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Abstract
Power system often suffers from low frequency oscillations (LFOs) which might result in instability in the long run, if allowed 
to sustain in the system for a long time. In order to mitigate these oscillations, power system stabilizers (PSS) are used through 
excitation control. Three recently developed meta-heuristic algorithms namely: Collective Decision Optimization (CDO), 
Grasshopper Optimization Algorithm (GOA) and Salp Swarm Algorithm (SSA) have been applied for the optimal tuning 
of PSS parameters for small signal stability analysis of a renewable integrated power network. This was done by designing 
a conventional speed-based lead-lag PSS in a multi-machine interconnected power system, whose parameters have been 
tuned using CDO, GOA and SSA in a way to shift all the eigenvalues associated to electromechanical modes to the left half 
of S plane. Comparison of the results obtained by the algorithms demonstrates the superiority of SSA over GOA and CDO 
to boost the overall system stability over a wide range of operating conditions. The PSS controller designed using SSA is 
observed to be more robust and efficient in damping out oscillations under different operating conditions.

Keywords  Eigenvalues · Multi-machine power system · Power system stabilizer · Salp swarm algorithm

Abbreviations
PSSs	� Power system stabilizers
CDO	� Collective Decision Optimization
GOA	� Grasshopper Optimization Algorithm
SSA	� Salp Swarm Algorithm
PLL	� Phase Locked Loop
MPPT	� Maximum Power Point Tracking
LFOs	� Low frequency oscillations
LTI	� Linear time-invariant
RS and RP	� Parasitic resistance
D	� Duty ratio
Δ�	� Angular Frequency Deviation
�	� Rotor Electrical Angular Position
Pe	� Output electrical power

ifd	� Field current
Vt	� Generator terminal voltage
X′
d
	� Direct axis transient reactance

Rf 	� Rate feedback
E′
d
	� Direct axis component of voltage behind X′

q

TA	� Voltage regulator time constant
T2 and T4	� Phase-lag time constants
GH	� Grasshopper
LD	� Leaders
FL	� Followers
ub	� Upper bound
lb	� Lower bound
DAE	� Differential algebraic equations
SSSA	� Small signal stability analysis
PV	� Photovoltaic
G	� Solar irradiation
ΔIL	� Ripple current
Tw	� Time constant of washout filter
Efd	� Field voltage
H	� Inertia constant of the generator
T ′
d0

	� Short circuit direct axis transient time 
constant

Xd	� Direct axis synchronous reactance
X′
q
	� Quadrature axis transient reactance

TM	� Mechanical torque to the shaft
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SE(Efd)	� Saturation function
KPSS	� Power system stabilizer gain
J	� Objective function
WSCC	� Western system coordinating council
maxFE	� Maximum fitness evaluation
FE	� Fitness evaluation
SW	� Swarm
EMs	� Electromechanical modes
VSI	� Voltage source inverter
STC	� Standard temperature condition
SOFs	� Sub-objective functions
L	� Inductor
C	� DC link capacitor
�	� Rotor electrical angular velocity
Pm	� Input mechanical power
�	� Damping ratio
T ′
q0

	� Short circuit quadrature axis transient time 
constant

Xq	� Quadrature axis synchronous reactance
VR	� Output of Aaplifier
E′
q
	� Quadrature axis component of voltage behind 

X′
d

KA	� Voltage regulator gain
�	� Real part of eigenvalues
T1 and T3	� Phase-lead time constants

1  Introduction

The electric utility industries have undergone exceptional 
changes in their structure worldwide. Newer issues in power 
system operation and planning are unavoidable due to the 
start of an open market environment and restructuring of 
the industries into distinct generation, transmission, and 
distribution entities. In this restructured power scenario, 
major emphasis is given on the delivery of stable, secure, 
controlled, and high quality electric power by the utilities. 
Power systems are broadly categorized into generation, 
transmission and distribution networks. During the transfer 
of electric power from generating station to consumer end, 
balance of both active and reactive power between the two 
ends is necessary. Active and reactive power relates to two 
equilibrium points: frequency and voltage. If either of the 
two balances is not maintained, the equilibrium points will 
float. A good quality electric power system signifies that 
there are no deviations in frequency and voltage from their 
desired values during operation. However, the main concern 
related to the system load is that, it is ever-changing based 
on the needs of the consumers which disrupts the active and 
reactive power balance. Due to the imbalance, the frequency 

and voltage levels will not be maintained to their standard 
values. Thus, a proper control system is essential to mitigate 
the effects of random load changes and to maintain the fre-
quency and voltage at desired levels for maintaining stability 
of power system and ensure its reliable operation. Due to the 
presence of weak ties in a multi area network, power sys-
tems face frequency oscillations of varying degrees. These 
oscillations may sustain and grow which might eventually 
lead the system towards isolation. Therefore, the analysis 
of system stability is of utmost importance. Power system 
stability refers to the ability to remain in operating equi-
librium. The power system becomes vulnerable to instabil-
ity due to disturbances like sudden changes in load, loss of 
generation or switching of a transmission line during the 
fault, wide spread use of the high gain fast acting excitation 
system etc. In the past, stability was mainly categorized into 
angle stability and voltage stability. Angle stability can be 
further classified as: small signal stability, transient stability, 
mid-term stability and long-term stability. System stability 
depends on both damping and synchronizing torque com-
ponents. Lack of sufficient synchronizing torque results in 
transient instability and insufficient damping torque results 
in small signal instability. Use of fast acting exciter models 
in modern power system helps in improving transient sta-
bility, but at the cost of damping torque, which makes the 
study of small signal stability an ultimate necessity. Small 
signal stability always deals with LFOs, which limits the 
power transmission capability and might eventually result 
in a breakdown of the entire system. Therefore, small sig-
nal stability analysis (SSSA) [1] is of prime importance for 
stable and secure operation of power system. PSSs [2] are 
commonly effective in mitigating these oscillations. PSS is 
employed to provide the supplementary control signal for 
excitation system of the synchronous generator to damp out 
the low frequency oscillations and to improve overall power 
system stability. In literature, PSSs have been designed 
mostly using phase compensation techniques and the param-
eters of PSS have been optimized based on power system 
detailed model including network equations [3, 4]. Various 
classical techniques LMI [5, 6], Pole placement method [7] 
etc. are available in the literature which can provide good 
performance but are not capable of solving non-differential, 
complex non-convex objective functions. Therefore, for the 
modern complex and dynamic power system, it is difficult 
to solve LFO problem through conventional and linear opti-
mal control approaches. For different loading conditions and 
configurations of power network, the PSS parameters need to 
be modified. To overcome the limitations of classical opti-
mization techniques, different evolutionary algorithms have 
been proposed in various literatures [8–23]. Evolutionary 
algorithms have become very attractive nowadays because of 
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their easy implementation and lesser computational time in 
achieving global optimal point over the classical techniques. 
Literature shows that PSS tuning is a very challenging task 
till date thereby motivating the authors in applying three 
recently developed algorithms for tuning of PSS parameters.

Although Genetic algorithm (GA) [24] gained huge atten-
tion for designing of PSS due to its ease of getting near 
global optimal solutions, its application is constrained by 
large computational time.

Other evolutionary computation algorithms available in 
literatures for designing Conventional PSS to mitigate low 
frequency oscillations are: Bacteria Foraging (BF) [23], 
which is based on random search directions, which may 
lead to delay in reaching optimum solution, Firefly algo-
rithm (FA) [25], Cuckoo search (CS) [18], Evolutionary 
programming [19], Tabu search [20], Simulated annealing 
[21] and BAT [22] etc.

With the increasing growth of population and economy, 
the developed as well as developing countries are facing 
a huge demand of energy. Keeping in mind the climate 
changes and other ill effects of greenhouse gas emissions 
from fossil fuel combustions, fulfilling this ever- increasing 
energy demand is quite challenging. Also, since fossil fuels 
are not unlimited, research is going on to find other alternate 
and efficient energy sources.

