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Abstract
In this paper we present a new improved sensorless vector control of induction motor based on an improved adaptive Luen-
berger observer. The proposed observer is designed to estimate both speed and motor parameters from measured stator cur-
rents, stator voltages and estimated rotor fluxes. The proposed sensorless drive has for purpose to compensate at the same 
time both stator resistance and rotor time constant inverse variation, which change during operation. Indeed, in the proposed 
adaptive Luenberger observer, a Fuzzy Logic Controller will be adopted as an adaptation mechanism. The proposed observer 
stability is proved by the Lyapunov’s theorem and its feasibility is verified by series of experimental tests. The relevant results 
and the effectiveness of the improved system are clearly shown through obtained experimental results with an induction 
motor of 1 kW driven by dSPACE system.

Keywords  Induction motor · Sensorless vector control · Luenberger observer · Fuzzy logic control · Lyapunov criterion · 
Parameters identification

1  Introduction

Due to the high cost of permanent magnet, induction motors 
(IMs) have attracted attention of modern industrial process 
designers. They have found their place in a wide range of 
industrial applications such as electric vehicles, transporta-
tion and aerospace industries. Induction motors offer sev-
eral advantages compared to other motors such us ease of 
manufacturing, reliability, ruggedness, less maintenance and 
the most important its low price. However, IMs are highly 
coupled and multivariable systems. Consequently, parallel 
control of various variables is required to efficiently control 
the rotor speed and the torque. The reason why, it is essential 
to artificially obtain a decoupling between the flux and the 
torque using Field Oriented Control (FOC) for fast dynamic 
response and for better performances [29].

The use of a speed sensor in induction motor for precise 
signal measurement is required for closed loop speed drive. 
Therefore the presence of a speed sensor (encoder) can be 
an inconvenient. Instead of its extra cost, it leads to increase 
sensitivity to vibration and limits the application of induc-
tion motor in a relatively harsh environment. Thus, espe-
cially in the two last decades, and due to the recent advances 
in DSP, FPGA and ASICs technologies, sensorless control is 
becoming attractive to find solutions allowing to induction 
motor to operate at high performance without measurement 
of mechanical variables [26, 28].

In order to overcome these challenges, recently, various 
techniques for speed estimation that varies from open-loop 
to closed-loop estimator have been proposed and applied in 
medium and high speed regions. Among these techniques, 
Model Reference Adaptive System Observer (MRAS) [2, 
32, 35, 36, 38] which is one of the popular observer due to 
its simplicity and ease of implementation in many forms 
(MRAS based rotor flux, Back EMF, reactive power…). 
However, at low speed region, inverter nonlinearity and 
uncertainties caused by parameters variation, especially the 
stator resistance, make the MRAS observer not able to pro-
vide required performances.

The Sliding Mode observer [8, 15, 25, 27] is one of 
the speed observer that gained a great attention in the last 
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years because of its insensitivity against motor parameters 
variation and its robustness. However, this observer suf-
fers from chattering phenomenon and requires an infinite 
switching rate. The Extended Kalman Filter [3, 11] and/or 
the Unscented Kalman Filter [33] as a speed observer, show 
high improvements in estimation for all region. But their 
main drawback is the use of a non-constant gain updated 
over time that increases computational complexity.

The high gain observer [12] which is also used for induc-
tion motor variables estimation, provides the advantage of 
using only one parameter for dynamic system adjustment. 
However, to find the optimal value of this parameter there 
is no clear analytical study that has been reported, only trial 
and error method that can be used for this issue.

Artificial neural networks have been also used for per-
formance improvement of the induction motor parameters 
estimation [6, 7, 23]. Nevertheless, depending on the range 
of the operational speed and on the application, the number 
of neurons in hidden layer can be increased and then the 
computational complexity.

All these approaches differ with respect to accuracy, 
robustness, and sensitivity against model parameters varia-
tion especially stator and rotor resistances. Thus, the online 
identification of these parameters have attracted the research 
community in the field of robust sensorless drive. To over-
come problems with machine model based techniques, 
methods with high-signal frequency injection were born [14, 
24]. The advantages of these techniques are related to their 
insensitivity to parameters variation and their high precision 
at very low speed region. However, they require a special 
system for a real time implementation.

Out of various approaches, the Luenberger observer 
(LO) that was originally published by David G. Luenberger 
[21], received a lot of attention from other researchers [2, 9, 
17–19, 22, 30]. Among the developed LO structures, we find 
the adaptive Luenberger observer which is one of the most 
popular adaptive observers used in sensorless motor control 
applications. It presents high performances and good stabil-
ity, without forgetting its ease of implementation and low 
computational effort. Its structure is based on the IM model 
that estimates the state variables on the basis of different sets 
of input variables and an adaptive mechanism (AM).

In practice, considerable variations of stator resistance 
and rotor resistance/rotor time constant (RTC) take place 
when the motor temperature changes at varying load or 
speed or air temperature surrounding the motor, that’s why 
online adaptation of these quantities has improved the per-
formance of the induction motor sensorless drive.

