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Abstract
Generally, studies investigating the strapdown inertial navigation system/global navigation satellite system (SINS/GNSS)-
integrated navigation of surface vessels focus on adaptive strong nonlinear algorithms to handle the system and measurement 
noise induced by the complex environment and motion state. However, these studies rarely consider the suitability of strong 
nonlinear adaptive optimization in all conditions or the existence of any restriction. The application conditions for these stand-
ard nonlinear filters with respect to the surface vessel SINS/GNSS require investigation. In this study, the estimation accuracy 
of the motion state obtained using the extended Kalman filter, unscented Kalman filter, and cubature Kalman filter in case of 
different vessel motions is compared based on the simulated ship sensor data obtained using a dynamic large surface vessel 
model under various marine conditions. Compared with previous studies, the data generator in this study simulates the actual 
ship movements under various conditions, based on which considerably detailed and practical analysis and conclusion can 
be realized in case of the SINS/GNSS-integrated navigation obtained using various standard nonlinear filters. In particular, 
the situations often encountered by large surface vessels during integrated navigation attributed to environmental interfer-
ence or instrument failure, including system noise amplification, initial alignment error, and GPS outage, are investigated.

Keywords  SINS/GNSS-integrated navigation · Large ship dynamics · Extended Kalman filter · Unscented Kalman filter · 
Cubature Kalman filter

List of Symbols
m	� Mass of the vessel
I	� Moments of inertia
J	� Additional moments of inertia
x, y and z	� Position of the ship
φ, θ and ψ	� Attitude of the ship
u, v and w	� Linear velocity of the ship
p, q and r	� Angular velocity of the ship
X, Y and Z	� Force acting on the ship
K, M and N	� Moment acting on the ship
Ω	� The attitude error of SINS on the ship

V 	� The velocity error of SINS on the ship
L, λ, and h	� The latitude, longitude, and height of SINS 

on the ship
Q	� Process noise covariance matrix
R	� Measurement noise covariance matrix
W	� Process noise vector
V	� Measurement noise vector
X	� State vector
Z	� Measurement vector

1  Introduction

Ship navigation at sea is considerably dependent on the 
positioning signals of the global navigation satellite system 
(GNSS) used for ship positioning. The stability of the GNSS 
signal will affect the usual operation of the gyrocompass, 
automatic identification system, autopilot, and other equip-
ment, influencing ship control. Although merchant ships are 
generally equipped with two or more sets of GNSSs, various 
situations, such as lightning strikes, shielding, and interfer-
ence, may arise, causing a GNSS signal outage. A strapdown 
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inertial navigation system (SINS) can provide navigation 
information for a vessel without using external sensors and 
is unbiased by external factors [1]. However, the navigation 
information provided by the SINS maintains high preci-
sion for only a short period of time [2]. Therefore, the SINS 
navigation error will accumulate over time [3]. This error 
can be mitigated by periodically or continuously updating 
the inertial system using external measurements, which can 
considerably improve the navigation accuracy. Thus, ship 
navigation researches are currently focused on algorithms of 
SINS/GNSS approaches and other multi-sensor-integrated 
navigation frame technologies.

The implementation of multi-sensor navigation is depend-
ent on effective data fusion algorithms to manage large 
amounts of raw sensor measurements and achieve reason-
ably accurate navigational information. The Kalman filter 
(KF) is a popular algorithm applied to the data fusion algo-
rithms as an optimal estimator for a linear stochastic system 
based on the initial values, dynamic system, measurement 
models, and a priori knowledge regarding noise [4]. In a 
recent study, a simplified integrated navigation algorithm 
has been designed for a carrier with low dynamic motion 
[5]. However, the KF is only suitable for systems that can 
be linearized, which is not possible in case of vessel naviga-
tion systems. Therefore, other approaches, such as EKF [6], 
which has been primarily applied to situations with sim-
ple principles and a low computational burden, have been 
widely investigated. The EKF algorithm can be optimized 
for various applications [7, 8]. In case of unknown noise 
distribution, the algorithm can be optimized using adaption 
algorithms in measurement and progress covariance matri-
ces. From this viewpoint, numerous filtering algorithms, 
such as the Huber-based EKF and the optimal estimation 
theory based on maximum likelihood, have been derived [9, 
10]. The EKF algorithm was implemented by linearizing a 
nonlinear system, and the observation model with respect to 
the current state is obtained using a first-order Taylor series 
expansion. Clearly, this approximation introduces substantial 
errors into EKF when the posterior mean and covariance of 
the transformed random variables are calculated, resulting 
in suboptimal performance or even the divergence of the 
filter [11].

The UKF algorithm was proposed in a previously con-
ducted study [12]. The UKF algorithm tracks the states using 
a series of sigma points; this tracking is accomplished via 
the usage of novel deterministic sampling approaches to 
approximate the optimal gain and prediction terms in the 
KF framework, which is considerably easier than simulating 
an arbitrary nonlinear function. According to Merwe and 
Wan, an unscented transform can be used to approximate the 
nonlinear systems, achieving an error reduction of approxi-
mately 30% when compared with EKF [13]. Various schol-
ars have investigated adaptive filtering algorithms based on 

UKF. For example, a refined strong tracking UKF was devel-
oped to enhance the robustness against kinematic model 
errors by adapting the influence of prior information [14]. 
Further [15], an adaptive fading UKF based on Mahalanobis 
distance (M-distance) was developed to improve the adapt-
ability and robustness of the local state estimations against 
the process modeling errors. UKF algorithms have been 
applied to integrated navigation in various scenarios [16–19] 
and are constantly applied and improved by scholars. A pre-
vious study has [20] refrained from using the covariance 
upper bound to eliminate the correlation of the local states. 
However, UKF is prone to numerical instability, resulting 
in dimensional errors or divergence and limiting their appli-
cations in complex systems, including situations involving 
rapid dynamics or strong nonlinearity.