Utilization of energy obtained from renewable energy 
sources such as wind [26], solar [27] and hydro [28] goes a 
long way in reducing carbon emissions. Renewable energy 
sources are cleaner and cheaper alternatives for fossil fuels. 
Presently, there is an increased emphasis on solar photovol-
taic (PV) generators as renewable energy sources because 
of their certain advantages such as simplicity of allocation 
and absence of fuel cost. But it is very important to observe 
the impact of renewable integration into the system. The 
introduction of renewable energy resources has resulted in 
the introduction of newer types of generators into electricity 
distribution systems. These PV generators do not have rotat-
ing mechanical parts and the power injections from these 
generators are dependent on and solar irradiation [29]. Oper-
ating the renewable generators in parallel with conventional 
synchronous generators present new challenges related to 
stability, operation and control of the power system and its 
components [30]. Therefore, it is necessary to study the 
impact of renewable integration on the small signal stabil-
ity of the system.

Different methods like frequency response, residue 
based technique, synchronizing and damping torque 
analysis and eigenvalue analysis are available for analyzing 
small signal stability. But among all the above mentioned 
techniques, eigenvalue analysis technique is used in this 
paper because using this technique the oscillations can 
be characterized very easily and accurately. Also, various 
modes identification can be done easily by this technique, 

which is quite difficult with the other techniques available 
in the literature. The main contributions of this paper are 
as follows:

•	 Small signal stability analysis of solar PV integrated 
multi-machine system due to the dynamic behavior of 
the power system in presence of PSS is presented in this 
paper. An exhaustive comparative study is carried out for 
this solar integrated system with respect to the conven-
tional system to demonstrate the effect of renewables on 
power system stability.

•	 Studies presented in the literature analyzed small signal 
stability considering R, L, C as local loads in case of 
solar PV. But constant power, constant current and con-
stant impedance loads are more realistic that also needs 
to be addressed. This work considered constant power 
load for modeling purposes.

Section 2 of the paper presents the techniques which are 
available for small signal stability analysis; brief description 
of electromechanical modes and participation factor is pre-
sented in Sect. 3; mathematical modeling of power system 
stabilizer and solar PV integrated multi-machine model is 
presented in Sect. 4; objective function considered for the 
study and the optimization techniques applied are presented 
in Sects. 5 and 6 presents the results of simulation and their 
exhaustive discussion.

2 � Small Signal Stability Analysis (SSSA)

The following are the commonly used techniques for small 
signal stability analysis:

2.1	Eigenvalue Technique [31]
2.2	Synchronizing and Damping Torque Analysis [2, 32]
2.3	Frequency Response and Residue Based Analysis [33–

36]
2.4	Time Domain Solution [36–38]

The eigenvalue technique used in this paper is briefly 
described below:

Eigenvalues of any matrix A are the results of the char-
acteristic equation of the matrix, which may be real or com-
plex. Complex eigenvalues always appear in conjugate pairs. 
For any eigenvalue �i , the time dependent characteristic of 
its mode is obtained as e�it [31]. A real eigenvalue relates 
to a non-oscillatory mode. A positive real eigenvalue sig-
nifies aperiodic monotonic instability while negative real 
eigenvalue signifies a decaying mode. Higher the magnitude, 
faster is the decay. Each complex eigenvalue pair relates to 
an oscillatory mode. The real part of eigenvalue is associ-
ated to damping whereas; the imaginary part is associated 
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to frequency of oscillations. A negative real part signifies 
damped oscillations while positive real part signifies oscil-
lations with increasing amplitude. A complex pair of eigen-
values is represented as follows:

The frequency of oscillation is obtained as: f = �

2�
 and 

the damping ratio is obtained as:

The damping ratio � helps to determine the rate of decay 
of the amplitude of oscillation. For a power system to per-
form stable operation, it needs to be ensured that real parts 
of all eigenvalues lie in the negative half of s-plane. Further, 
quick damping of any electromechanical oscillation should 
be ensured.

3 � Identifying Electromechanical Modes 
(EMs) and Participation Factor (PF)

Small Signal Stability analysis is performed on the line-
arized dynamic model of the multi-machine system. In this 
analysis, the target is to study the low-frequency oscillations. 
Here, the interest lies particularly in the electromechanical 
modes (EMs). The electromechanical oscillations are of two 
types:

•	 Local mode: typical range of oscillation is 0.8–2.5 Hz.
•	 Inter-area mode: range of oscillation is 0.2–0.8 Hz.

In order to determine the significant participation of a 
machine in the EMs, the participation factor analysis is used. 
Participation factor analysis helps in the identification of 
how each state variable affects a given mode or eigenvalue 
[1].

4 � Mathematical Modeling

4.1 � Description of Power System Model

The small-perturbation behavior of the power system in the 
vicinity of a steady-state operating point can be described 
by a set of linear time-invariant (LTI) differential equation 
in the state space form as,

(1)� = � ± j�

(2)� =
�√

�2 + �2

(3)Ẋ = AX + BU

 where, perturbations of the system state variables from their 
nominal values at a given operating condition is represented 
by the N-dimensional state vector X, and perturbations of 
the system inputs such as voltage reference, desired real 
power or load demands is represented by the vector U. The 
numerical values of the matrices A and B depend on the 
operating condition as well as on the system parameters. 
The whole analysis starts with a systematic derivation of a 
linear model for an n-bus m-machine system with nonlinear 
voltage-dependent loads at the network buses.

In [1] the generator differential equations, stator algebraic 
equation and the network equations have been shown for 
two-axis model with Type I exciter. Next, after performing 
the load flow and computing the initial condition values of 
the state and algebraic variables, these equations have to be 
linearized in order to form the system matrix and calculate 
the eigenvalues of the system. The equations can be written 
in a generalized form as:

Equation (4) consists of the stator algebraic equations and 
differential equations, together with the network equations. 
The state vector is denoted by x, the input vector is denoted 
by u, and y includes both Id_q and V  vectors i.e.

Here, vector yb and ya corresponds to the load-flow vari-
ables and algebraic variables Id−q respectively. Bus 1 is the 
slack bus, buses 2,….,m are the PV buses and buses m + 1, 
…, n are the PQ buses. The vector x has a dimension of 7 m. 
Linearizing (4) around an operating point we get:

By eliminating Δya and Δyb , we get Δẋ = AsysΔx where 

Asys =
(
A − BJ−1

AE
C
)
 where JAE =

[
D11 D12

D21 D22

]
.

The model represented using (6) has been used for the 
small signal stability analysis in this work. The linearized 
differential equations, stator algebraic equations and network 
equation are presented below [39].

4.1.1 � Linearized Differential Equations

(4)
ẋ = f (x, y, u)

0 = g(x, y)

}

(5)
y =

[
It
d−q

�1 V1 …Vm | �2 … �n Vm+1 …Vn

] t[
yt
a
| yt

b

]t

(6)
⎡⎢⎢⎣

d

dt
Δx

0

0

⎤⎥⎥⎦
=

⎡⎢⎢⎣

A B

C
D11 D12

D21 D22

⎤⎥⎥⎦

⎡⎢⎢⎣

Δx

Δya
Δyb

⎤⎥⎥⎦
+ E[Δu]

(7)
dΔ�i

dt
= Δ�i
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where fsi
(
Efdio

)
= −

1

TEi

(
KEi + SE

(
Efdi

)
+ Efdio�SE

(
Efdi

))
 ; 

and SE
(
Efdi

)
= 0.0039e1.555Efdi

(8)

dΔ�i

dt
= −

Di

Mi

Δ�i −
Iqio

Mi

ΔE�
qi
−

Idio

Mi

ΔE�
di
−

Iqio

(
X�
qi
− X�

di

)
+ E�

dio

Mi

ΔIdi

−
Idio

(
X�
qi
− X�

di

)
+ E�

qio

Mi

ΔIqi +
1

Mi

ΔTMi

(9)
dΔE�

qi

dt
= −

1

T �
doi

ΔE�
qi
+

1

T �
doi

ΔEfdi −

(
Xdi − X�

di

)
T �
doi

ΔIdi

(10)
dΔE�

di

dt
= −

1

T �
qoi

ΔE�
di
+

(
Xqi − X�

qi

)

