
ratio. From Eqs. (14) and (15), I = 10W t

T
 where, t points to 

the current iteration, T is a total number of iteration and w is 
a constant defined according to the current iteration, t. The 
Eqs. (14) and (15) decreases the radius of ant’s position and 
imitates the sliding process of ant within the pits.

3.5  Catching of Prey and Rebuilding of Traps

This phase of ALO is focused on catching of prey (ants) by 
predator (ant lions) and reconstruction of traps for catching 
of new prey (ants). For representing this process, it is consid-
ered that catching of prey happens only when ants become 
fitter than the ant lion. The action of this phase is represented 
using the following equation:

(12)ct
i
= Ant liont

j
+ ct

(13)dt
i
= Ant liont

j
+ dt

(14)ct =
ct

I

(15)dt =
dt

I

where, Ant liont
j
 and Antt

j
 are points the position of jth ant 

lion and ith ant at tth iteration respectively.

3.6  Elitism

In evolutionary algorithms, more importance is given to the 
elitism characteristics. In each and every iteration process of 
ALO algorithm, best ant lion solution is considered as elite. 
Since elite is considered as the best ant lion, it should have the 
tendency to control the entire motion of remaining ants during 
the iterations. The elitism process can be represented using the 
following mathematical expression:

where, Antt
i
 points the position of ith ant at tth iteration, Rt

A
 

is a random walk of ants around the ant lion chosen by roulette 
wheel at tth iteration and Rt

E
 is a random walk of ants around 

elite at tth iteration.

4  Identification of Optimal Bus Locations 
for DG units

To compute the objective function value and optimal bus loca-
tion for DG unit, load flow analysis plays an essential part 
in the distribution system. Load flow analysis by Gauss Sei-
dal method and Newton Raphson method are not suitable for 
distribution power system due to its radial structure and high 
R/X ratio. These methods give desired solution only for the 
transmission system. Hence, these methods are unsuitable to 
make power flow computation for the distribution network sys-
tem. Due to lower memory requirement, faster convergence 
rate, higher computational efficiency and accuracy, backward-
forward sweep algorithm [17] has been selected for a radial 
distribution network.

4.1  Backward–Forward Sweep Load Flow Method

The backward–forward sweep load flow algorithm for a radial 
network consists of two processes i.e. forward and backward 
sweep processes. Forward sweep is employed for computing 
the node voltage from the near end to far end and backward 
sweep is used for calculating the branch current from the far 
end to near end.

(16)Ant liont
j
= Antt

i
if f

(
Antt

i

)
> f

(
Ant liont

j

)

(17)Antt
i
=

Rt
A
+ Rt

E

2
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4.2  Optimal DG Location by Integrated 
Methodology

Selection of suitable bus location for installation of DG 
units is important to attain desired objectives in the dis-
tribution power network. The present work uses an inte-
grated approach for determining the optimal bus location 
by evaluating the loss sensitivity factor (LSF) and voltage 
sensitivity factor (VSF) of each bus.

LSF for a line section connected between buses i and 
i + 1 of a sample three bus distribution network shown in 
Fig. 1 is evaluated using Eq. (18).

where,  Ri,i+1—resistance of a line section between the buses 
i and i + 1,  Qi+1,eff—total effective reactive power beyond the 
bus i + 1,  Vi+1—voltage magnitude of bus i + 1

Initially, the LSF value for all the end buses of line 
sections is computed with the help of load flow analy-
sis solution. The computation of LSF greatly reduces the 
search space for the optimization process by pointing out 
the possible candidate buses for DG placement. The can-
didate buses are ranked in descending order based on LSF 
values. Now, VSF corresponding to the bus sequences of 
LSF is determined by dividing the corresponding bus volt-
age  (Vi) by 0.95.

The buses having VSF greater than 1.01 are considered 
as healthy buses and are not considered for DG place-
ment. Then, the buses having VSF value less than 1.01 are 
considered as candidate buses for DG installation. Now, 
the candidate buses are ranked according to their LSF and 
VSF values and the optimal bus locations for DG place-
ment are chosen accordingly.

(18)LSFi,i+1 =
�Ploss

�Qi+1,eff

=
2Qi+1,eff Ri,i+1

|
|Vi+1

|
|
2

(19)VSFi =
Vi

0.95

4.3  ALO Algorithm for Computing Optimal Site 
and Size of DG Units

The step by step algorithm for computing optimal site and 
size of DG units in a distribution power network is described 
as follows:

Step 1: Read line and bus data of a distribution network 
system and perform load flow analysis using backward–for-
ward sweep technique.

Step 2: Locate the optimal bus position for DG units by 
calculating LSF and VSF for each bus using Eqs. (18) and 
(19).