In a previous study [21], a nonlinear filtering method has 
been proposed based on cubature transformation, termed as 
the cubature KF (CKF). CKF can be considered as a second-
order approximation to a nonlinear system. Unlike UKF, 
CKF uses 2n cubature points to propagate the state and a 
covariance matrix, resulting in a lower computation burden 
compared with that associated with UKF [22]. CKF and its 
extensions have been extensively applied in integrated navi-
gation [4, 23, 24]. Although CKF exhibits excellent theoreti-
cal performance and is widely used in practice, inaccurate 
mathematical models or noise statistics will result in large 
state estimation errors or even divergence. Numerous schol-
ars have improved CKF to resolve this issue. For example, a 
square-root-adaptive CKF has been applied in space attitude 
estimation [25] and an improved fifth-degree CKF algorithm 
has been proposed, which includes an adaptive error covari-
ance matrix scaling algorithm to improve the accuracy under 
large-misalignment angles [26]. A new algorithm, termed 
the improved strong tracking seventh-degree spherical sim-
ple-radial CKF, was proposed [27] to address the uncertainty 
associated with the prior state estimate covariance.

Numerous studies have investigated the SINS/GNSS-
integrated vessel navigation. Some previous studies [1, 
28–30] have focused on the large model errors that can 
be attributed to the measurement and system noise, and 
several adaptive approaches have been designed to improve 
the robustness and adaptability of the ship-integrated navi-
gation algorithms. Previous studies [31, 32] have verified 
the effectiveness of the KF and UKF algorithms in case 
of the SINS/GNSS-integrated navigation of a merchant 
ship, and their application to an unmanned surface vehicle 
was verified using an experimental ship test. These stud-
ies intended to evaluate the applicability of considerably 
robust algorithms to real-time problems. They considered 
the accuracy of the estimates and the processing time of 
the measurements, which should be considered during real-
time estimations.
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However, these studies focused on optimizing a single 
algorithm and neglected the effect of applying multiple fil-
tering algorithms to vessels exhibiting varying movements 
in the ocean. Furthermore, these studies have generalized the 
integrated navigation problem for a vessel as an optimal esti-
mation problem for a strongly nonlinear system. This study 
makes the following contributions to determine whether this 
assumption is suitable in all conditions. (1) In an artificial 
marine environment, the trajectory cannot be simply char-
acterized as a straight or curved line. We design a sensor 
data generator based on a dynamic ship model to generate 
considerably realistic data to simulate various the motion 
and marine conditions of a ship at sea. (2) The performances 
of EKF, UKF, and CKF under various motion conditions, 
marine environments, and sensor working conditions are 
compared. This is performed in a more comprehensive man-
ner when compared with previous studies.

This study is organized as follows. Section 2 presents 
the vessel movement model, the simulation of the sensor 
data, and the error model of the vessel-integrated navigation, 
respectively. Section 3 demonstrates the manner in which the 
conventional EKF, UKF, and CKF can improve the accu-
racy of the raw sensor simulation data. Section 4 validates 
the algorithms based on some simulations by considering 
various motion states in a marine environment. The final 
section presents the conclusions of this study and proposals 
for future work.

2 � Methods

2.1 � Ship separation model with sensors

2.1.1 � Coordinate frames and rigid body model

Before applying filters to the vessel SINS/GNSS, appropri-
ate systems must be established to assess the vessel’s move-
ment for generating virtual data mimicking the motion of 
a real vessel. Maneuvering model group (MMG) separa-
tion modeling [33] is adopted to analyze the movement of 
a system having six degrees of freedom; this approach has 
been extensively used to study ship motion control and state 
estimation. The ship is generally considered to be a rigid 
body to determine the motion of the vessel, and the shape 
and internal mass distribution do not change with the move-
ment of the vessel. After assuming an infinite water depth, 
we consider Newton’s laws of motion and the MMG model 
and ignore the mutual coupling between the heave and the 
remaining four degrees of freedom. The dynamic equations 
used for transforming one body-fixed reference to another 
can be given as follows:

where m is the mass of the vessel and mx, my, and mz denote 
the additional values observed when the vessel is sailing. 
Ixx, Iyy and Izz are the moments of inertia about the xb, yb, zb 
axes, respectively, whereas Jxx, Jyy and Jzz are the additional 
moments of inertia about the xb, yb and zb axes. The sub-
scripts H, P, R represent the force experienced by the hull, 
the thrust of the propeller, and the hydrodynamic force of 
the rudder acting on the vessel, respectively. u, v, w, p, q, r 
represent the linear and angular velocities, expressed with 
respect to the body-fixed frame. We applied the previously 
proposed formulas for obtaining hydrodynamic parameters 
[33, 34] to obtain specific algorithms with respect to these 
parameters.