T �
qoi

ΔIqi

(11)
dΔEfdi

dt
= fsi

(
Efdio

)
+

1

TEi
ΔVRi

(12)

dΔVRi

dt
= −

KAiKFi

TAiTFi
ΔEfdi −

1

TAi
ΔVRi +

KAi

TAi
ΔRfi +

KAi

TAi
ΔVrefi −

KAi

TAi
ΔVi

For i = 1, 2,…, m,

4.1.2 � Linearized Stator Algebraic Equations

4.1.3 � Linearized Network Equations

Similarly, linearizing the network equations for load buses, 
we get [39]

(13)
dΔRFi

dt
= −

1

TFi
ΔRFi +

KFi(
TFi

)2ΔEfdi

(14)

ΔE�
di
− sin

(
�io − �io

)
ΔVi − Vio cos

(
�io − �io

)
Δ�i

+ Vio cos
(
�io − �io

)
Δ�i − RsiΔIdi + X�

qi
ΔIqi = 0

(15)

ΔE�
qi
− cos

(
�io − �io

)
ΔVi + Vio sin

(
�io − �io

)
Δ�i

− Vio sin
(
�io − �io

)
Δ�i − RsiΔIqi − X�

di
ΔIdi = 0

(16)

IdioVio cos
(
�io − �io

)
Δ�i − IqioVio sin

(
�io − �io

)
Δ�i + Vio sin

(
�io − �io

)
ΔIdi

+ Vio cos
(
�io − �io

)
ΔIqi − IdioVio cos

(
�io − �io

)
Δ�i + IqioVio sin

(
�io − �io

)
Δ�i

+ Vio

n∑
k=1≠i

VkoYik sin
(
�io − �ko − �ik

)
Δ�i + Idio sin

(
�io − �io

)
ΔVi +

�PLi

(
Vi

)
�Vi

ΔVi

−

n∑
k=1

VkoYik cos
(
�io − �ko − �ik

)
ΔVi − Vio

n∑
k=1≠i

VkoYik sin
(
�io − �ko − �ik

)
Δ�k

− Vio

n∑
k=1

Yik cos
(
�io − �ko − �ik

)
ΔVk + Iqio cos

(
�io − �io

)
ΔVik = 0

(17)

−IdioVio sin
(
�io − �io

)
Δ�i − IqioVio cos

(
�io − �io

)
Δ�i + Vio cos

(
�io − �io

)
ΔIdi

−Vio sin
(
�io − �io

)
ΔIqi + IdioVio sin

(
�io − �io

)
Δ�i + IqioVio cos

(
�io − �io

)
Δ�i

−Vio

n∑
k=1≠i

VkoYik cos
(
�io − �ko − �ik

)
Δ�i + Idio cos

(
�io − �io

)
ΔVi +

�QLi

(
Vi

)
�Vi

ΔVi

−

n∑
k=1

VkoYik sin
(
�io − �ko − �ik

)
ΔVi + Vio

n∑
k=1≠i

VkoYik cos
(
�io − �ko − �ik

)
Δ�k

−Vio

n∑
k=1

Yik sin
(
�io − �ko − �ik

)
ΔVk − Iqio sin

(
�io − �io

)
ΔVik = 0
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Now linearizing the network equations for load buses

(18)

n∑
k=1
≠i

VioVkoYik sin
(
�io − �k − �ik

)
Δ�i +

�PLi

(
Vi

)
�Vi

ΔVi

−

n∑
k=1

VkoYik cos
(
�io − �k − �ik

)
ΔVi

−Vio

n∑
k=1
≠i

VkoYik sin
(
�io − �ko − �ik

)
Δ�k

−Vio

n∑
k=1

Yik cos
(
�io − �k − �ik

)
ΔVk = 0 (19)

−

n∑
k=1
≠i

VioVkoYik cos
(
�io − �k − �ik

)
Δ�i +

�QLi

(
Vi

)
�Vi

ΔVi

−

n∑
k=1

VkoYik sin
(
�io − �k − �ik

)
ΔVi

+Vio

n∑
k=1
≠i

VkoYik cos
(
�io − �ko − �ik

)
Δ�k

−Vio

n∑
k=1

Yik sin
(
�io − �k − �ik

)
ΔVk = 0

Fig. 1   Schematic diagram of the 
stabilizing signal from speed 
deviation

Fig. 2   Block diagram of 
double-stage PSS [41]

Fig. 3   Single-line diagram of the grid connected PV system [42]
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4.2 � Power System Stabilizer

The main idea behind installation of the Power System Sta-
bilizer (PSS) is to damp out system oscillations by providing 
additional damping to the synchronous machine by control-
ling its excitation using auxiliary stabilizing signal(s) [39].

4.2.1 � Components of PSS

During periods of transient, it has been observed that the 
voltage regulator introduces negative damping to the system 
[40]. In order to counter this effect and to improve the over-
all system damping, artificial means of producing torque in 
phase with the speed deviation are introduced. Stabilizing 
signals are introduced to the excitation system at the sum-
ming junction where the reference voltage and the signal 
produced from the terminal voltage are added to obtain the 
error signal, which is fed to the regulator-exciter system. 
This has been shown in Fig. 1. The basic block diagram of 
the two-stage Power System Stabilizer is provided in Fig. 2. 

It consists of four blocks: two phase compensation block, a 
signal washout filter block and a gain. 

4.2.2 � Modeling of Power System Stabilizer

From the block diagram of PSS is given in Fig. 2. The fol-
lowing linearized equations can be derived:

 where Δ�r =
Δ�i

�s

 and �s is the synchronous speed.
From (8) of Sect. 4.1, we get the linearized expression 

of Δ�i as:

(20)ΔXp1 =
sKPSSTw

1 + sTw
Δ�r

(21)ΔXp2 =
1 + sT1

1 + sT2
ΔXp1

(22)ΔVs =
1 + sT3

1 + sT4
ΔXp2

(23)

dΔ�i

dt
= −

Di

Mi

Δ�i −
Iqio

Mi

ΔE�
qi
−

Idio

Mi

ΔE�
di
−

Iqio

(
X�
qi
− X�

di

)
+ E�

dio

Mi

ΔIdi

−
Idio

(
X�
qi
− X�

di

)
+ E�

qio

Mi

ΔIqi +
1

Mi

ΔTMi

Using (20)–(22), the linearized model of the PSS model 
is obtained, and state equations of PSS are given below:

(24)

ΔẊp1i = −
KPSSiDi

𝜔sMi

Δ𝜔i −
KPSSiIqio

𝜔sMi

ΔE�
qi
−

KPSSiIdio

𝜔sMi

ΔE�
di

+
KPSSi

{(
X�
di
− X�

qi

)
Iqio − E�

dio

}

𝜔sMi

ΔIdio +
KPSSi

{(
X�
di
− X�

qi

)
Idio − E�

qio

}

𝜔sMi

ΔIqio

−
1

Tw
ΔXp1i +

KPSSi

𝜔sMi

ΔTMi

(25)

ΔẊp2i = −
KPSSiDiT1i

𝜔sMiT2i
Δ𝜔i −

KPSSiIqioT1i

𝜔sMiT2i
ΔE�

qi
−

KPSSIdioT1i

𝜔sMiT2i
ΔE�

di

+
KPSST1i

{(
X�
di
− X�

qi

)
Iqio − E�

dio

}

𝜔sMiT2i
ΔIdio +

KPSST1i

{(
X�
di
− X�

qi

)
Idio − E�

qio

}

𝜔sMiT2i
ΔIqio

+
1

T2i

(
1 −

T1i

Tw

)
ΔXp1i −

1

T2i
ΔXp2i +

KPSST1i

𝜔sMiT2i
ΔTMi
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4.3 � SSSA for Grid Connected Solar Photovoltaic

Grid connected Photovoltaic (PV) systems that are con-
nected to the distribution level, particularly with MW 
capacity, are increasing at an aggressive rate, in order to 
meet the energy demand. However, there is less experi-
ence in the interconnection of utility-scale PV systems 
with the distribution network, where loads are present. 
Also, there has been very less work and research in inter-
connection of large-scale PV system with the transmission 
network for generation of bulk electric power. Utility-scale 
PV systems need special attention, unlike small scale PV 
systems, which are limited to a few hundreds of kW and 
are unlikely to show an impression on the transmission 
system. Thus, there is a need to analyze the large-scale PV 
systems in terms of dynamic characteristics and stability.