Step 3: Initialize the number of DG units, the size of 
population, maximum number of iteration, the minimum 
 (dgmini) and maximum  (dgmax) values of DG unit. No of 
DG units = 3, Maximum iteration = 50,  dgmini = 60 and 
 dgmax = 2000.

Step 4: Using Eq. (20), generate random values for the 
population of DG size.

Step 5: Compute the total real power loss for the popula-
tion generated.

Step 6: Choose DG size which gives a low real power loss 
as a current best solution.

Step 7: Update the position of ant lions using 
Eqs. (9)–(11).

Step 8: Perform load flow analysis again and compute the 
total real power loss for the updated population size.

Step 9: Replace the best solution if the obtained total 
power loss is less than the current best solution, otherwise, 
go to step 7.

Step10: Check the iteration count and print the results if 
the maximum iteration reached.

5  Results and Discussion

The necessary program code for implementation of ALO 
algorithm to determine optimal site and size for multiple 
DG units has been developed in Matlab16b on Intel core 
i3, 3.7 GHz, 4 GB RAM processor PC. The present work is 
examined against IEEE 33, 69 and 119 bus balanced radial 
distribution networks with constant power loads.

5.1  IEEE 33 Bus Radial Distribution System

IEEE 33 bus test system includes 32 load buses and 32 
branches. Also, it has a 3720 kW of total real power and 
2300 kVAr of total reactive power. The required bus and 
line data for IEEE 33 bus radial distribution test system 

(20)population =
(
dgmax − dgmin

)
× rand() + dgmin

Fig. 1  Sample three bus distribution network
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is referred from [27]. Voltage profile and total real power 
loss of test system without DG units are computed using 
backward-forward sweep load flow algorithm [17] for a 
base of 100 MVA and 12.66 kV. The test system has total 
real power and reactive power losses of 210.98 kW and 143 
kVAr respectively. With the help of load flow results, LSF 
and VSF of all the buses are determined. Based on LSF val-
ues, a total of 21 buses have been identified as a candidate 
buses for DG placement. In this test system, three DG units 
are optimally integrated. Therefore, buses 30, 13 and 10 are 
selected as optimal bus locations for DG placement from 
the candidate buses.

The optimal size of PV and WT type of DG units, total 
real power loss, percentage of loss reduction and mini-
mum bus voltage of IEEE 33 bus system for ALO, GA-
PSO, ABC-CSO and ABC-BAT algorithms is presented in 
Table 1.

5.1.1  Multiple PV DG Units

Optimal allocation of PV type DG units decreased the total 
real power loss of the test system from 210.98 to 86.40 kW. 
Furthermore, DG units enhanced the minimum bus voltage 
of the test system from 0.9038 to 0.9767 p.u. Referring to 
Table 1, the proposed ALO algorithm provided better power 
loss reduction and voltage profile enhancement than studied 

GA-PSO, ABC-CSO and ABC-BAT algorithms. The voltage 
profile of IEEE 33 bus test system with PV units for different 
algorithms is illustrated in Fig. 2.

The comparative illustration of convergence characteris-
tics of ALO, GA-PSO, ABC-CSO and ABC-BAT is shown 
in Fig. 3. From Fig. 3, it is clearly seen that proposed ALO 
algorithm converges faster than other studied algorithms to 
an optimum solution. Also, ALO took only 12 iterations 

Table 1  Performance comparison for IEEE 33 bus radial distribution system with multiple DG units

Techniques Power factor 
of DG units

Optimal locations 
for DG (bus)

Optimal size of 
DG (kVA)

PDG,Tloss (kW) Power loss 
reduction (%)

Vmini (p.u) No. of 
iterations

CPU time (s)

GA-PSO Unity 30
13
10

1496.7
596.9
234.6

90.53 57.09 0.9689 29 22.43

ABC-CSO Unity 30
13
10

1265.7
609.8
198.4

89.66 57.50 0.9701 21 14.12

ABC-BAT Unity 30
13
10

1360.8
520.8
148.5

88.07 58.25 0.9742 16 10.58

ALO Unity 30
13
10

1323.5
415.2
130.2

86.40 59.05 0.9767 12 7.55

GA-PSO 0.866 lag 30
13
10

1425.7
639.6
168.4

37.08 82.42 0.9712 24 17.35

ABC-CSO 0.866 lag 30
13
10

1394.1
553.1
296.8

36.61 82.65 0.9763 20 15.10

ABC-BAT 0.866 lag 30
13
10

1336.2
465.9
201.2

34.43 83.68 0.9798 15 9.46

ALO 0.866 lag 30
13
10

1225.2
610.4
269.1

31.65 85.00 0.9802 10 6.23

0.95

0.955

0.96

0.965
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0.975
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1
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Fig. 2  Voltage profile of IEEE 33 bus test system with PV units for 
different algorithms
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to converge, whereas GA-PSO, ABC-CSO and ABC-BAT 
algorithms took 16, 21 and 29 iterations respectively. Fur-
thermore, proposed ALO algorithm consumed lesser CPU 
time to yield an optimal solution compared to other imple-
mented algorithms. Therefore, from test results it can be 
noted that the proposed ALO algorithm provided maximum 
power loss reduction with better convergence characteristics 
than other studied algorithms.