In literature, the majority of the proposed schemes, 
whether for speed estimation or for online parameters iden-
tification, utilize a simple PI type observer thanks to its 
accepted performance and simple structure. For example, 
in [9, 17] they have employed the PI adaptation mechanism 
for rotor speed, in [22] they have employed it for rotor speed 
and stator resistance, whereas in [19] they have employed 
it for rotor speed and rotor resistance. However, at very low 
speed region, the system noises get amplified because of 
the inverter nonlinearities and the use of fixed PI adapta-
tion mechanism gains, and therefore the estimation degrades 
clearly and the obtained performance becomes limited [10].

In this paper, a promising solution is proposed in this 
case based on a fuzzy logic controller as adaptive mech-
anism to overcome PI controller’s limitations, and then 
developed experimentally with a dSPACE system based 
on DS1104 controller board to show its effectiveness 
compared to a PI Luenberger observer. Also, unlike the 
existing schemes and to improve the performance of sen-
sorless Indirect FOC of the induction motor drive at very 
low speeds, this work aims at providing simultaneous esti-
mation of rotor speed, stator resistance and RTC inverse 
using the adaptive fuzzy Luenberger observer (fuzzy logic 
based adaptive Luenberger observer) that has been proven 
stable according to the Lyapunov stability theorem.

2 � Induction Motor Model and Indirect Field 
Oriented Control

From the state space representation of the induction motor 
model in the d-q reference frame, the electrical equations are 
written as follows [13, 20]:

(1)

⎧⎪⎪⎨⎪⎪⎩

dIsd

dt
= −�Isd + �sIsq +

ks

Ts
�rd + �ks�rq +

1

�Ls
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dIsq

dt
= −�sIsd − �Isq − �ks�rd +

ks

Ts
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1

�Ls
Vsq

(2)
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�
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d�rq
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where, (Isd, Isq) and (Vsd, Vsq) represent, respectively the d-q 
components stator currents and voltages. (φrd, φrq) denote 
the d-q rotor components fluxes. Tr = Lr/Rr and Ts = Ls/Rs 
denote the rotor and the stator time constants, respectively.

ωs, ω = pΩ and Ω represent respectively the synchronous, 
the rotor speed and the mechanical rotor speed. Lr and Ls are 
the rotor and the stator inductances, respectively. Rr and Rs 
are the rotor and the stator resistances, respectively. M repre-
sent the mutual inductance and p is the number of pole pairs.

And: � = 1 −
M2

LsLr
;ks =

M

�LsLr
=

1−�

M�
;� =

1

Ts�
+

1−�

Tr�
 where 

� is the blondel leakage coefficient.
The electromagnetic torque Ce and the mechanical equation 

in the d-q reference frame are given by:

where, Cr is the load torque, J is the total inertia and fr is the 
friction coefficient.

The field oriented control principal consist of making the 
behavior of induction motor analogous to that of a DC motor 
in order to obtain a separation between the flux and torque 
by orienting the ‘d’ axis along the rotor flux axis as shown in 
Fig. 1. Under this condition we get [4, 16]:

where �r is the total rotor flux.
By using Eq. (5) in Eq. (1), we get:

(3)Ce = p
M

Lr
(�rdIsq − �rq Isd)

(4)
dΩ

dt
= (Ce − Cr − fr Ω)∕J

(5)�rd = �r,�rq = 0

(6)

⎧⎪⎨⎪⎩

Vsd = �Ls
dIsd

dt
+ ��LsIsd − �Ls�sIsq − �Ls

ks

Ts
�r

Vsq = �Ls

dIsq

dt
+ ��LsIsq + �Ls�sIsd + �Ls�ks�r

From Eq. (6), it can be seen that both currents components 
(Isd, Isq) are controlled by voltages (Vsd, Vsq) and then acts on 
flux and torque. In this case, it is required to ensure a decou-
pling by introducing compensation terms Ed and Eq.

Where:

Equation (6) becomes:

A new system of equations is obtained:

Furthermore, the torque expression becomes:

By using Eq. (5) in Eq. (2), we get:

where �r is the slip speed.
Finally, by using the expression of φr (*) in (**) and inte-

grating (**), we get:

where, θs and θ are the position of the d-q reference frame 
and the rotor position, respectively. Later in this article, the 
following notations will be used:

3 � Sensorless Indirect FOC Using 
the Improved Luenberger Observer

The mathematical model of the induction motor in the sta-
tionary reference frame α-β using state space representation 
is described by the following equations [19]:

(7)

{
Ed = �Ls�sIsq + �Ls

ks

Ts
�r

Eq = −�Ls�sIsd − �Ls�ks�r

(8)

{
Vsd = V �

sd
− Ed

Vsq = V �
sq
− Eq

(9)

{
V �
sd
= �Ls

dIsd

dt
+ ��LsIsd

V �
sq
= �Ls

dIsq

dt
+ ��LsIsq

(10)Ce = p
M

Lr
�rIsq

(11)

{
�r = MIsd (∗)(
�s − �

)
=

MIsq

Tr�r

= �r (∗∗)

(12)�s = ∫
(

Isq

TrIsd
+ �

)
dt

a1 = −�; a2 =
ks

Tr
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M

Tr
; a5 = −

1

Tr
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1
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1 − �

�
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Tr

Fig. 1   Principle of the vector control
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where,

And (Vsα, Vsβ) and (Isα, Isβ) represent the α-β stator volt-
ages and currents components, respectively. (φrα, φrβ) are 
the α-β rotor fluxes components.