4.3.1 � Linearized System Model with Solar Integration

A single-line diagram for grid-connected PV system is 
shown in Fig. 3:

The solar PV system along with its components, has been 
modeled and can be represented by the following differential 
equations [42]:

 and, by the power balance equation:

(26)

ΔV̇si = −
KPSSiDiT1iT3i

𝜔sMiT2iT4i
Δ𝜔i −

KPSSiIqioT1iT3i

𝜔sMiT2iT4i
ΔE�

qi
−

KPSSIdioT1iT3i

𝜔sMiT2iT4i
ΔE�

di

+
KPSST1iT3i

{(
X�
di
− X�

qi

)
Iqio − E�

dio

}

𝜔sMiT2iT4i
ΔIdio +

KPSST1iT3i

{(
X�
di
− X�

qi

)
Idio − E�

qio

}

𝜔sMiT2iT4i
ΔIqio

+
T3i

T2iT4i

(
1 −

T1i

Tw

)
ΔXp1i +

1

T4i

(
1 −

T3i

T2i

)
ΔXp2i −

1

T4i
ΔVsi +

KPSST3i

𝜔sMiT4i
ΔTMi

(27)Li̇mp = vmp − DvDC

(28)Cv̇DC = Dimp − iDC

(29)vsd = vd − 𝜔PLLLSiq + Lsi̇d

(30)vsq = vq + 𝜔PLLLSid + Lsi̇q

(31)
v̇sd − kiiidref + kiiid + 𝜔PLLvsq − 𝜔PLLvq − 𝜔2

PLL
LSid = 0

(32)
v̇sq − kiiiqref + kiiiq − 𝜔PLLvsd + 𝜔PLLvd − 𝜔2

PLL
LSid = 0

(33)vDCiDC = vsdid + vsqiq

Linearizing (27)–(33), we get

4.3.2 � Solar PV Integrated Multi‑machine Model

In Sect. 4.1, the linearized multi-machine model of syn-
chronous machine had been developed. In this section, 
after modeling the individual components of PV system 
and linearizing the system equations, the development 
of the multi-machine model integrated with solar PV is 
done. Equations (7)–(19) of the multi-machine model and 
(34)–(40) of the solar PV model can be combined and 
written as:

(34)Δi̇mp =
1

L
Δvmp −

D0

L
ΔvDC

(35)Δv̇DC =
D0

C
Δimp

(36)Δi̇d =
1

LS
Δvsd + 𝜔PLL0Δiq

(37)Δi̇q =
1

LS
Δvsq − 𝜔PLL0Δid

(38)Δv̇sd = kiiΔidref + (𝜔2
PLL0

LS − kii)Δid − 𝜔PLL0Δvsq

(39)Δv̇sq = kiiΔiqref + (𝜔2
PLL0

LS − kii)Δiq + 𝜔PLL0Δvsd

(40)idc0Δvdc − vsd0Δid − id0Δvsd − vsq0Δiq − iq0Δvsq = 0

(41)

[
Δẋ

Δẋsolar

]
=

[
A
1

0

0 Asolar

][
Δx

Δxsolar

]
+

[
B
1

0

]
ΔIg

+

[
B
2

0

]
ΔVg +

[
E
1

0

0 Esolar

][
Δu

Δusolar

]

(42)0 =
[
C1 0

][ Δx

Δxsolar

]
+ D1ΔIg + D2ΔVg



2065Journal of Electrical Engineering & Technology (2020) 15:2057–2077	

1 3

 where

and

(43)0 =
[
C2 0

][ Δx

Δxsolar

]
+ D3ΔIg + D4ΔVg + D5ΔVl

(44)0 =
[
0 C3solar

] [ Δx

Δxsolar

]
+ D6ΔVg + D7ΔVl

x =
[
xt
1
. . . xt

m

]t

xi =
[
�i �i E

�
qi
E�
di
Efdi VRi Rfi

]t

xsolar =
[
imp vDC id iq vsd vsq

]t

Ig =
[
Id1 Iq1 . . . Idm Iqm

]t

Vg =
[
�1 V1 . . . �m Vm

]t

Vl =
[
�m+1 Vm+1 . . . �n Vn

]t

u =
[
ut
1
. . . ut

m

]t

ui =
[
TMi Vrefi

]t

usolar =
[
vmp idref iqref

]t

5 � Objective Function

On being subjected to any disturbance, the rate of oscillation 
decay in the power system and its amplitude are governed 
respectively by the system’s damping factor and damping 
ratio. Negative real parts of eigenvalues along with higher 
damping ratio signify a stable system [39]. Real and imagi-
nary parts of eigenvalues provide the coefficient of damping. 
To tune the parameters of the controller using eigenvalue 
analysis, the objective function is evaluated in terms of two 
sub-objective functions (SOFs). First SOF is tasked with the 
minimization of real part of eigenvalues and second SOF 
targets maximization of the damping ratio, as depicted in 
Fig. 4 [44]. The objective function is mathematically repre-
sented as follows:

where J1 =
∑m

k=1
(�0 − �k)

2 and J2 =
∑m

k=1
(�0 − �k)

2 where, 
the number of EMs is denoted by m.J1 represents the first 
SOF related to the real part of eigenvalues and J2 is the sec-
ond SOF related to the damping ratio. σ0 and ξ0 are taken to 
be − 0.5 and 0.1 respectively [43]. The following constraints 
are to be satisfied by the objective function J:

A two-staged PSS is considered for the study. Phase-lead 
time constants T1 and T1 and phase-lag time constants T1 and 

Asolar =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −
D0

L
0 0 0 0

D0

C
0 0 0 0 0

0 0 0 �PLL0
1

LS
0

0 0 −�PLL0 0 0
1

LS

0 0 �2
PLL0

LS − kii 0 0 −�PLL0

0 0 0 �2
PLL0

LS − kii �PLL0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Esolar =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

L
0 0

0 0 0

0 0 0

0 0 0

0 kii 0

0 0 kii

⎤
⎥⎥⎥⎥⎥⎥⎦

(45)Minimize, J = J1 + J2

(46)

Kmin
PSS

≤ KPSS ≤ Kmax
PSS

Tmin
1

≤ T1 ≤ Tmax
1

Tmin
2

≤ T2 ≤ Tmax
2

Tmin
3

≤ T3 ≤ Tmax
3

Tmin
4

≤ T4 ≤ Tmax
4

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

PSS parameters

Fig. 4   Domain of eigenvalue locations for objective function (J) [44]
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T1 varies from 0.06 to 1.0 s and 0.01 to 0.05 s respectively. The 
gain KPSS is bounded by [0.01, 50]. Tw is fixed to 10 s.

5.1 � Optimization Techniques for Tuning PSS 
parameters

5.1.1 � CDO Algorithm [50]

Collective decision optimization algorithm (CDO) as pre-
sented in [47] is based on the decision making capabilities 
of human beings dictating their social behavior. Whenever 
faced with a problem, human beings have a natural tendency 
to form a group having persons with diverse capabilities 
to arrive at a decision or a solution. Exchange and selec-
tion of ideas amongst all group members take place and 
the best idea amongst all is finally selected. The decision 
making abilities are classified into the following different 
phases [47]:

5.1.1.1  Creation of Group  A group comprising of P mem-
bers is randomly initialized within the search space having 
dimension D as follows:

where i = 1, 2, 3,…….,P; j = 1, 2, 3,…..D. rand denotes 
any random number in the interval [0, 1], and LB and UB 
symbolizes the lower and upper limits of the independent 
variables.