Two coordinate frames are introduced, i.e., the moving 
coordinate frame fixed on the vessel, denoted as the body-
fixed reference, and the tangent plane on the surface of the 
Earth, denoted as the ENU (N-frame; East North Up) frame, 
where the xn axis points toward the geographic east, the yn 
axis points toward the north, and the zn axis points toward 
the terrestrial surface. Based on the rotation of two refer-
ence frames of rigid bodies, Tn

b
 and Rn

b
 are the transformation 

matrices of the angular velocity and linear velocity between 
the body-fixed and ENU frames.

Here, s(*) = sin(*), c(*) = cos(*), and t(*) = tan(*). The 
notation for the vessel’s kinetic and reference frames implies 
the kinematic relation between the linear and angular dis-
placement frames, as shown in Fig. 1.

(1)

(
m + mx

)
(u̇ − vr + wq) = XH + XP + XR(

m + my

)
(v̇ + ur − pw) = YH + YP + YR(

m + mz

)
(ẇ − qu + vp) = ZH(

Ixx + Jxx
)
ṗ +

(
Izz − Iyy

)
qr = KH + KP + KR(

Iyy + Jyy
)
q̇ +

(
Izz − Iyy

)
pr = MH +MP +MR(

Izz + Jzz
)
ṙ +

(
Iyy − Ixx

)
qp = NH + NP + NR

(2)

Tn
b
=

⎡
⎢⎢⎣

c(�) 0 s(�)

t(�)s(�) 1 −t(�)c(�)

−s(�)c(�)−1 0 c(�)c(�)−1

⎤
⎥⎥⎦

Rn
b
=

⎡
⎢⎢⎢⎣

c(�)c(�) − s(�)s(�)s(�),

s(�)c(�) + s(�)c(�)s(�),

−c(�)s(�),

−s(�)c(�), s(�)c(�) + s(�)c(�)s(�)

c(�)s(�), s(�)s(�) − s(�)c(�)c(�)

s(�), c(�)s(�)

⎤⎥⎥⎥⎦
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2.1.2 � Simulation of the vessel sensor models

Gyroscopes and accelerometers are the primary inertial 
sensors of SINS, and the vessel’s navigation information 
is obtained from the inertial measurement unit (IMU) 
calculations. In case of the SINS equations, i denotes the 
Earth-centered frame, n denotes the ENU frame, e denotes 
the Earth-centered fixed frame, and b denotes a body-fixed 
frame. fb denotes the accelerometer output, �b

ib
 denotes the 

angular velocity measured by the gyroscope, �za
xaya

 (xa = i, 
e, n; ya = e, n, b; za = n, b) denotes the rotational rate along 
za with respect to xa and ya. qnb denotes the rotating quater-
nion between b and n. In actual applications, the vessel’s 
velocity, attitude, and position can be obtained by integrat-
ing the angular rate and acceleration obtained from the IMU 
calculations, as shown in (3). The attitude and position of 
the vessel in the ENU frame are obtained from the inverse 
trigonometric operation of qnb and Rn(t)

e
.

where F is the transformation matrix associated with the 
Earth’s radius and curvature as well as the vessel’s latitude 
and altitude. T is the sampling period in case of SINS.

Until now, the complete solution process has been intro-
duced in case of SINS. The attitude, velocity, and displace-
ment of the vehicle model calculation are substituted into 
the inverse calculation model for SINS to obtain the SINS 
simulation data generated using MMG. Finally, errors are 
added to the generated SINS data. This process is equivalent 
to the installation of a mathematical sensor on a mathemati-
cal vessel model.

The GNSS model can be simulated as:

where poserror and verror are the position and velocity 
errors of the GNSS, respectively. The specific schematic 
sensors are based on MMG.

2.2 � Dynamic SINS error model

The SINS error model is an important feature that should be 
considered. The obtained error terms lead to the divergence 
of the SINS’s state after integration and must be rectified 
in a timely manner. Figure 2 shows that the solution equa-
tion of SINS is nonlinear; thus, the error propagation model 
of SINS is nonlinear. The error models can be primarily 

(3)

⎧
⎪⎨⎪⎩

q̇nb = qwb
nb
∕2,wb

nb
= wb

ib
− Rb

n

�
wn
ie
+ wn

en

�
v̇nb = Rn

b
f b −

�
2wn

ie
+ wn

en

�
× vn + gn

Rt
en
=
��
I −

�
xt×

��
Rt−1
en

�
, xt = Fvt

nb
T

(4)
{

pos�
gnss

= posn + poserror

v�
gnss

= vn + verror

Fig. 1   Reference frames and notation variables for the vessel

Fig. 2   The principle of the mathematical sensor model based on the dynamic vessel model
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categorized as small-misalignment-angle models and large-
misalignment-angle models. In a small-misalignment 
model, the error equation of the position is linear and can 
be expressed as follows:

where δ specifies the error and Ω denotes the attitude of the 
vessel. The error equations with respect to velocity and posi-
tion are identical in case of the small- and large-misalign-
ment-angle models and will be introduced below.

For the error model of SINS with a large misalignment 
angle, the conversion matrix Cn′

n
 must be introduced between 

the ideal navigation coordinate system n and the actual navi-
gation coordinate system n’. This matrix is generated by 
the SINS error source during the rotation of the coordinate 
system and is expressed as follows:

By assuming that �n′

nn′
 is the angular velocity of n’ relative 

to the n frame, the relation between �n′

nn′
 and the error of the 

rotational angular velocity 𝛿Ω̇ can be given as follows in (7).