3.1 � Luenberger Observer Structure

In this work, the adaptive Luenberger observer is a state 
observer estimating the induced fluxes, the stator currents 
and the other parameters (rotor speed, stator resistance and 
RTC inverse). These latter which constitute the output of 
the fuzzy adaptive mechanisms are estimated to be used for 
the tuning in the state matrix as shown in Fig. 2 and/or for 
feedback in the case of the estimated speed. The structure of 
the proposed observer is depicted in Fig. 2 whereas the over-
all block diagram of sensorless indirect FOC for induction 
motor drive using the adaptive fuzzy Luenberger observer 
is depicted in Fig. 3.

The main components of this sensorless vector control 
are the adaptive fuzzy Luenberger observer, the speed con-
trol loop (an outer loop), the Isd and Isq currents control 
loops (inner loops), θs calculation block and the direct and 
inverse Park transformations. The input of the speed con-
trol loop is the reference speed Ω*. This latter is compared 

(13)Ẋ = A
(
𝜔,Rs, 𝛽r

)
X + BU

Y = CX

(14)

A(�,Rs, �r) =

⎡⎢⎢⎢⎣

−Rsa6 − �ra7 0

0 −Rsa6 − �ra7

�ra3 � a3
−� a3 �ra3

M�r 0

0 M�r

−�r −�

� −�r

⎤⎥⎥⎥⎦
,

B =

⎡
⎢⎢⎢⎣

1
�
�Ls 0

0 1
�
�Ls

0 0

0 0

⎤
⎥⎥⎥⎦
,C =

�
1 0

0 1

0 0

0 0

�
,X =

⎡
⎢⎢⎢⎣

Is�
Is�
�r�

�r�

⎤
⎥⎥⎥⎦
, U =

�
Vs�

Vs�

�
, Y =

�
Is�
Is�

�

to the estimated speed Ω̂ provided by the adaptive fuzzy 
Luenberger observer whose inputs are the measured stator 
currents and the reference stator voltages. The speed control 
error ( Ω∗ − Ω̂ ) represents the input of the speed controller 
whose output is the reference torque given by C∗

e
 which pro-

vides the reference current I∗
sq

 , obtained from Eq. (10). This 
latter, is compared to the measured current Isq given by the 
current sensor. The current control error ( I∗

sq
− Isq ) repre-

sents the input of the Q-axis current controller whose output 
is the reference voltage V∗

sq
 . In parallel with this inner Isq 

control loop, we find another Isd control loop. The reference 
current I∗

sd
 , obtained from equation Eq. (11) is compared to 

the measured current Isd given by the current sensor. The 
current control error ( I∗

sd
− Isd ) represents the input of the 

D-axis current controller whose output is the reference volt-
age V∗

sd
 . Both reference voltages V∗

sd
 and V∗

sq
 are transformed 

to three-phase quantities ( V∗
sa

,V∗
sb

,V∗
sc

 ) using the position θs 
obtained from the estimated rotor speed and the slip speed 
given by Eq. (11). These reference voltages are considered 

as the input of the PWM (Pulse Width Modulation) blocks 
which drive the voltage source inverter.

The superscript ‘^’ represents estimated quantities and 
the superscript ‘*’ represents references of the quantities.

The Luenberger observer equations are given by [19]:

where

We put:

(15)
̂̇X = A

(
𝜔̂, R̂s, 𝛽r

)
X̂ + BU + L

(
Y − Ŷ

)

Ŷ = CX̂

(16)

X̂ =

⎡⎢⎢⎢⎣

Î
s𝛼

Î
s𝛽

𝜑̂
r𝛼

𝜑̂
r𝛽

⎤⎥⎥⎥⎦
, Ŷ =

�
Î
s𝛼

Î
s𝛽

�
,A(𝜔̂, R̂

s
, 𝛽

r
)

=

⎡⎢⎢⎢⎢⎣

−R̂
s
a6 − 𝛽

r
a7 0

0 −R̂
s
a6 − 𝛽

r
a7

𝛽
r
a3 𝜔̂ a3

−𝜔̂ a3 𝛽
r
a3

M𝛽
r

0

0 M𝛽
r
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r
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𝜔̂ −𝛽
r

⎤⎥⎥⎥⎥⎦

Fig. 2   The adaptive Luenberger observer Structure
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Equation (15) becomes:

The stator current and the rotor flux estimation error is 
given by the following equation:

By deriving Eq. (19), we obtain the following equation:

We then replace Ẋ  and ̂̇X  by their expressions from 
equations Eq. (13) and Eq. (15) and we add and subtract 
the quantity A′X to get:

(17)A� = A
(
𝜔̂, R̂s, 𝛽r

)
− LC

(18)

̂̇X = A
(
𝜔̂, R̂s, 𝛽r

)
X̂ + BU + LY − LCX̂ = A�X̂ + BU + LY

(19)e = X − X̂ =

⎡
⎢⎢⎢⎢⎣

eIs𝛼
eIs𝛽
e𝜑

r𝛼

e𝜑
r𝛽

⎤
⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

Is𝛼 − Îs𝛼
Is𝛽 − Îs𝛽
𝜑r𝛼 − 𝜑̂r𝛼

𝜑r𝛽 − 𝜑̂r𝛽

⎤⎥⎥⎥⎦

(20)ė = Ẋ − ̂̇X

By using Eq. (19) and by replacing A’ by its expressions 
(as expressed in Eq. (17)), we get:

We finally obtain the expression of the error derivative:

w h e r e ,  ΔA = A(𝜔,R
s
, 𝛽

r
) − A(𝜔̂, R̂

s
, 𝛽

r
) =

⎡⎢⎢⎢⎣

−ΔR
s
a6 − Δ�

r
a9 0

0 −ΔR
s
a6 − Δ�

r
a9

Δ�
r
a3 Δ� a3

−Δ� a3 Δ�
r
a3

MΔ�
r

0

0 MΔ�
r

−Δ�
r
−Δ�

Δ� −Δ�
r

⎤⎥⎥⎥⎦
.

And Δ𝜔 = 𝜔 − 𝜔̂ ; ΔRs = Rs − R̂s; Δ𝛽r = 𝛽r − 𝛽r.

For observer gain matrix L determination, conventional 
pole placement technique will be used:

(21)

ė =
(
A
(
𝜔,R

s
, 𝛽

r

)
X + BU

)
−
(
A
�
X̂ + BU + LY

)

= A
(
𝜔,R

s
, 𝛽

r

)
X − A

�
X̂ − LY + A

�
X − A

�
X

(22)
ė = A

(
𝜔,Rs, 𝛽r

)
X − LY + A�e −

(
A
(
𝜔̂, R̂s, 𝛽r

)
− LC

)
X

(23)ė = A�e − ΔAX̂

Vsa Vsb Vsc * * *

Fig. 3   Sensorless indirect FOC block diagram using the adaptive fuzzy Luenberger observer with online parameters identification
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In order to guarantee the system stability and to improve 
its transient response, the eigenvalues of the matrix A′ are 
placed in the left half of the complex plane. Thus, as pre-
sented in [17], the observer gain matrix L is calculated 
so that the observer poles are proportional to those of the 
induction motor (proportional constant k > 1).

This means that the eigenvalues of full order Luen-
berger observer (λLO) and the IM (λIM) must be satisfied 
using the following equation:

The eigenvalues of the full order Luenberger observer 
can be calculated using the following equation:

where, I4 is the (4 × 4) identity matrix.
Whereas the eigenvalues of the induction motor can be 

calculated using the following equation:

The observer gain matrix can be considered as follows:

The feedback gains are designed as follow:

(24)�LO = k�IM

(25)det
(
𝜆LO I4 − A

(
𝜔̂, R̂s, 𝛽r

)
+ LC

)
= 0

(26)det
(
�IMI4 − A

(
�,Rs, �r

))
= 0

(27)L =

[
l1 l2
−l2 l1

l3 l4
−l4 l3

]T
,

Figures 4a, b illustrate the motor and the observer poles 
trajectories (considering different values of the constant k) 
respectively. The speed ranges from − 140 to 140 rad/s. As 
shown in Fig. 4b, the constant k should not be very large in 
order not to destabilize the system.

3.2 � Rotor Speed, Stator Resistance and RTC 
Inverse Estimation Using the Adaptive fuzzy 
Luenberger Observer

The adaptive LO will be proved stable according to the Lya-
punov method. In our case, the Lyapunov function candidate 
is defined as follow:

where,��,�Rs
 and ��r are positive constants.

To satisfy the sufficient condition of the uniform 
asymptotic stability, the time derivative of the Lyapunov 
function should be negative definite [18]. V̇  is defined as:

(28)

⎧
⎪⎪⎨⎪⎪⎩

l1 = −(k − 1)
�
a1 + a5

�
l2 = −(k − 1)�

l3 =
�
k2 − 1

�� a1

a3
− a4

�
−

1

a3
(k − 1)

�
a1 + a5

�

l4 = −
1

a3
(k − 1)�

(29)V = eTe +
Δ�2

��
+

ΔR2
s

�Rs

+
Δ�2

r

��r

Fig. 4   a The IM poles trajectory for variable motor speeds; b the observer poles trajectory for variable motor speeds and for different values of 
‘k’
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For the derivation of the adaptive mechanism, the 
parameters ω, Rs and βr are considered constant [17]. The 
expression of V̇  becomes:

In order to satisfy the observer stability using Lyapunov 
criteria, the time derivative has to be negative. The term: 
eT([(A’)T+ (A’)])e is negative, because of the imposed 
eigenvalues of the observer whereas terms multiplied by 
the fluxes estimation errors e�r�

 and e�r�
 are neglected if we 

suppose that in vector control these errors are very small.
The rest of the quantities can be set to values less than 

zero or equal to zero:

where,

Finally, we get:

Fuzzy logic that was originally developed by Lotfi 
Zadeh in 1965 [37], has been exploited successfully in 
several areas and utilized to solve many complex problems 
related to complex control of nonlinear and time vary-
ing parameters models. In the case of the IM, fuzzy logic 
techniques have been proposed for error minimization in 
different applications, such as,speed control, switching 

(30)

dV

dt
=

deT

dt
e + eT

de

dt
+

1

��

d(Δ�2)

dt
+

1

�Rs

d(ΔR2
s
)

dt
+

1

��r

d(Δ�2
r
)

dt

(31)

dV

dt
= +2Δ𝜔 a3

(
𝜑̂r𝛽 eIs𝛼 − 𝜑̂r𝛼 eIs𝛽

)
− 2

1

𝛿𝜔
Δ𝜔

d(𝜔̂)

dt
+ eT

[(
A�
)T

+ A�
]
e

+ 2Δ𝛽r

(
a3𝜑̂r𝛼 eIs𝛼 + a3𝜑̂r𝛽 eIs𝛽 −a7Îs𝛼 eIs𝛼 − a7Îs𝛽 eIs𝛽

)
− 2

1

𝛿𝛽r

Δ𝛽r
d
(
𝛽r
)

dt

− 2a6ΔRs

(
Îs𝛼 eIs𝛼 + Îs𝛽 eIs𝛽

)
− 2

1

𝛿Rs

ΔRs

d
(
R̂s

)
dt

+ 2Δ𝜔
(
𝜑̂r𝛼 e𝜑r𝛽

− 𝜑̂r𝛽 e𝜑r𝛼

)

+2MΔ𝛽r

(
Îs𝛼 e𝜑r𝛼

+ Îs𝛽 e𝜑r𝛽

)
− 2Δ 𝛽r

(
𝜑̂r𝛼 e𝜑r𝛼

+ 𝜑̂r𝛽 e𝜑r𝛼

)

(32)

+2Δ𝜔a3e𝜔 − 2
1

𝛿𝜔
Δ𝜔

d(𝜔̂)

dt
= 0, −2ΔRsa6eRs

− 2
1

𝛿Rs

ΔRs

d
(
R̂s

)
dt

= 0

+2Δ𝛽re𝛽r − 2
1

𝛿𝛽r

Δ𝛽r
d
(
𝛽r
)

dt
= 0

(33)
e𝜔 =

(
𝜑̂r𝛽 eIs𝛼 − 𝜑̂r𝛼 eIs𝛽

)
, eRs

=
(
Îs𝛼 eIs𝛼 + Îs𝛽 eIs𝛽

)
,

e𝛽r =
(
a3𝜑̂r𝛼 eIs𝛼 + a3𝜑̂r𝛽 eIs𝛽 −a7 Îs𝛼 eIs𝛼 − a7Îs𝛽 eIs𝛽

)

(34)

𝜔̂ = 𝛿𝜔a3 ∫ e𝜔dt, R̂s = −𝛿Rs
a6 ∫ eRs

dt, 𝛽r = 𝛿𝛽r ∫ e𝛽r dt

table of DTC and online tuning of the speed and/or the 
motor parameters [1, 5, 10, 20, 31, 34]. In this proposed 
Luenberger observer, fuzzy logic has been introduced as 
an adaptive mechanism to generate the speed and the other 
parameters from the errors (whose expressions are listed 
in Eq. (33)) and their derivatives.

As shown in Fig. 5, the fuzzy logic block is composed 

of three main blocks: Fuzzification, inference mechanism 
(rules base), and defuzzification. Figure 6 shows the input 
signals:er and its derivative ėr and the output signal:x̂ 
membership functions.

The choice of the range (universe of discourse) of the 
membership functions variations is generally related to 
the nature of the input variables. In this article, we aim to 
improve the rotor speed and the parameters estimation using 
fuzzy logic based adaptive Luenberger observer (FL based 
ALO).

The input of the FL block is an error for which we have 
imposed this range [− 0.1, 0.1]. Thereafter, in order to have 
high performances of the observer, two adjustment gains 
K1 and K2 have been added in order to normalize the input 
quantities to always get the suitable weights of the member-
ship functions.