5.1.1.2  Experience Phase  During any meeting between the 
group members, agents lay their plans which are founded on 
their individual experiences. This is the present best posi-
tion of the agent ΦA which can be stated as:

where rand is any random number in the range [0, 
1],step_size signifies the step size of current iteration, and d 
signifies the direction of selection of next agent.

5.1.1.3  Others’ Idea Phase  Interchange of ideas between 
the agents occurs in this phase and others’ ideas get 
accepted by an agent only if they are superior to her/his 
idea. If any agent Kj , is selected randomly from the pop-
ulation to exchange idea with Ki , the one having better 
quality of idea is selected as follows:

(47)K
j

i
= LB j + rand(0, 1) ×

(
UB j − LB j

)

(48)K
inew

= Ki + rand(0, 1) × step_size × d 0

(49)d 0 = ΦA − Ki

(50)K
(1)

i new
= K inew + rand(0, 1) × step_size × d 1

where j represents the agent selected from [1, P], d1 repre-
sents a new direction for selection of next agent and beta1 
and beta2 represents any two numbers randomly selected 
from the intervals [– 1, 1] and [0, 2] respectively.

5.1.1.4  Group‑thinking Phase  In this phase, the manner 
in which agents’ decisions gets motivated is dictated by 
the direction in which the maximum ideas are inclined. 
The present position of the group thinking is considered 
to be the geometric center ( ΦG ) of each agent which is 
expressed as:

The agent’s updated position is obtained as follows:

where d2 is the new direction of progress of ideas.

5.1.1.5  Leader Phase  The group leader is the ultimate 
decision maker and dictates the direction of movement of 
ideas as well as the final output. Mathematically this can 
be represented as follows:

where d3 is the new direction of progress of ideas. Leader 
( ΦL ) represents the agent with the best idea in the group. 
Leader can change his/her idea by himself/herself. This algo-
rithm uses random walk strategy for local search.

where Wp signifies any vector selected randomly from the 
interval [0, 1].

5.1.1.6  Innovation Phase  In this phase, the decision mak-
ing process is improved by perturbing the existing variables 
(mutation factors) and can be implemented as follows:

where M is the mutation factor employed to evade premature 
convergence, rand1 and rand2 are random numbers within 

(51)d1 = beta1 × d0 + beta2 ×
(
Xj − Xi

)

(52)Φ G =
1

P

(
K 1,K 2 , ..........., KP

)

(53)newK
(2)

i
= newK

(1)

i
+ rand(0, 1) × step_size × d

(54)d 2 = beta 1 × d 1 + beta 2 ×
(
Φ G − K i

)

(55)newK
(3)

i
= newK

(2)

i
+ rand(0, 1) × step_size × d3

(56)d 3 = beta 1 × d 2 + beta 2 ×
(
Φ L − Ki

)

(57)newKp = ΦL +Wp (p = 1, 2, 3, 4, 5)

(58)

rand1 ≤ M

newK
(4)

i
= newK

(4)

i

newK
(4,F)

i
= LB(F) + rand2 × (UB(F) − LB(F))
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[0, 1] and uniformly distributed, and F is randomly gener-
ated within interval [1, D].

Selection of proper step_size is a deciding factor for 
exploration and exploitation capabilities of the algorithm. 
In the initial stages, if the larger, it will ensure better 
exploration whereas smaller values in the later parts of 
the algorithm ensure proper exploitation of the population. 
The step_size is calculated as follows:

where t signifies the current iteration and T signifies the 
maximum iteration count.

5.1.2 � Application of CDO Algorithm

The steps followed to apply CDO for parameter tuning of 
PSS are described below:

Step 1: Initialize randomly a group of P members (PSS 
gain and lead-lag time constant) in the search space 
D within their upper and lower bounds based on (46). 
Choose maximum fitness evaluation (maxFE).
Step 2: Perform SSSA of the system for each member in 
group and obtain eigenvalues. Check whether the inequal-
ity constraints of (46) are satisfied by the eigenvalues.
Step 3: Compute the fitness function (plan quality) as 
per (45) for each group and store total number of fitness 
evaluation in a variable FE.
Step 4: Detect the new best position of agents (Kinew) 
based on their fitness values (quality of plan) to form 
the modified group set.
Step 5: Update the members of group in all phases of 
CDO employing (47)-(59).
Step 6: Determine the best plan and best group. Best 
plan is identified as minimum of the fitness function 
evaluated for each solution set and best group is the 
solution set corresponding to the best plan.
Step 7: Go to step 5 and repeat until value of FE reaches 
maxFE.

5.1.3 � Grasshopper Optimization Algorithm (GOA)

In Grasshopper Optimization Algorithm, the swarming 
behaviour exists both in nymph and adult stage. In the lar-
val stage, movement of the swarm is slow, whereas, in the 
adult stage, the swarm can move long distances and exhibit 
abrupt motion. The grasshopper algorithm as described in 
[48] updates its swarm using the following set of equations:

(59)step_size (t) = 2 − 1.7
(
t − 1

T − 1

)

(60)Pi = Si + Gi +Wi

where Pi denotes the position of the ith grasshopper (GH) , 
Si denotes the social interaction of the GHs,Gi represents 
the gravity force acting on the ith GH and Wi represents the 
wind advection.

where N denotes the number of GHs , dik denotes distance 
from i to kth and calculation of GHs is done as follows: 
dik =

||Pk − Pi
|| and d̂ik =

Pk−Pi

dik
 represents a unit vector from 

ith GH to kth GH.s denotes the social forces and is consid-
ered as:

where f  denotes the attraction intensity between the GHs and 
l denotes the attraction length scale. Gravitational force G 
is designed as:

where g denotes gravitational constant and ĉg is a unit vector 
to the earth’s center. Wind advent component is calculated 
as:

where u is drift constant and b̂w is a unit vector in the wind’s 
direction.

Substituting values of the parameters S,G,W  in (60), the 
position of the GH can be expanded as:

But (65) cannot be directly used for solving optimization 
problems as the GHs are quick to reach comfort zone thereby 
causing the swarm to diverge. Following equation shows the 
modified version of (65) for solving optimization problems:

where ubd and lbd represent respectively the upper bound and 
lower bound in the dth dimension, Td represents the value 
of target in dth dimension, c is the shrinking coefficient to 
decrease the comfort, attraction and repulsion zones of the 
GHs . The coefficient c is calculated as:

(61)
Si =

N∑
k=1

k≠i

s (dik) d̂ik

(62)s(r) = fe
−r

l − e−r

(63)Gi = −gĉg

(64)Wi = ub̂w

(65)Pi =

N∑
k=1
k≠i

s(||Pk − Pi
||)
Pk − Pi

dik
− gĉg + ub̂w

(66)Pd
i
= c

⎛⎜⎜⎜⎝

N�
k=1
k≠i

c
ubd − lbd

2
s(r)

����P
d
k
− Pd

i

���
�Pk − Pi

dik

⎞⎟⎟⎟⎠
+ T̂d
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where max(c) and min(c) represent the maximum and mini-
mum values of c.Iter and max Iter represent the current itera-
tion and maximum iterations respectively.