5.1.2  Multiple WT DG units

Inclusion of WT type DG units minimized the total real 
power loss of the test system from 210.98 to 31.65 kW 
and improved the minimum bus voltage of the test system 
from 0.9038 to 0.9802 p.u. Referring to Table 1, compared 
with the studied GA-PSO, ABC-CSO and ABC-BAT algo-
rithms, the proposed ALO algorithm provided better power 
loss reduction and voltage profile enhancement. The voltage 
profile of IEEE 33 bus test system with WT units for differ-
ent algorithms is illustrated in Fig. 4.

The convergence characteristics of ALO, GA-PSO, ABC-
CSO and ABC-BAT are illustrated in Fig. 5. From Fig. 5, 
it is clearly seen that ALO algorithm not only converges 
faster than other studied algorithms it also consumes mini-
mum CPU time. This shows the ability of the proposed ALO 
algorithm in providing optimum solution with better conver-
gence characteristics. The voltage profile of IEEE 33 bus test 
system with and without inclusion of multiple DG units are 
illustrated in Fig. 6.

5.2  IEEE 69 Bus Radial Distribution System

This test system includes 68 load buses and 68 branches. The 
total real power and reactive per demand of this test system 
is 3800 kW and 2690 kVAr respectively. The necessary bus 
data and line data required for IEEE 69 bus radial distribu-
tion system is referred from [27]. The total real power loss 
and reactive power loss of this test system are 225 kW and 
102.20 kVAr respectively. The candidate bus locations for 
DG installation are identified by evaluating VSF and LSF 
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Fig. 3  Convergence characteristics for IEEE 33 bus RDS with PV 
type DG units
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values. A total of 21 buses have been considered as a can-
didate buses for finding the optimal bus locations. The per-
formance of the proposed ALO algorithm and other studied 
algorithms are examined with optimal placement of multiple 
PV and WT DG units. For 69 bus test system, three DG units 
are optimally integrated. Therefore, bus numbers 61, 17 and 
65 are identified as optimal bus locations based on LSF and 
VSF. The optimal capacity of PV and WT type DG units, 
total real power loss and percentage of real power loss reduc-
tion, and minimum bus voltage of IEEE 69 bus test system 
for ALO, GA-PSO, ABC-CSO and ABC-BAT algorithms 
are given in Table 2.

5.2.1  Multiple PV DG Units

The optimal installation PV type DG units reduced the total 
real power loss of test system from 225 to 70.51 kW and 
also enhanced the minimum bus voltage from 0.9092 to 
0.9807 p.u. From Table 2, it can be pointed out that among 
the studied algorithms, the proposed ALO algorithm have 
yielded maximum percentage of real power loss reduction 
and better voltage improvement. The voltage profile of IEEE 
69 bus test system with PV units for different algorithms is 
illustrated in Fig. 7.

The convergence characteristics of ALO, GA-PSO, 
ABC-CSO and ABC-BAT are illustrated in Fig. 8. The 

proposed ALO algorithm only took 16 iterations to con-
verge to an optimal solution. However, GA-PSO, ABC-
CSO and ABC-BAT algorithms took 32, 25 and 19 itera-
tions respectively to converge. This shows the superiority 
of ALO algorithm over other implemented algorithms in 
providing adequate performance.

Table 2  Performance comparison for IEEE 69 bus radial distribution system with multiple DG units

Techniques Power factor 
of DG units

Optimal location 
for DG (bus)

Optimal size of 
DG (kVA)

PDG,Tloss (kW) Power loss 
reduction (%)

Vmini (p.u) No. of 
iterations

CPU time (s)

GA-PSO Unity 61
17
65

1386.1
102.4
281.3

74.29 66.98 0.9744 32 26.56

ABC-CSO Unity 61
17
65

1288.1
426.9
129.3

73.68 67.25 0.9767 25 23.51

ABC-BAT Unity 61
17
65

1202.3
328.0
265.7

71.87 68.06 0.9790 19 19.12

ALO Unity 61
17
65

1324.9
451.6
270.3

70.51 68.67 0.9807 16 15.29

GA-PSO 0.866 lag 61
17
65

1498
660.2
338.1

11.88 94.72 0.9816 38 30.56

ABC-CSO 0.866 lag 61
17
65

1400.5
602.1
320.0

11.35 94.95 0.9859 30 27.46

ABC-BAT 0.866 lag 61
17
65

1495.6
526.8
289.6

10.09 95.51 0.9890 23 20.07

ALO 0.866 lag 61
17
65

1471.7
613.6
225.1

8.78 96.10 0.9901 18 16.54
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Fig. 7  Voltage profile of IEEE 69 bus test system with PV units for 
different algorithms
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5.2.2  Multiple WT DG Units