Only three membership functions (triangular functions) 
that have been used for inputs and for output of the Fuzzy 
Logic block in order to simplify the practical implementa-
tion and in order to reduce execution time and algorithm 
complexity. In addition, through simulation tests, we noticed 
that the use of more than three membership function does 
not make a significant improvement to the system perfor-
mances [20]. Therefore, the Fuzzy logic block has nine 
fuzzy IF–THEN rules as shown in Table 1. Where, N means 
Negative, Z means Zero and P means Positive. Defuzzifi-
cation is done by centroid method based on the inference 
method Mamdani for more precision. All gains used in this 
sensorless drive are shown in Table 2. 
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4 � Experimental Results and Discussions

The proposed sensorless IFOC of the induction motor drive 
using the Adaptive Fuzzy Luenberger Observer has been 
validated. The scheme shown in Fig. 3 has been used for 
experimental tests. The overview of the experimental setup 
shown in Fig. 7 consists of: (i) An Industrial IGBTs Volt-
age Source Inverter (VSI) from SEMIKRON connected to 
a DC voltage of 400 V, with a gate driver circuit SKHI-
20opA and two current sensors LEM 55-P. (ii) A dSPACE 
1104 board with a 250 MHz 603-PowerPC processor and a 
slave-DSP based on 20 MHz TMS320F240 DSP from Texas 
Instrument used for PWM signals generation. In addition to 
DS1104_ADC converters with a resolution of 12 bits and 
a conversion time of 800 ns with a full-scale input volt-
age of ± 10 V. These latter were used for currents and speed 
acquisition. In fact, measurements obtained from currents 
sensors are converted to voltages ranging from 0 to ± 10 V 
before connection to the DS1104_ADC converters. Regard-
ing the stator voltages, we used the reference stator voltages 
available in the algorithm to avoid the measurement of the 
high-frequency PWM stator voltages. (iii) A dSPACE panel 
serving as interface between the output sensor and the inputs 
of the dSPACE 1104 board (iv) A squirrel cage Induction 
Motor of 1 kW is used with parameters listed in Table 3. 
Load torque is adjusted by changing external resistances 
through a DC generator coupled to the induction motor. (v) 
A tachometer (20 V for 1000 rpm) is used to provide the real 
motor speed for comparison with its estimated value.

The tight integration of dSPACE software with MAT-
LAB/Simulink®, which is a common engineering software, 

provides a powerful development environment. Indeed, 
according to Fig. 8, the six PWM TTL-signals are generated 
based on Simulink real-time blocks including the DS1104SL_
DSP_PWM3 unit whose inputs are the reference voltages. To 
generate the real time C code, the Simulink file is built with the 
help of Real-Time Workshop (RTW) and Real Time Interface 
(RTI), and then downloaded on the 32 MB dSPACE memory. 
In order to ensure an optimal execution of the all parts of the 
sensorless drive, especially PWM generation and currents 
measurements, the PWM frequency was chosen equal to 6 kHz 
and the sampling time is equal to 100 µs.

For real time monitoring, the dSPACE board is used with 
Control Desk software which makes easy data processing 
and visualization.

To show the validity and the effectiveness of the proposed 
IFOC sensorless drive, experimental tests were done in wide 
ranges of speed under load and no load especially at low and 
zero speed operations.

The experimental results are illustrated with relevant dis-
cussions in the following subsections.

The errors expressions are as follows:eFL = Ω − Ω̂FL and 
ePI = Ω − Ω̂PI.Where,Ω̂FL and Ω̂PI are the estimated speed 
using the FL based ALO and PI based ALO, respectivly.

4.1 � Open‑Loop Comparison of the Estimated Speed 
Using PI and Fuzzy LO

The actual rotor speed and the estimated speeds obtained 
with PI and fuzzy adaptive scheme are presented in Fig. 9. 
For better comparison between the two adaptation mecha-
nisms (FL and PI controllers respectively) speed estima-
tion errors are observed in Fig. 10.

In order to illustrate performance of the adaptive mecha-
nism, an open loop test is mandatory when the IFOC con-
trol uses the actual speed as feedback signal. Also, in the 
comparative study of this paper, the main focus is on the 
operation of the speed estimators at low speeds due to poor 
operation of estimators in this region.

∫ K3

K1

K2
d
dt

Inference 
mechanism

Fuzzification

D
efuzzification

er x̂

Fig. 5   Internal structure of the fuzzy logic controller

Fig. 6   Inputs and output membership functions of the fuzzy logic 
controller

Table 1   The fuzzy adaptation 
mechanism rules base

er∕ėr N Z P

N N N Z
Z N Z P
P Z P P

Table 2   Gains of Controllers Used for Estimation

Gains of the fuzzy controller Gains of the PI controller

K1ω, K2ωand K3ω 14, 0.5, 200 Kpω and Kiω 10, 900

K1Rs, K2Rsand K3Rs 10, 0.05, 20 KpRs and KiRs 1, 100
K1βr, K2βrand K3βr 3, 3, 30 Kpβr and Kiβr 0.5, 5
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In the case of zero and low speed test as shown in 
Fig.  9(b), by comparing speed estimation errors in 
Fig. 10(b), it is completely clear that the PI controller has 
significant error especially at zero speed. From Figs. 9a 
and 10a, comparison between the operation of PI and fuzzy 
adaptive schemes from low to high speed tests confirm that 
fuzzy logic controller has better transient and steady-state 
behavior.