5.1.4 � Application of GOA Algorithm

The steps relating the application of GOA to the stability 
problem are as follows:

Step 1: Specify the swarm size and initialize the swarm 
(SW) randomly for the same. Set the number of control 
parameters (GHs) of SW within lower and upper limits. 
Select maximum number of fitness evaluation (maxFE).
Step 2: Inspect small signal stability for each GH of SW 
and obtain the eigenvalues that lies within limits of the 
control variables.
Step 3: Evaluate eigenvalue based fitness function using 
each swarm set, and store total fitness evaluations (FE).
Step 4: Select the best swarm set (GHbest) based on their 
fitness values and form the updated swarm set.
Step 5: Update swarm using (65).
Step 6: Determine the best fitness (minimum fitness func-
tion value) and also the best swarm set.
Step 7: Return to step 5 and repeat till the FE equals the 
pre-defined maxFE.

5.1.5 � Salp Swarm Algorithm (SSA)

Salp Swarm Algorithm (SSA) as reported in [49] is a 
recently developed meta-heuristic that exploits the food 
searching technique of salps. Salp swarms form a chain to 
move in search of food. The swarm is modeled after leaders 
(LD) and followers (FL) are identified. The salp at the begin-
ning of the chain becomes LD and is tasked with guiding the 
whole swarm. All other members are FL. Position update of 
LD in SSA takes place as per the following set of equations:

where x1
j
 denotes the position of the LD in jth dimension, Fj 

is the location of food, ub and lb denotes the upper and lower 
limits and c1 , c2 and c3 are random numbers. c1 decides the 
exploration and exploitation capability of SSA and can be 
defined as:

(67)c = max(c) − Iter

(
max(c) −min(c)

max Iter

)

(68)x1
j
=

{
Fj + c1 ((ubj − lbj) c2 + lbj) c3 ≥ 0

Fj − c1 ((ubj − lbj) c2 + lbj) c3 < 0

(69)c1 = 2e

(
−

4l

L

)2

where l and L signifies the present and maximum number 
of iterations.

c2 and c3 forecasts the new position of FLs as well as 
the step size. Updated positions of the FLs are obtained as:

where i ≥ 2, xi
j
 signifies position of ith FL in jth dimension, 

t signifies time, �0 signifies initial speed of motion, and 
a =

�final

�0
 , where � = (x−x0)

t
.

Considering initial speed �0 = 0 , the above equation can 
be modified as:

where i ≥ 2 and xi
j
 represents position of ith FL in jth 

dimension.
The salp chain is simulated using (68) and (71).

5.2 � Application of SSA Algorithm

The steps of the SSA applied to the stability problem are 
described as follows:

Step 1: Randomly initialize the swarm (SW) compris-
ing of the salps (control parameters such as PSS gain 
and lead-lag time constants) within their upper and 
lower bounds for a particular swarm size. Specify the 
maximum number of fitness evaluation (maxFE).
Step 2: Perform SSSA for each salp chain of SW and 
obtain the eigenvalues.
Step 3: Evaluate fitness function (eigenvalue- based) 
for each swarm set, and store total fitness evaluations 
in FE.
Step 4: Identify best swarm set (SWbest) based on the 
fitness.
Step 5: Update the swarm using (68) and (71).

(70)x i
j
=

1

2
at2 + �0t

(71)xi
j
=

1

2

(
xi
j
+ xi−1

j

)

Table 1   Loading conditions for Case 1.1

P (p.u) Q (p.u)

Generator
 G1 0.9649 0.2330
 G2 1.0000  − 0.1933
 G3 0.4500  − 0.2668

Load
 L5 0.7000 0.3500
 L6 0.5000 0.3000
 L8 0.6000 0.2000

Local load at G1 0.6000 0.2000
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Step 6: Obtain best fitness value as the minimum fitness 
function value and the SWbest.
Step 7: Repeat from step 5 till the predefined maxFE.

6 � Simulations and Results

This section presents analysis of system performances after 
applying the SSA algorithm. Eigenvalues determined by 
SSA are used to assess the system stability and compared to 
those obtained using GOA and CDO. Results establish supe-
riority of SSA over other mentioned optimization techniques 
in evaluating the small signal stability of the system. WSCC 
three machine, nine bus system [1] have been considered to 
carry out eigenvalue analysis when subjected to different 
operating conditions and are coded in MATLAB platform. 
The system data of WSCC 3-Machine 9-Bus system is given 
in [1]. All the calculations are made with system frequency 
of 60 Hz and base MVA as 100.

6.1 � Case 1: Results Related to PSS Parameter Tuning

The most important task is the proper tuning of PSS param-
eters. Properly tuned parameters help to increase system 
stability but, badly tuned parameters may lead the system 
to instability. The power system is nonlinear and its varying 
operating condition makes tuning as a complex task. Tuning 
is done based on the characteristics of the generator system. 
To demonstrate efficiency of the proposed algorithm, differ-
ent cases have been considered as discussed below:

6.1.1 � Case 1.1

To illustrate the effectiveness of the proposed algorithm, 
PSS were installed in all the machines for mitigating low 
frequency oscillations. Electromechanical modes and their 
damping ratios for the different algorithms used are pre-
sented in Table 2.

Tuning of PSS parameters have been done for Case 1.1 
using loading conditions presented in Table 1. The tuned 
PSS parameters obtained after applying the optimization 
algorithms are presented in Table 2. It can be observed from 
Table 3 that SSA obtained the best tuning parameter settings 
for Case 1.1.

Fifty trial runs of the algorithms have been carried out for 
100 iterations each. The convergence characteristics of the 
best parameter set obtained for each of the algorithms are 

Table 2   Tuned PSS parameters obtained using various algorithms

CDO GOA SSA

Generator1
Kpss 2.569100 18.96000 28.54000
T1 (s) 1.252700 1.500000 0.603000
T2 (s) 0.071439 0.150000 0.026000
T3 (s) 1.291200 1.136600 0.809000
T4 (s) 0.117900 0.014153 0.048400
Generator2
Kpss 1.917600 3.564700 2.734000
T1 (s) 0.569380 1.457100 1.436000
T2 (s) 0.027684 0.010000 0.013000
T3 (s) 1.147500 0.217620 0.902000
T4 (s) 0.025351 0.010082 0.010000
Generator3
Kpss 6.316000 4.846500 4.085000
T1 (s) 0.188030 0.745690 0.100000
T2 (s) 0.131070 0.020197 0.020200
T3 (s) 0.206240 0.317110 0.247000
T4 (s) 0.150000 0.010000 0.150000

Table 3   EMs and their corresponding damping ratios obtained for Case 1.1 

No stabilizer CDO based PSS GOA based PSS SSA based PSS Dominant 
machine vari-
ables

 − 1.436 ± j13.275,
ξ = 0.10755

 − 2.3783 ± j13.389,
ξ = 0.17489

 − 5.9328 ± j13.76, ξ = 0.39581  − 6.324 ± j13.453,
ξ = 0.4254

�
3
,�

3

 − 0.37734 ± j9.131, 
ξ = 0.04129

 − 1.7768 ± j9.8859, ξ = 0.17690  − 2.2506 ± j9.0169, ξ = 0.24217  − 2.568 ± j8.984, ξ = 0.2748 �
2
,�

2

Fig. 5   Convergence characteristics obtained by different algorithms
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compared in Fig. 5. It can be observed that SSA obtained 

fastest convergence as compared to GOA and CDO.
The final value of the objective function is J = 0 for all the 

algorithms which signifies that all modes have been shifted 
to the specified D-space in the S-plane of Fig. 5.

6.1.2 � Case 1.2

To establish the robustness of the proposed algorithm, the 
EMs are obtained for another loading condition using the 
same tuning parameters obtained for Case 1.1 listed in 
Table 3. The EMs and damping ratios for this case are listed 
in Table 4 demonstrating the superiority of SSA over CDO 
and GOA. Table 5 presents the loading conditions for this 
case.

6.1.3 � Case 1.3

Similar pattern in the performances of the algorithms can be 
observed from Table 6 for same tuning parameters of Case 
1.1 when the loading condition is changed again.

Table 7 preents the loading conditions for this case.