Further, the error dynamic function in ENU frame can be 
given as follows in (8).

The error dynamics in ENU frame with respect to the 
attitude �Ωn , velocity �Vn , and position [�L���h] (L, λ, and 

(5)𝛿Ω̇ = [𝛿Ω×]
(
𝜔n
ie
+ 𝜔n

en

)
+
(
𝛿𝜔n

ie
+ 𝛿𝜔n

en

)
− Rn

b
𝜔b
ib

(6)

Cn�

n
=

⎡
⎢⎢⎢⎣

c(��)c(��) − s(��)s(��)s(��),

−c(��)s(��),

s(��)c(��) + c(��)s(��)s(��),

c(��)s(��) + s(��)s(��)c(��),−s(��)c(��)

c(��)c(��), s(��)

s(��)s(��) − c(��)s(��)c(��), c(��)c(��)

⎤⎥⎥⎥⎦

(7)

⎧⎪⎪⎨⎪⎪⎩

𝜔n�

nn�
=C−1

w
𝛿Ω̇

Cw=

⎡⎢⎢⎣

c(𝛿𝜑) 0 − s(𝛿𝜑)c(𝛿𝜃)

0 1 s(𝛿𝜃)

s(𝛿𝜑) 0 c(𝛿𝜑)c(𝛿𝜃)

⎤⎥⎥⎦

(8)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝛿Ω̇n = C−1
w

��
I − Cn�

n

�
𝜔̂n
in

+ Cn�

n
𝛿𝜔n

in
− Rn�

b
𝛿𝜔b

ib

�
𝛿V̇n =

�
I −

�
Cn�

n

�T�
Rn
b
f̂ b +

�
Cn�

n

�T
Rn�

b
𝛿f b

−
�
2𝛿𝜔n

ie
+ 𝛿𝜔n

en

�
×
�
V̂n − 𝛿Vn

�
−
�
2𝜔̂n

ie
+ 𝜔̂n

en

�
× 𝛿Vn + 𝛿gn

𝛿L̇ = 𝛿vn
N
∕
�
Rm + h

�
𝛿𝜆̇ = 𝛿vn

E
sec(L)∕

�
Rn + h

�
+𝛿Lvn

E
tan(L)sec(L)∕

�
Rn + h

�
𝛿ḣ = 𝛿vn

U

h denote the latitude, longitude, and height of the vessel) 
are obtained in (8), where ^ specifies the estimated values, 
which is the sum of the error δ and the true value. Rm and 
Rn are the Earth’s radius for a meridian circle and the prime 
vertical.

Above the water surface, the latitude errors δL and 
δh are small in magnitude. It satisfied 𝛿h ≤ R̂m + ĥ and 
𝛿h ≤ R̂n + ĥ . Thus, the parameter error in (8) can be lin-
earized as (9):

3 � Nonlinear Kalman Filters

In this section, we present the nonlinear KF algorithms, 
including EKF, UKF, and CKF, which will be applied to 
estimate the states of the vessel. Then, the nonlinear filtering 
algorithm most suitable for the SINS/GNSS of the ship is 
selected by comparing the data fusion results obtained for 
the ship sensors.

For this problem, consider the general equations of the 
state and the measurement of the discrete-time nonlinear 
dynamical system.

where X = [𝛿Ω̇n, 𝛿V̇n, 𝛿L, 𝛿𝜆, 𝛿h] , Φk,k-1 is a nonlinear vector 
function determined by (8), and Γk-1 is the noise matrix of 
the nonlinear system. Zk = [Lgnss, λgnss, hgnss, VEgnss, VNgnss, 
VUgnss]. Zk, Wk and Vk are the random system and measure-
ment noise at k steps, respectively, satisfying Wk-1 ∈ N (0, Q) 
and Vk-1 ∈ N (0, R).

3.1 � Extended Kalman filter

EKF is one of most commonly employed nonlinear filtering 
approaches. In estimation theory, EKF is a nonlinear version 
of the KF linearized based on an estimate of the current 
mean and covariance. In this case, the state transition and 
observation models should be linear functions of the state, 
which is a differential function of the Jacobian matrix in the 
state prediction equation. The EKF applied in case of SINS/
GNSS for a vessel is applied via two primary steps.

(9)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝛿𝜔n
ie
=

⎡
⎢⎢⎣

0

−𝜔ie sin L̂𝛿L

𝜔ie cos L̂𝛿L

⎤
⎥⎥⎦

𝛿𝜔n
en
=

⎡⎢⎢⎣

−𝛿vn
N
∕(R̂m + ĥ)

𝛿𝜆̇ cos L̂ − 𝜆 cos L̂𝛿L

𝛿𝜆̇ sin L̂ + 𝜆 cos L̂𝛿L

⎤
⎥⎥⎦

(10)
{

Xk = Φk,k−1Xk−1 + Γk−1Wk−1

Zk = HkXk + Vk
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In the process of time update, the propagated state X̂k,k−1 
and covariance matrix Pk,k−1 for instant are calculated. 
Moreover, the Kalman gain Kk, update state X̂k , and covari-
ance matrix Pk are updated in the measurement update pro-
cess. Here, H() is the Jacobian matrix of the observation 
parameter matrix, which is determined using Xk, Zk. And 
Fk−1 is the Jacobian matrix of Φ(Xk −1). As shown in Fig. 3, 
the errors with respect to the position and velocity can be 
estimated and rectified. Although EKF can be easily imple-
mented and is computationally efficient, this filter is not 
suitable for highly nonlinear models, particularly in case of 
large-misalignment-angle models and when there is exces-
sive interference noise.