Inclusion of WT type DG units decreased the total real 
power loss of the test system from 225 to 8.78 kW and 
enhanced the minimum bus voltage of the test system from 
0.9092 to 0.9901 p.u. Compared with studied GA-PSO, 
ABC-CSO and ABC-BAT algorithms, the proposed ALO 
algorithm provided maximum percentage of power loss 
reduction and voltage profile enhancement. The voltage 
profile of IEEE 69 bus test system with WT units for dif-
ferent algorithms is illustrated in Fig. 9.

The proposed ALO algorithm converges faster than 
other implemented algorithms with minimum CPU time 
(Table 2).

The convergence characteristics of ALO, GA-PSO, ABC-
CSO and ABC-BAT are illustrated in Fig. 10. This shows 
the ability of the proposed ALO algorithm in providing opti-
mum solution at better convergence rate. The voltage profile 
of IEEE 69 bus test system with and without inclusion of 
multiple DG units are illustrated in Fig. 11.

5.3  IEEE 119 Bus Radial Distribution System

The performance of proposed ALO algorithm is investigated 
on large distribution power network. i.e., 119 bus RDS. The 
necessary line and bus data of this system is referred from 
[28]. The test system has a total real and reactive power 
demand of 22,709.7 kW and 17,041.1 kVAr respectively 
at a base of 100 MVA and 11 kV. The total real power and 
reactive power loss of this test system without DG units 
are 1296.3 kW and 978.36 kVAr respectively. The number 
of iteration count for this system is increased to 100. Five 
number of PV type DG units are placed in this test sys-
tem for minimizing the total real power loss. The optimal 
locations, optimal capacity of DG units and total real power 
loss obtained using ALO, GA-PSO, ABC-CSO and ABC-
BAT algorithms are presented in Table 3. Compared with 
GA-PSO, ABC-CSO and ABC-BAT algorithms, the pro-
posed ALO provided maximum power loss reduction and 
better voltage profile improvement. The voltage profile of 
119 bus test system with and without DG units is illustrated 
in Fig. 12. The convergence curve for the proposed ALO 
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algorithm along with other studied algorithms is illustrated 
in Fig. 13. From Fig. 13, it can be noted that ALO algo-
rithm convergence at better rate than the other implemented 
algorithms.

6  Conclusion

In this paper, an ant lion optimization algorithm has been 
applied for IEEE 33, 69 and 119 bus balanced radial dis-
tribution network systems to compute the optimal capac-
ity of multiple DG units to reduce the total real power 
losses. The optimal bus locations are identified based on 

loss sensitivity factor and voltage sensitivity factor. The 
optimal capacity of different DG units has been deter-
mined using ALO, GA-PSO, ABC-CSO and ABC-BAT 
algorithms. The outcome of ALO algorithm has been 
related other implemented algorithms to show its supe-
riority over power loss reduction. The comparative stud-
ies have clearly highlighted the superiority of ALO algo-
rithm towards the minimization of real power loss. The 
proposed ALO algorithm provides maximum reduction of 
total real power with better voltage profile enhancement. 
Furthermore, ALO converged at faster rate than other stud-
ied algorithms. This ability of ALO algorithm in proving 
optimal solution with minimum computation time makes 
it ideal to be used for larger distribution power networks. 

Table 3  Performance comparison for IEEE 119 bus radial distribution system with multiple DG units

Techniques Power factor 
of DG units

Optimal location 
for DG (bus)

Optimal size of 
DG (kVA)

PDG,Tloss (kW) Power loss 
reduction (%)

Vmini (p.u) No. of 
iterations

CPU time (s)

GA-PSO Unity 71
69
70
109
68

2869.2
2651.7
2149.0
2016.8
2659.1

607.18 53.16 0.9596 81 34.56

ABC-CSO Unity 61
17
65
12
13

2712.8
2103.4
1986.5
1849.1
2265.9

579.31 55.31 0.9682 69 31.65

ABC-BAT Unity 61
17
65
12
13

2698.5
2006.9
2102.5
1965.4
1998.3

526.04 59.42 0.9716 57 29.84

ALO Unity 61
17
65
12
13

2650.1
1995.5
2103.2
1896.7
2006.9

495.18 61.8 0.9763 48 24.43
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Fig. 12  Voltage profile of IEEE 119 bus radial distribution system 
with and without DG units (PV)
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The proposed work can be extended for a distribution net-
works with unbalanced loads as a future scope.
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