It is quite obvious from the Tables 2, 4 and 6 that SSA 
is capable in shifting EMs (real parts) to the left half of S 
plane as well as enhances the damping ratios in comparison 
to GOA and CDO. PSS parameters are tuned in Case  1.1 
for a particular operating condition. In order to establish 

Table 4   EMs and their 
corresponding damping ratios 
obtained for Case 1.2 

No stabilizer CDO based PSS GOA based PSS SSA based PSS Dominant 
machine vari-
ables

− 0.907 ± j13.57,
ξ = 0.066656

− 1.8462 ± j13.592,
ξ = 0.13459

− 6.4239 ± j13.604,
ξ = 0.42699

−6.567 ± j13.1568,
ξ = 0.4466

�
3
,�

3

− 0.185 ± j9.0462,
ξ = 0.020433

− 1.9521 ± j9.7341,
ξ = 0.19663

− 3.8959 ± j9.0331,
ξ = 0.39603

−3.8671 ± j8.5976,
ξ = 0.4102

�
2
,�

2

Table 5   Loading conditions for Case 1.2 

P (p.u) Q (p.u)

Generator
 G1 1.7164 0.6205
 G2 1.6300 0.0665
 G3 0.8500  − 0.1086

Load
 L5 1.2500 0.5000
 L6 0.9000 0.3000
 L8 1.0000 0.3500

Local load at G1 1.0000 0.3500

Table 6   EMs and their 
corresponding damping ratios 
obtained for Case 1.3 

No stabilizer CDO based PSS GOA based PSS SSA based PSS Dominant 
machine vari-
ables

 − 0.79932 ± j13.633,
ξ = 0.058531

 − 1.5661 ± j13.578,
ξ = 0.11458

 − 6.438 ± j13.463,
ξ = 0.43141

 − 6.657 ± j12.983,
ξ = 0.4563

�
3
,�

3

 − 0.16828 ± j8.7924,
ξ = 0.019136

 − 2.0795 ± j 9.5543,
ξ = 0.21267

 − 3.8251 ± j7.8673,
ξ = 0.43726

 − 3.937 ± j7.3902,
ξ = 0.4702

�
2
,�

2

Table 7   Loading conditions for Case 1.3 

Heavily loaded

P (p.u) Q (p.u)

Generator
 G1 3.5730 1.8143
 G2 2.2000 0.7127
 G3 1.3500 0.4313

Load
 L5 2.0000 0.9000
 L6 1.8000 0.6000
 L8 1.6000 0.6500

Local load at G1 1.6000 0.6500

Fig. 6   EMs obtained for Case 1.1 
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robustness of the proposed algorithm, SSSA studies are car-
ried out for different operating conditions using the tuned 
parameters of PSS obtained from Case 1.1. SSA based PSS 
shows superior performance and attains enhanced damping 
as compared to GOA and CDO based PSS for each operat-
ing condition.

Figures 6, 7, and 8, represent system eigenvalues obtained 
for Case 1.1, Case 1.2 and Case 1.3 respectively. It is 
observed that the system eigenvalues are shifting further 
towards the left half of s-plane and also the damping ratios 
are being improved in each case for SSA as compared to 
those of GOA and CDO. This indicates the efficiency of 
SSA technique in tuning PSS parameters and stabilizing the 
system under various operating conditions.

6.2 � Case 2: System’s Time Domain Response 
for Case 1

To illustrate superiority of the proposed algorithm, a 
three-phase fault is applied near bus 5 at time 0.1 s, which 
is cleared at 0.2 s without tripping any line. Study of the 
change in speed deviation is enough for arriving at a conclu-
sion regarding system stability. Therefore, only the change 
in rotor speed deviations obtained after time domain simu-
lation is demonstrated in Figs. 9, 10 and 11. for best values 
obtained by each algorithm. These figures show the response 
of Δ�12 and Δ�13 obtained by each of the algorithms, when 
the system is subjected to Case 1.1, Case 1.2 and Case 1.3. 
It is observed that the newly proposed SSA keeps the sys-
tem more stabilized as compared to other optimization tech-
niques and also requires lesser settling time to mitigate the 
system oscillations as compared to GOA and CDO.

6.3 � Case 3: Solar PV is connected to the System

All the calculations are made with system frequency of 
60 Hz and base MVA as 100. For the purpose of simulat-
ing multi-machine power system model with integrated 
solar PV at transmission level, in bus number 5, 6 and 8 
of the test system (WSCC 3-Machine 9-Bus), a 50 MW, 
11 kV solar PV has been connected. Results obtained after 
using the iterative process for calculating the series and 

Fig. 7   EMs obtained for Case 1.2 

Fig. 8   EMs obtained for Case 1.3

Fig. 9   Change in Δ�
12

 and Δ�
13

 for Case 1.1 
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parallel parasitic resistance ( RS and RP ) on Kyocera 200 
GT solar module [45] is shown in Table 8. These results 
have been obtained at Standard Temperature Condition 
(STC) i.e. at solar irradiation of 1000 W∕m2 with AM 1.5 
at 25 °C.

These results have been compared with those given in 
[13] and they are found to be almost similar. An initial 
operating condition of the entire system is assumed at solar 
irradiation, G = 600 W∕m2 and temperature, T = 50 °C. All 
the calculations made henceforth are with respect to this 
initial operating condition. Using the algorithm given in 

[46], the maximum current and voltage output from the 
solar module is obtained at G = 600 W∕m2 and T = 50 °C. 
The result is given below in Table 9.

Next, it was essential to calculate the number of mod-
ules that has to be connected in series–parallel combi-
nation in order to meet the 50 MW, 11 kV requirement. 
Required current output from the PV array is calculated 
as 50MW

11 kV
≈ 4545.4545A.

Now, for 4545.4545 A dc current from the solar array, 
number of modules needed to be connected in parallel is 
calculated as np =

4545.4545

4.4952
≈ 1011 . Also the number of 

modules to be connected in series for 11 kV requirement 
is calculated as nS =

11 kV

23.318
≈ 472.

Next, the duty cycle (D), Inductance (L) and DC-Link 
Capacitance (C) of the Boost Converter is to be calculated 
are shown is Table 10.

Here, solar PV is connected at load bus (5 or 6 or 8) 
shown in Fig. 11. The initial conditions for solar genera-
tors are given in Tables 8, 9 and 10. The active power sup-
plied by the solar PV to the WSCC 3 machine 9 bus system 
[1] (considering original system data) for each bus is 0.5 
p.u, as shown in Fig. 11. Solar integrated system matrix 
was formed using (7)–(19) and (34)–(40).

The computed eigenvalues after the inclusion of solar 
PV are compared in Table 11. The table contains the elec-
tro-mechanical modes (mode #1 and mode #2) when solar 
PV is connected to bus 5 or 6 or 8 as shown in Fig. 12. The 
best location of solar PV is found at bus 5 since damping 
ratio improvement is highest when it is connected to this 
bus.