4.2 � Rated Speed Response of the Drive

The performances of the sensorless drive (without sta-
tor resistance and RTC estimation) obtained with the PI 
based Adaptive Luenberger Observer and the proposed 
Fuzzy Logic based Adaptive Luenberger Observer are 
shown in Fig. 11. They show sensorless IM drive when 
different ranges of speed references are applied at no 
load with different speed reference profiles. Set of speed 
reference variations are applied from low to high speed 

(100 → 600 → 1100 → 1425) then a ramp speed command 
is applied from rated speed to low speed (100 rpm). In these 
tests, estimated speed is used as feedback in order to ensure 
a closed-loop control. Results show good tracking perfor-
mance of the estimated speed at both transient and steady 
states. The speed estimation errors are given in Fig. 12 for 
comparison. We can observe that the speed estimation error 
with the PI based ALO is more important than the speed 
estimation error with FL based ALO especially in the case 
when the induction motor is running at high speed and not 
loaded.

4.3 � Low and Zero Speed Performance of the Drive

Sensorless speed control experimental results are presented 
here at − 100 rpm (reverse direction) then zero speed then 
100 rpm reference. Figures 13 and 14 present the reference, 
the real and the estimated speeds using the FL based ALO 
and the PI based ALO, whereas Figs. 15 and 16 represent the 
speed estimation errors. It can be noticed that around zero 
speed the actual speed and the estimated speed does not fit 
the speed reference because of the reference voltages (used 
as inputs of the adaptive Luenberger observer) that deviate 
substantially from the actual motor voltages. This problem 
which remains a challenge is caused by the inverter dead 
time effects and inverter nonlinearities. However, the esti-
mated speed using FL based LO remains close to the refer-
ence speed and less undulated at very low speeds compared 
to the one obtained with the PI based ALO.   

ω

ia

ib
Interface Card

DC

IM

Resistive Box

Imrpoved Fuzzy 
Luenberger 

Observer

DSP TMS 320F240  

DC 

DS1104SL_
DSP_PWM3

DS1104_ADC_6

DS1104_ADC_4

DS1104_ADC_5

DS 1104 Controller 
Board

RTW and RTI

Fig. 7   Block diagram of the experimental test bench

Table 3   Motor Specifications and Parameters

Motor specifications Motor parameters

Rated power 1 kW Ls = 0.3973 H;
Lr = 0.3558 H;
M = 0.35 H;
Rs = 6.8 Ω;
Rr = 5.43 Ω;
fr = 0.0025 Nm.s.rad−1;
J = 0.02 kg.m2

Rated current 2.65 A
Rated frequency 50 Hz
Rated speed 1425 rpm
Rated voltage 400 V
Number of pole pairs p = 2
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Fig. 8   Photograph of the experi-
mental setup
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Fig. 9   Actual and the estimated speeds responses with (PI Vs FL) Luenberger observer: a Step speed variations: from − 100 to 900 rpm; b Step 
speed variations: 100 → 0 → 100 rpm
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4.4 � Effect of Loading

The induction motor is running at 700 rpm with 2.75 N.m 
load when step reference of 300 rpm is introduced. The 
loading performances of the sensorless drives are observed 
in Figs. 17, 18 and 19. The induction motor is operated at 
1000 rpm when a load torque of 1 N.m is introduced at 
13.5 s/11.5 s to reach 3.75 N.m then withdrawn at 20.5 s. 
As one can see in Fig. 17, the estimated speeds follow the 
real speed in both transient and steady states, the under-
shoot and the overshoot appear in the real and estimated 
speed during load torque introduction and removal. How-
ever, Fig. 17a shows that the rotor speed estimated with FL 
based ALO is less undulated than the one obtained with 
the PI based ALO.

As shown in Fig. 18, the speed estimation error remains 
negligible using FL based ALO. The profiles of the electro-
magnetic torques are shown in Fig. 19, as shown it is obvi-
ous the increase of the torque ripples with the PI based ALO.

4.5 � Responses of the Estimated RTC Inverse 
and Stator Resistance

In the rest of the tests, the rotor speed, the inverse of the 
RTC and the stator resistance are estimated simultaneously. 

In order to observe the stator resistance effect on the esti-
mated and the real speeds, three rheostats in parallel with 
three phase circuit breaker have been put in series with the 
IM stator resistances as shown in Figs. 7 and 8. The stator 
resistances value is increased sharply at 4 s by 5.5 Ω to reach 
12 Ω and decreased sharply by 5.5 Ω after some few sec-
onds. It can be noticed that the estimated resistance follows 
the real one as shown in Fig. 21.

The estimated RTC inverse is used as input of the adap-
tive fuzzy Luenberger observer for both rotor speed and sta-
tor resistance estimation according to the adaptive model 
equations (the same for the stator resistance and the rotor 
speed). From Eq. (11) and as illustrated in Fig. 3, the RTC 
inverse is also used in slip speed expression. Figure 22 
shows then a good convergence of βr.

