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Abstract
In medical imaging, extraction of brain tumor region in the magnetic resonance image (MRI) is not sufficient, but finding 
the tumor extension is necessary to plan best treatment to improve the survival rate as it depends on tumor’s size, location, 
and patient’s age. Manually extracting the brain tumor sub-regions from MRI volume is tedious, time consuming and the 
inherently complex brain tumor images requires a proficient radiologist. Thus, a reliable multi-modal deep learning models 
are proposed for automatic segmentation to extract the sub-regions like enhancing tumor (ET), tumor core (TC), and whole 
tumor (WT). These models are constructed on the basis of U-net and VGG16 architectures. The whole tumor is obtained by 
segmenting T2-weighted images and cross-check the edema’s extension in T2 fluid attenuated inversion recovery (FLAIR). 
ET and TC are both extracted by evaluating the hyper-intensities in T1-weighted contrast enhanced images. The proposed 
method has produced better results in terms of dice similarity index, Jaccard similarity index, accuracy, specificity, and 
sensitivity for segmented sub regions. The experimental results on BraTS 2018 database shows the proposed DL model 
outperforms with average dice coefficients of 0.91521, 0.92811, 0.96702, and Jaccard coefficients of 0.84715, 0.88357, 
0.93741 for ET, TC, and WT respectively.

Keywords  Automatic brain tumor segmentation · CNN · Deep learning · Enhancing tumor · MRI brain tumor image 
processing · Sub regions of brain tumor segmentation

1  Introduction

Gliomas tumors are the most common brain tumors that 
emerge from glial of the brain. They are characterized into 
two types: LGG which exhibit benign tendencies, and HGG 
which are malignant and more aggressive. The gliomas 
comprise 80.7% of all malignant tumors [1] and 26.5% of 
all primary brain tumors. In 2018 itself, there are around 
80,000 new malignant cases and non-malignant primary 
brain tumor and other central nervous system (CNS) tumors 
were reported to be diagnosed. Among them, around 32% 
are reported to have primary malignant tumors and other 

CNS tumors. Also, there are around 17,000 deaths reported 
in US during the year 2018 due to the same problem. Only 
34.9% of 5-year relative survival rate has been reported for 
2018 after being diagnosed with primary malignant brain 
and other CNS tumors and it is only 90.47% for the cases 
with primary non-malignant brain tumors [2]. Therefore, it 
is essential to effectively segment the brain tumor images 
to understand the details and give proper medication. The 
motivation behind image segmentation [13] is to segment 
the image into different regions depending on given condi-
tions and is a key task in several medical applications such 
as abnormality detection, post-surgical evaluation, surgical 
planning, etc. Segmentation of brain tumor could be quite 
sophisticated, challenging, and precise segmentation of MRI 
brain tumor is extremely necessary for detection of edema, 
enhancing tumor, and necrotic tissues. A challenging and 
time-taking job is to manually segment the brain tumor from 
a big number of clinically produced MRI images for diagno-
sis of cancer. Due to poor contrast, unknown noise, inhomo-
geneity, and unclear borders that are usually present in clini-
cal images, manual segmentation doesn’t give proper results. 
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With the achievement of outperforming results, automatic 
segmentation [3, 4] using deep learning techniques became 
popular. Deep learning methods [5, 6] also allows effective 
processing and objective assessment of huge images of MRI 
data.

1.1 � Related Work

Several researchers are working towards efficient detection 
of MRI brain tumors and a number of recent and significant 
works related to this work are briefly presented in this sec-
tion. Cuadra et al. [7] have proposed a technique to deform 
brain atlas within the existence of huge space-occupying 
tumors, supported a priori model of lesion advance by 
assuming that the lesion expands from the starting point. 
Ronneberger et al. [8] have suggested a network and string 
that is in agreement with the effective use of deep networks 
using data augmentation to make more efficient use of 
the available labelled samples. Ali et al. [9] have given an 
impression of all MRI brain tumor segmentation using DL 
techniques and explains how these methods give far superior 
results compared to traditional methods in terms of effective 
processing and evaluation of large input image data. Pereira 
et al. [10] proposed a reliable and automatic segmentation 
technique supported CNN; which explores small 3 × 3 fil-
ters due to deeper architecture, and utilized normalization 
of intensity as pre-processing step together with augmen-
tation of data and proved to be very effective. Dong et al. 
[11] suggested, and assessed on BraTS 2015 datasets, a 
reliable and fully automatic segmentation technique using 
U-net-based FCN for effective tumor measurement. Cross-
validation has demonstrated that their technique effectively 
delivers promising segmentation results. Havaei et al. [12] 
have suggested a fully automatic brain tumor segmentation 
technique specifically designed for low and high grade MR 
image glioblastomas using a novel CNN architecture with a 
fully connected layer, allowing 40-fold speed and a double 
stage training procedure that enables tumor label imbalance 
challenges to be addressed. In the 2013 BraTS, a cascade of 
CNNs was also used to achieve higher data rates. Kamnitsas 
et al. [13] suggested a dual, 11-layer deep, 3D CNN network 
to divide the brain lesion resulting from a thorough assess-
ment of current network constraints.