6.4 � Case 4: PSSs are added to Case 3

The function of the PSS is to provide adequate damping 
torque to the rotor oscillations for mitigating LFOs. For get-
ting effective results PSS needs to be allocated properly. The 
main objective of installing PSS is to improve the EMs in 
case 4, using the same tuning parameters obtained for Case 

Fig. 10   Change in Δ�
12

 and Δ�
13

 for Case 1.2 

Table 8   Solar Module parameters of Kyocera 200 GT model at STC

Parameters Value Obtained when 
PV installed at bus 5

IPVn(in A) 8.21451
IPV(in A) 8.21451
RS(in Ω) 0.22000
RP(in Ω) 412.998
I
0
(in A) 9.82500e–8

I
0n(in A) 9.852500e–8

Table 9   Maximum power, current and voltage of module at 600 
W∕m2 and T = 323 K

G (in W∕m2) T (in K) I
mp

(in A) V
mp

(in V) P
mp

(in W)

600 323 4.4952 23.318 104.82

Table 10   Parameters of boost converter

Duty cycle 
(D)

Ripple cur-
rent ( ΔI

L
)

Inductance 
(L)

Ripple volt-
age ( ΔV

OUT
)

DC link 
capacitance 
(C)

0.34972 318.49 0.00099474 17.517 0.004138
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Fig. 11   Change in Δ�
12

 and Δ�
13

 for Case 1.3 

Table 11   Eigenvalues and damping ratios (ξ) for different location of solar PV in WSCC system

Mode number Eigenvalues when solar PV is 
connected at bus 5

Eigenvalues when solar PV is 
connected at bus 6

Eigenvalues when solar PV is 
connected at bus 8

Dominant states

#1  − 0.8517 ± j12.704
ξ = 0.0669

 − 0.8481 ± j12.7071
ξ = 0.0666

 − 0.8547 ± j12.704
ξ = 0.06710

�
3
,�

3

#2  − 0.3268 ± j8.3123
ξ = 0.0393

 − 0.3186 ± j8.3373
ξ = 0.0382

 − 0.3131 ± j8.3117
ξ = 0.0376

�
2
,�

2

#3  − 5.545 ± j7.9430
ξ = 0.572

 − 5.5217 ± j7.9449
ξ = 0.5707

 − 5.5440 ± j7.9456
ξ = 0.5722

VR2,Efd2

#4  − 5.2289 ± j7.7903
ξ = 0.5573

 − 5.2289 ± j7.7968
ξ = 0.5570

 − 5.2294 ± j7.7873
ξ = 0.5575

VR1,Efd1

#5  − 5.3355 ± j7.9228
ξ = 0.5586

 − 5.3339 ± j7.9219
ξ = 0.5585

 − 5.3357 ± j7.9240
ξ = 0.5585

VR3,Efd3

#6  − 5.0565
ξ = 1.000

 − 5.0850
ξ = 1.000

 − 5.0515
ξ = 1.000

E′
d2

#7  − 3.2258
ξ = 1.000

 − 3.2258
ξ = 1.000

 − 3.2258
ξ = 1.000

E′
d1

#8  − 3.2895
ξ = 1.000

 − 3.3337
ξ = 1.000

 − 3.2486
ξ = 1.000

E′
d3

#9  − 0.4437 ± j1.3113
ξ = 0.3205

 − 0.4455 ± j1.2764
ξ = 0.3295

 − 0.4406 ± j1.3276
ξ = 0.5153

E′
q1
,RF1

#10  − 0.4511 ± j0.7490
ξ = 0.5159

 − 0.4471 ± j0.7467
ξ = 0.5137

 − 0.4510 ± j0.7500
ξ = 0.5153

E′
q1
,RF1

#11  − 0.4461 ± j0.5138
ξ = 0.65556

 − 0.4414 ± j0.5100
ξ = 0.6545

 − 0.4469 ± j0.5147
ξ = 0.6556

E′
q3
,RF3

#12  − 0.2189 ± j1.0164
ξ = 0.2105

 − 0.2328 ± j1.0547
ξ = 0.2155

 − 0.2831 ± j0.9971
ξ = 0.2731

�
1
,�

1

#13  ± j1.8757
ξ = 0.000

 ± j1.8757
ξ = 0.000

 ± j1.8757
ξ = 0.000

iq, vsq

#14  ± j1.8757
ξ = 0.000

 ± j1.8757
ξ = 0.000

 ± j1.8757
ξ = 0.000

id , vsd

#15  ± j1.1327
ξ = 0.000

 ± j1.1327
ξ = 0.000

 ± j1.1327
ξ = 0.000

imp, vDC
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Fig. 12   WSCC 3 machine 9 bus system equipped with solar PV at different location

Table 12   EMs for the combination of solar PV, and PSS

CDO based PSS and solar PV GOA based PSS and solar PV SSA based PSS and solar PV Dominant state

 − 2.549 ± j6.893,
ξ = 0.34684

 − 2.935 ± j6.534,
ξ = 0.40975

 − 3.6793 ± j5.8309,
ξ = 0.41162

�
3
,�

3

 − 2.568 ± j7.103,
ξ = 0.09627

 − 2.645 ± j6.897,
ξ = 0.3580

 − 2.9215 ± j6.4685,
ξ = 0.53364

�
2
,�

2

Table 13   Comparison of 
the effects of coordinated 
controllers on small signal 
stability in presence of solar 
PV (Only the EMs) and without 
controllers

WSCC system without 
controllers

SSA based WSCC 
together with PSS

SSA based WSCC together with 
PSS, and solar PV

Dominant state

 − 0.8517 ± j12.704
ξ = 0.0669

 − 6.324 ± j13.453,
ξ = 0.4254

 − 3.6793 ± j5.8309,
ξ = 0.41162

�
3
,�

3

 − 0.3268 ± j8.3123
ξ = 0.0393

 − 2.568 ± j8.984,
ξ = 0.2748

 − 2.9215 ± j6.4685,
ξ = 0.53364

�
2
,�

2

Fig. 13   a Change in Δ�
12

 when fault occurs near bus 5; b change in Δ�
13

 when fault occurs near bus 5 (when solar PV is connected to the sys-
tem)
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1.1 listed in Table 3. Table 12 represents EMs for the com-
bination of solar PV, and PSS.

Table 13 concludes the impact of coordinated controllers 
on small signal stability analysis when solar PV is included 
in it. It can be seen that when PV is connected to the system 
in presence of PSS gives better performance from overall 
system stability point of view.

6.5 � Case 5: Time Domain Response for Case 4

Time domain simulations have been performed to demon-
strate the efficiency of the system equipped with PSS and 
solar PV over the system having only PSS in improving 
overall system stability. Two different fault conditions are 
assumed:

Frequency plays a vital role in power system stability. 
All the generators in the system are synchronised at one 
frequency. If the frequency deviates from the nominal value, 
generators start to go out of synchronism. This triggers 
undesired events in the power system resulting in voltage, 
frequency, power imbalance which might even cause the sys-
tem to collapse. Furthermore, continuous frequency devia-
tions in the system cause oscillations of the rotor about its 
final equilibrium position, thereby introducing hunting. The 
hunting process occurs in a synchronous motor as well as in 
synchronous generators if an abrupt change in load occurs. 
To avoid these issues frequency deviations were investigated 
for the system equipped with DGs (solar PV), and PSS. Fig-
ures 13 and 14 represents frequency deviations for WSCC 
3 machine 9 bus system equipped with PSSs and together 
with PSS and solar PV.

To observe the frequency deviations in these systems, 
fault is considered near the consumers end at bus 5 and 
bus 6. It is observed from the Figs. 13 and 14 that the peak 

overshoot as well as the settling time is lowest in case of 
solar PV together with PSS connected system as compared 
to the system equipped with only PSS connected system.

7 � Conclusion

This work addressed renewable (solar) integration to the sys-
tem studied in diverse operating conditions. System dynam-
ics are largely affected with the integration of renewables 
in an integrated power network. An exhaustive small signal 
stability study on WSCC 3-machine 9-bus test system is 
presented under the following scenarios:

•	 System without renewable energy penetration and PSS
•	 Addition of PSS
•	 Renewables in presence of PSS

Analysis of the results demonstrate better efficiency of 
renewable integrated power system together with PSS over 
PSS integrated power system in improving overall stability 
of the system.

This also paper presented a comparison between the 
performances of CDO, GOA and SSA in tuning the PSS 
parameters. Results show that best tuned parameter set for 
the PSS are obtained using SSA. It is also observed that 
damping ratios of the weakly damped oscillatory modes 
have improved after the addition of SSA based PSS, thereby 
enhancing the dynamic performance of system stability 
greatly. Time domain simulation results for different load-
ing conditions show fastest settling of oscillations in case of 
SSA followed by GOA and CDO. All results establish SSA’s 
superiority over GOA and CDO optimization techniques.

Fig. 14   a Change in Δ�
12

 when fault occurs near bus 6; b Change in Δ�
13

 when fault occurs near bus 6 (when solar PV is connected to the sys-
tem)
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