On the other hand, as observed in Figs. 20a, 21a, 22a, 
the experimental results clearly highlight and demonstrate 
the efficiency of the proposed adaptive fuzzy Luenberger 
observer compared to the PI based ALO.

We can observe that the FL based ALO has brought 
significant improvement to the PI based ALO by reducing 
clearly oscillations and ripples in all estimated quantities. 
This improvement is obtained even when the rotor speed 
and the other parameters are estimated simultaneously in 
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the presence of stator resistance variation (when its value 
has increased by more than 25% from its nominal value).

4.6 � Parameters Identification at Very Low Speeds

The motor speed is changed from 45 rpm to − 45 rpm then 
from − 45 rpm to 45 rpm as shown in Fig. 23. The test 
objective is to show performances of the proposed sensor-
less drive with parallel parameters identification at very low 
speeds in both directions of rotation.

In particular, Figs. 23 and 24 show very satisfying 
performances obtained at very low speeds with no-load 
torque since the effect of the inverter nonlinearities has 
been eliminated using FL based ALO.

Furthermore, the experimental results show that the 
estimated parameters obtained with FL based ALO are 
slightly affected by the speed variation compared to 
the ones obtained with the PI based ALO as shown in 
Figs. 25b, 26b, especially at zero crossing (at 2.5 s and 
13 s).
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Fig. 13   Ramp speed responses (off load) using: a FL based ALO, b PI based ALO
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Fig. 14   Step speed responses at low speeds (off load) using: a FL based ALO, b PI based ALO
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4.7 � Parameters Identification in the Presence 
of Load Torque Variation

The motor speed is running at 300 rpm as shown in Fig. 27 
and a load torque of 0,5 N.m is introduced at 12  s to 
achieve 1 N.m. The test objective is to show performances 
of the proposed sensorless drive with online parameters 
estimation in the presence of load torque and stator resist-
ance variations. The stator resistance value is increased at 

4 s by 5.5 Ω to reach 12 Ω and decreased by 5.5 Ω after 
some few seconds.

Figures 28, 29 and 30 show very satisfying performances 
using FL based ALO. Furthermore, the experimental results 
show that the estimated speed and stator resistance obtained 
with FL based ALO are slightly affected by the load torque 
variation compared to the ones obtained with the PI based 
ALO.
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Fig. 16   Speed estimation errors: a FL based ALO, b PI based ALO
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With regard to the electromagnetic torque, a compari-
son between the two developed electromagnetic torques 
in Fig. 29 shows a strong reduction of the torque ripples 
using the FL based ALO with respect to the PI based ALO.

Finally, the experimental results has shown high 
improvements achieved by this proposed observer. The 
consequent main advantage is obviously the reduction of 
ripples in the estimated speed and/or the electromagnetic 
torque and the preservation of all the advantages of the 
PI based ALO namely stability in all speed ranges and 
dynamic performances.

0 5 10 15 20 25 30 35

0

2

4

6

Time[s]

To
rq

ue
[N

.m
]

Torque
Torque reference

0 5 10 15 20 25 30 35

0

2

4

6

Time[s]

Torque
Torque reference

(a) (b)

Fig. 19   Electromagnetic torque responses using: a FL based ALO, b PI based ALO

0 5 10 15 20
0

100

200

300

Time[s]

S
pe

ed
[rp

m
]

Real Speed
Estimated Speed
Speed reference

0 5 10 15 20 25
0

100

200

300

Time[s]

Real Speed
Estimated Speed
Speed reference

(a) (b)

Fig. 20   Speed responses in the presence of stator resistance and RTC inverse estimation (off load) using: a FL based ALO, b PI based ALO
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5 � Conclusion

This paper proposes an improved speed estimation method 
for sensorless induction motor drive using an improved 

adaptive Luenberger observer with parameters identifica-
tion using fuzzy logic techniques.

The stability of the proposed sensorless indirect field 
oriented control with stator resistance and rotor time 
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Fig. 22   Responses of the estimated inverses of the RTC (off load) using: a FL based ALO, b PI based ALO
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Fig. 23   Speed responses at very low speeds (off load) using: a FL based ALO, b PI based ALO
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constant tuning has been demonstrated by Lyapunov cri-
terion and its validity has been proved by experimentation 
applied to an 1 kW squirrel-cage induction motor for a 
wide range of speed under load and no load.

The experimental results highlight clearly the effective-
ness of the proposed system in terms of dynamic perfor-
mance at high and very low speed regions during transient 
and steady states and its robustness against IM parameters 
uncertainties.
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Fig. 25   Responses of the estimated stator resistance at very low speeds (off load) using: a FL based ALO, b PI based ALO
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Fig. 26   Responses of the estimated inverses of the RTC at very low speeds (off load) using: a FL based ALO, b PI based ALO
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Fig. 27   Speed responses in the presence of stator resistance and load torque variations using: a FL based ALO, b PI based ALO
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Further research work includes the implementation of the 
proposed technique in another powerful and less expensive 
DSP processor for industrial applications.
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