3.2 � Unscented Kalman filter

EKF is renowned as the state-of-the-art tool for fusion with 
SINS/GNSS, which is realized by linearizing the nonlinear 
system using a Taylor series expansion. However, the trajec-
tory of a ship is complex and cannot be simply described by 
straight lines or curves. Additionally, the dynamic model 
errors, abnormal errors induced by multi-sensor integration, 
and environmental disturbances may increase the nonlin-
earity of the system, which is beyond the capability of the 
weakly nonlinear Kalman estimation.

UKF is a modification of the conventional KF, applied to 
address nonlinear processes. The UKF process is fundamen-
tally identical to the EKF process and involves two steps of 
time and measurement updates. The UKF applied in case of 
SINS/GNSS for a vessel can be presented as follows.

Here, 
(
𝜒i,𝜔i

)
← UT

(
X̂k−1, 𝜅, n,Pk − 1

)
 denotes the gen-

eration of 2n + 1 sigma sampling points, n denotes the 
number of state variables in X, and the constant weights ωi 
(including variables related to ωi, such as α, β and κ) have 
been described in a previously conducted study [11]. After 
optimal estimation is performed, the system will update its 

cross covariance matrix P̂xz|k to iterate the system and the 
error covariance of the system will be reduced, which can be 
explained in Fig. 4 similar to Fig. 3 with the frame. The UKF 
reduces the linearization errors of EKF using a deterministic 
sampling approach, increasing the computational burden.

3.3 � Cubature Kalman filter

CKF uses the spherical–radial cubature rule to compute the 
multivariate moment integrals observed in the nonlinear 
Bayesian filter. CKF is similar to UKF; however, its math-
ematical theory is more rigorous. CKF avoids the problem 
of high computational complexity in high-dimensional non-
linear systems, alleviates dimensional problems, and avoids 
the need to estimate α, β and κ with empirical values, similar 
to that performed in case of UKF.

The schematic of the CKF principle applied for achieving 
SINS/GNSS-integrated navigation in this study is presented 
below.

As shown in Figs. 4 and 5, the differences between CKF 
and UKF are primarily reflected in the following aspects. 
The sample points in the time update are not generated 
as sigma points but as cubature points denoted by Cb() 
in Fig. 5. These points associate with the vectors Sk-1 and 
Xk-1 and the length n of Xk-1. Sk-1 and Pk-1 are related as 
Pk−1=Sk−1S

T
k−1

 , �i ≡ 1∕2n , and �i=
√
nSk−1 + Xk−1 . Similarly, 

for achieving measurement update, Px|k,k−1=S�k−1
(
ST
k−1

)
 and 

𝜒 �
i
=
√
nS�

k,k−1
+ X̂k,k−1 . In addition to the generation of the 

sampling points, the estimations of the error covariance and 
innovation covariance differ from those in case of UKF.

Fig. 3   Framework of the SINS/GNSS data fusion algorithm based on 
EKF

Fig. 4   Framework of the SINS/GNSS data fusion algorithm based on 
UKF
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4 � Simulations and Results

In this section, we compare the results obtained using the 
EKF, UKF, and CKF filters when the algorithms are applied 
to the SINS/GNSS-integrated vessel navigation problem. In 
Sect. 2.1, a SINS and GPS data generation model was pro-
posed. Different errors, including Gaussian model errors and 
random bias, are induced to accurately represent a low-cost 
IMU system. The sensor error characteristics are presented 
in Table 1.

The following three simulations were performed in 
the test system to comprehensively assess the integrated 

Fig. 5   Framework of the SINS/GNSS data fusion algorithm based on 
CKF

Table 1   Characteristics of the simulated sensors

Sensor Measurement Noise

Bias Noise density Run bias 
stability

IMU (200 Hz) Gyro 0.2°/s 0.01°/s/
√
Hz 10°/h

Accelerometer 5 mg 60 μg/
√
Hz 15 μg

GNSS (1 Hz) Position 10 m
Velocity 0.4 m/s

Table 2   Parameters of the 
simulation ship

Total length Designed waterline length Length between perpendiculars Breadth Depth

139.80 m 130.55 m 126.00 m 20.80 m 11.40 m
Draft design Block coefficient Prismatic coefficient Tonnage
8.0 m 0.680 0.693 14,680 t

navigation performance of different algorithms under dif-
ferent conditions at sea. In each case, the simulation was 
performed 20 times and the results were averaged. Moreo-
ver, there are no obvious deviation differences between each 
time. It also conforms to the knowledge of ship maneuvering 

model [33]. Thus, the simulated ship sensor data obtained 
using the dynamic large surface vessel model are available.

4.1 � Cyclic motion (Case 1)

Generally, cyclic motion experiments are conducted to 
measure the area required for turning and the velocity of 
turning with a large rudder angle. Here, we simulate cyclic 
motion without considering external disturbances, such as 
wind flows, to determine the optimal filtering algorithm in 
cases, during which frequent changes can be observed with 
respect to the vessel heading. The initial velocity and head-
ing of the ship are 15.5 knots and 0°, respectively, and the 
model parameters are presented in Table 2.

The algorithms are initialized by selecting the param-
eters that optimally adjust the behavior of the estimators 
with respect to their convergence. The parameters selected 
to initialize the algorithms are given below.

The state vector and covariance matrix of the state are as 
follows: X̂0 = [0 0 0 0 0 0 0 0 0]T , P0 = diag[0 0 0 0 0 0 0 0 0]T.

The covariance matrices of the process and measurement 
noise are as follows:

Because pitching and heave are not important for surface 
vessels, our comparative analysis of the filtering algorithms 
excludes these states.

Figure 6 shows the performance of three filtering algo-
rithms in case of normal cyclic motion and boxplots of the 
residuals. The trajectories show that the algorithms behave 
similarly. During the initial stage of cyclic motion, the ship 

Qk = diag[(10◦∕h)2 (10◦∕h)2 (10◦∕h)2(15μg)2 (15μg)2 (15μg)2 ]T

Rk = diag[(
√
20 m)2 (

√
20 m)2 (

√
20 m)2(0.4 m∕s)2 (0.4 m∕s)2 (0.4 m∕s)2]T.
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inclines and is displaced in the direction opposite to the 
rotation. Further, UKF and CKF deviate with respect to the 
position estimation. However, in the steady stage, the perfor-
mances of the three algorithms are almost identical, although 
the UKF and CKF trajectories are closer to the actual tra-
jectory (red). With respect to the attitude, UKF and CKF 
perform better during rolling estimation. At 406 s, there 
was an obvious error in UKF estimation, corresponding to 
a change in the heading from − 180° to 180° at 460 s. This 
result indicates that UKF is sensitive to the angle changes 
in integrated navigation, similar to that demonstrated in the 
following simulation. In case of velocity estimation, EKF is 
obviously inferior to the remaining two filtering algorithms, 
exhibiting a large oscillation.

The boxplots present our statistical analyses of the data. 
For example, the median is represented by a central tendency 
line, and the quartiles (bottom and top lines of the boxes) 
show the data dispersion, data distribution, and presence 
of outliers (atypical values). The interquartile interval, con-
taining 50% of the residual values estimated using UKF, 
becomes narrow in the presence of few outliers, indicating 
the higher accuracy of UKF and CKF compared with EKF.

The results are quantitatively presented in Table 3, where 
the outliers beyond 3σ are excluded. Notably, the dispersion 
center of the heading for all estimators is approximately zero 
(ideal for residues), except for the displacement; however, 
the mean values of 3.95, 2.843, and 2.971 m for the EKF, 
UKF, and UKF displacement errors are small, indicating that 
the three filtering algorithms can restrain the divergence of 
SINS under cyclic motion. However, the standard deviation 
associated with EKF displacement is large at 10.734 and 
8.9756 m, which is not ideal. UKF and CKF are superior 
to EKF when estimating the position, velocity, and atti-
tude, demonstrating that the system is strongly nonlinear 
when the ship turns. When estimating the heading, the CKF 
value of − 0.005° ± 0.088° is better than the UKF value of 
0.0302° ± 0.075°.

Figure 7 shows the efficiency of the three algorithms 
when subjected to inaccurate initial conditions or in case 
of a GPS outage. Further, results are presented for a case in 
which errors of 2° and 2 m/s are introduced into the initial 
attitude angles and velocities, respectively; EKF converges 
more slowly and produces more errors during attitude esti-
mation. In case of a GPS outage, the following results are 
observed from 200 to 210 s. We used the X̂k estimated at 
199 s to rectify the SINS within 10 s of the GPS signal out-
age and obtained the integrated navigation results shown in 
Fig. 7. EKF diverges during this 10 s period, demonstrating 
that integrated navigation based on EKF under frequent ves-
sel course changes is strongly dependent on the GPS signal; 
thus, the estimated error is unreliable in case of a GPS out-
age. In this situation, UKF and CKF perform better than 

(a) The performances of the three filtering algorithms in 
cyclic motion.

(b) The boxplots of the residuals of the three filtering 
algorithms in cyclic motion.

Fig. 6   The performances of the three filtering algorithms in cyclic 
motion and boxplots of the residuals
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EKF, and UKF exhibits the optimal performance during 
heading estimation.

Figure 8 presents the influence of the estimated gyroscope 
and accelerometer noise on the three filtering algorithms. 
Here, we increased the compass and accelerometer noise 
terms by five times, maintaining Qk and Rk constant.

The results obtained when the gyroscope noise is 
increased by five times are shown in Fig. 8. During the early 
stages of cyclic motion, the positioning accuracy of the inte-
grated navigation based on EKF is considerably affected, 
and the convergence is slower than those of UKF and CKF. 
During the steady stage, particularly toward the end of the 
trajectory, the accuracy improves. However, with regard to 
the heading estimation, CKF exhibits the worst performance 
among the three methods. Further, the UKF results are sen-
sitive to the gyroscope noise during heading and velocity 
estimation, as expected because the sampling weights of the 
sigma points are different, whereas the weights of the CKF 
sampling points remain identical; thus, UKF is more sensi-
tive to the state of the sampling points.

The results obtained when the accelerometer noise is 
increased by five times are shown in Fig. 8. The accelerom-
eter noise influences the integrated navigation of the three 
filtering methods but only slightly impacts EKF. However, 
in case of attitude estimation, particularly heading estima-
tion, and velocity estimation, CKF shows strong adaptability, 
better than those of EKF and UKF.

4.2 � Linear motion (Case 2)

Here, we verify the integrated navigation results obtained 
using the three filtering methods under linear motion. With-
out considering the influence of wind, waves, or currents, if 
a ship moves in a straight line, its motion is equivalent to 
the motion on land (not affected by the binding force of the 
water surface), which has been frequently reported [9, 13, 
14]. Thus, we have not discussed this case here. We use the 
same ship model and filtering parameters employed in case 
1 and apply a constant wind interference of 5 m/s at 90° and 

a constant current interference of 1 m/s at 180°. Further, we 
refer the reader to a previous study [30] for calculating the 
force and moment of the wind and flow. In addition, a simple 
course-keeping proportion–integral–derivative (PID) con-
troller with a propeller and rudder as the input is designed 
for this simulation to ensure that the ship can sail along the 
given course under the interference of wind and current. The 
initial vessel parameters are VN = 9.3 knot, VE = 13 knots, 
and an initial heading of 43.5°.

Figure 9 shows that the results of the three filtering 
algorithms are similar with respect to their displacement. 
In case of the attitude, CKF performs slightly better than 
UKF, whereas UKF and CKF perform significantly better 
than EKF. With respect to the velocity during integrated 
navigation, there is no obvious difference between CKF and 
UKF, both of which are superior to EKF.

Within the interquartile interval, the residuals estimated 
by UKF and CKF are fairly similar. With respect to displace-
ment estimation, UKF and CKF are similar; with respect to 
velocity estimation, UKF and CKF show less dispersion than 
EKF. Notably, EKF shows a substantial zero-bias error with 
respect to attitude estimation, which is inferior to the UKF 
and CKF results.

Quantitative results are presented in Table 4, in which 
the outliers beyond 3σ are excluded. The dispersion center 
of the heading for all the three estimators is approximately 
zero, and better results are obtained when compared with 
those obtained during cyclic motion. UKF and CKF show 
accurate attitude estimates, with mean residuals of 0.0372° 
and 0.0408°, respectively. In addition, the velocity residu-
als are convergent, with standard deviations of 0.1030 and 
0.1014 m/s toward east and 0.1399 and 0.1405 m/s toward 
north. Thus, the results obtained using the three filtering 
algorithms are similar, and the displacement residual is 
smaller than that for cyclic motion, with standard devia-
tions of 2.5–3.5 m.

The results for the three filtering algorithms are diver-
gent when initial errors of 2°/s and 2 m/s are applied with 
respect to the initial state in linear motion; hence, we applied 

Table 3   Mean and standard 
deviation for integrated 
navigation based on three 
filtering algorithms under cyclic 
motion

State EKF(3σ) UKF(3σ) CKF(3σ)

Rolling/° 0.006 ± 0.3150 0.015 ± 0.0608 0.001 ± 0.0502
Heading/° − 0.05 ± 0.1706 0.0302 ± 0.075 − 0.005 ± 0.088
Ve m/s 0.0245 ± 0.6595 − 0.011 ± 0.1030 0.0001 ± 0.1014
Vn m/s 0.0066 ± 0.6422 0.0197 ± 0.0955 0.0237 ± 0.1010
Latitude/m 3.95 ± 10.734 2.843 ± 4.3062 2.971 ± 4.5088
Longitude/m − 2.286 ± 8.9756 − 1.028 ± 2.9555 − 1.771 ± 3.0634
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initial errors of 0.5° in terms of attitude and 0.5 m/s in terms 
of velocity to study the filtering algorithms. As shown in 
Fig. 10, there is no obvious difference between the three 
filtering algorithms with respect to position estimation. In 
case of rolling estimation, UKF and CKF are less affected by 
the error during initial alignment, whereas all the three fil-
tering algorithms are affected in case of heading estimation. 
Moreover, the velocity estimation results show that UKF 
and CKF are more accurate than EKF and are less affected 
by the errors.

In case of a GPS outage, the integrated navigation results 
for all the three filtering algorithms are divergent. This result 
can be observed when an excessive initial error is input to 
the SINS, and the SINS position error is strongly coupled 
with the attitude and velocity errors; moreover, the inte-
grated navigation results diverge if the attitude excitation 
signal is insufficient to obtain an accurate SINS position 
solution. Similar results with errors in SINS have been 
reported [31].

Figure 11 shows the results obtained when the gyroscope 
and accelerometer noise are amplified by five times and Qk is 
maintained constant. When the gyroscope noise is increased, 
the trajectories of the three filtering algorithms are not 
considerably affected; EKF is closer to the real trajectory 
(red) in this case. UKF and CKF obtain superior attitude 
estimations. The three filtering algorithms are affected by 
the gyroscope noise during velocity estimation, resulting in 
errors. The results obtained with respect to the increased 
accelerometer noise are similar to those for the gyroscope 
noise. However, during velocity estimation, the three fil-
tering algorithms exhibit error convergence, and superior 
results are obtained in case of UKF and CKF.

The gyroscope noise has a greater effect on the integrated 
navigation results than the accelerometer noise. Therefore, 
the gyroscope noise should be accurately estimated for 
obtaining accurate integrated navigation results.

4.3 � Wind and Current with Poor Maneuvering (Case 
3)

The simulations were performed under natural conditions in 
this case. Because of the complexity of the model, this case 
was used to simulate a situation in which the ship loses con-
trol or exhibits poor maneuverability. Neither the propeller 
nor the rudder force can act on the ship in this case. Further, 
the three filtering algorithms were compared.

As shown in Fig. 12, for the position estimates, the UKF 
and CKF errors are significantly greater than the EKF error. 
Further, the interquartile intervals, containing 50% and 75% 
of the residual values with respect to the narrow interquartile 
range of the box plot, are more divergent in case of UKF 
and CKF. During attitude estimation, EKF performs better 
than UKF and CKF; however, the advantage of EKF in case 

(a) Results for inaccurate initial conditions.

(b) Results for GPS outage.

Fig. 7   Results in case of inaccurate initial conditions and a GPS out-
age
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(a) The gyroscope noise terms are increased by five times
during cyclic motion.

(b) The accelerometer noise terms are increased by five
times during cyclic motion.

Fig. 8   Integrated navigation results obtained when the gyroscope and 
accelerometer noise terms are increased by five times during cyclic motion

(a) The performance of the three filtering algorithms
during linear motion.

(b) The boxplots of the residuals of the three filtering 
algorithms during linear motion.

Fig. 9   Performances of three filtering algorithms for linear motion and 
boxplots of the residuals
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of rolling estimation is not obvious according to the upper 
and lower quartiles. Moreover, during velocity estimation, 
EKF exhibits substantial variation and the velocity residual 
is larger than those of UKF and CKF.

As shown in Fig. 13, we increased the gyroscope and 
accelerometer noises by five times to evaluate the influence 

of noise on the three filtering algorithms. The position and 
velocity estimations of UKF and CKF exhibit substantial 
errors when the gyroscope error is increased. The gyroscope 
noise exhibits more influence when compared with that of 
the accelerometer noise. However, the three filtering algo-
rithms are observed to vary only slightly in case of attitude 
estimation.

In case of initial alignment errors and a GPS signal out-
age, the correction excitation signal is insufficient, resulting 
in a large simulation error. Further, integrated navigation 
based on the usage of three filtering algorithms failed.

To demonstrate the conclusion more evidently, we pro-
vide a comparison table between the three cases (Table 5). 
The accuracy of velocity estimation with EKF is poor. 
Hence, it is not reflected in the table. Moreover, we use 
A > B to indicate that the estimation accuracy of A is higher 
than that of B.

5 � Conclusion

Compared with previous studies, the data generator used in 
this paper simulates ship movements under various condi-
tions, based on which the analysis and conclusion of SINS/
GNSS-integrated navigation with various disturbances 
and noises are more persuasive. Further, we observe that 
all three standard Kalman filtering methods investigated in 
this study limit the SINS divergence. By studying EKF in 
three cases, we found that EKF is more suitable in the SINS/
GNSS-integrated navigation of a large surface vessel when 
the nonlinearity of the ship is not strong. Furthermore, it 
is strongly dependent on the accuracy of the external sen-
sors. UKF and CKF exhibit the opposite performance and 
are more robust. In addition, UKF can better adapt to gyro-
scope noise when estimating the heading under both cyclic 
and linear motions, whereas CKF can better adapt to accel-
erometer noise. However, both these methods have higher 
requirements with respect to the intensity of the excitation 

Table 4   Mean and standard 
deviation in case of integrated 
navigation based on three 
filtering algorithms under linear 
motion

State EKF (3σ) UKF (3σ) CKF (3σ)

Rolling/° − 0.3137 ± 0.0259 0.0372 ± 0.0226 0.0408 ± 0.0215
Heading/° − 0.3206 ± 0.0379 − 0.0515 ± 0.1530 − 0.0302 ± 0.1637
Ve m/s 0.0261 ± 0.6021 0.0021 ± 0.1030 0.0056 ± 0.1014
Vn m/s − 0.0099 ± 0.5859 − 0.0431 ± 0.1399 − 0.0437 ± 0.1405
Latitude/m 0.0732 ± 3.5072 − 0.529 ± 3.4819 − 0.577 ± 3.4966
Longitude/m − 0.5199 ± 3.0723 − 0.2973 ± 2.5520 − 0.1989 ± 2.5940

Fig. 10   Influence of inaccurate initial conditions with initial errors of 
0.5° and 0.5 m/s
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(a) The gyroscope noise terms are increased by five times 
during linear motion.

(b) The accelerometer noise terms are increased by five 
times during linear motion.

Fig. 11   Integrated navigation results obtained when the gyroscope and 
accelerometer noise are increased by five times during linear motion

(a) The performance of the three filtering algorithms when
the ship is only affected by wind and current in a poor
maneuvering condition.

(b) Box plots of the residuals in case 3.

Fig. 12   Integrated navigation results demonstrating that the ship is affected by 
wind and current with poor maneuvering and its boxplots of the residuals



544	 Journal of Electrical Engineering & Technology (2021) 16:531–546

1 3

signal needed for correction. Therefore, UKF and CKF are 
recommended for cases in which the angle and velocity are 
large and change frequently.

(a) The gyroscope noise terms are increased by five times in
a poor maneuvering condition.

(b) The accelerometer noise terms are increased by five 
times in a poor maneuvering condition.

Fig. 13   Integrated navigation results obtained when the gyroscope 
and accelerometer noise are increased by a factor of five for the con-
dition of poor maneuvering
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