Li et al. [14] have proposed an automatic glioma seg-
mentation algorithm by first using spatial fuzzy c-means 
clustering to estimate ROI in multimodal MR brain tumor 
images, and a few seed points are extracted from there to 
use region growing supported algorithm on a replacement 
“affinity”. High metric values of dice, sensitivity, positive 
prediction value, Euclidean distance, and Hausdroff dis-
tance are obtained with rank of one when obtained perfor-
mance metrics compared with the state-of the-art methods. 
Myronenko [15] has proposed an automated segmentation 

of volumetric MR brain tumor images which is required 
to diagnose, monitor, and treatment planning of the dis-
ease. They described semantic segmentation model based 
on encoder-decoder architecture for extracting the tumor 
sub-region from 3D MRIs and won first place in the 2018 
BraTS challenge. Iqbal et al. [16] presented an extended 
version of multiple neural network layers connected to 
peer-level feeding of convolutional feature maps in sequen-
tial order for segmentation of brain tumor in multi-spectral 
MRI using CNN on BraTS dataset. Fabian Isensee et al. 
[17] has shown the adequacy of a well-trained U-net with 
regard to the BraTS 2018 challenge which improved the 
segmentation performance with minor adjustments in the 
network design. A large patch size was used to make the 
training dataset and the proposed network was trained with 
the above dataset using a dice loss function. An aggres-
sive Dice scores are accomplished on validation data and 
stood in second position. Mehta et al. [18] presented multi-
modal brain tumor by using a 3D U-net modified design. 
The adjustment here is a stronger gradient flow, which 
helps the network to learn learnable parameters effectively 
and to produce better segmentation. 2018 BraTS training 
dataset is used to train the network and good segmentation 
results are obtained.

Stawiaski [19] have presented a DenseNet based on a 
densely connected convolution network encoder for auto-
matic segmentation of MRI brain tumor in 3D multi-modal 
images and attained the average DSC scores of 0.79, 0.90, 
and 0.85 for ET, WT, and TC, respectively by evaluating 
the challenge of BraTS 2018. Feng et al. [20] suggested a 
3D U-net for segmentation of MRI brain tumor with diverse 
hyper parameters and a linear model is developed from 
extracted features of imaging and non-imaging for patient 
survival prediction. The average dice scores of 0.7917, 
0.9094, and 0.8362 are achieved for ET, WT, and TC, 
respectively. McKinley et al. [21] launched a novel classi-
fier family using DeepSCAN architecture in which tightly 
linked dilated convolution blocks are integrated in a shal-
low down or up-sampling U-net-style connection frame-
work. These networks are trained using the 2018 database 
of the Multimodal BraTS. Yang et al. [22] proposed a deep 
learning system combining small kernels two-path CNN 
(SK-TPCNN) and random forest algorithm for the segmen-
tation of brain tumors in MRI. The SK-TPCNN structure 
combines small convolution kernels with large convolution 
kernels to improve the capacity of nonlinear mapping and 
prevents over-fitting, and also increases the multiformity of 
features. The algorithm is validated and evaluated on the 
BraTS challenge of 2015. Hu et al. [23] suggested a novel 
technique based on multi-cascaded CNN (MCCNN) and FC 
conditional random fields (CRFs) for brain tumor segmen-
tation. They trained three models for segmentation using 
image patches obtained from three different orientations like 
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sagittal, coronal, and axial; and final result is obtained by 
combining them all.

2 � BraTS Database

The scope of the BraTS [24] challenge is that the special-
ized best segmentation techniques are used in the analysis 
of brain tumor in MRI multimodal sequence scans. The 
multi-institutional MRI sequence scans of pre-operative 
images are used in BraTS 2018 database and concentrated 
on segmentation of heterogeneous brain tumors, particularly 
gliomas, moreover, to locate the medical importance of the 
segmentation task.

2.1 � Segmentation Task of Gliomas

The labels given in the BraTS database are ‘1’ for non-
enhancing tumor (NET) and necrotic (NCR), ‘2’ for edema 
(ED), ‘4’ for enhancing tumor (ET) or active tumor (AT), 0 
for everything else. In this work, three glioma sub regions 
are used to evaluate the segmentation method which are ET, 
WT, and TC respectively. Enhancing tumor is calculated by 
finding the area of hyper-intensity in T1Gd [6] or T1c image 
when contrasted with image T1-weighted, yet additionally, 
when contrasted with healthy white matter in T1c image. 
The ET is segmented from label 4 in T1c image modality of 
database. Core tumor is segmented by using the combina-
tion of labels 1 and 4 in T1c image. The TC describes the 
non-enhancing and also the necrotic regions of the tumor. 
The presence of NCR and NET tumor core is regularly hypo-
intense in T1c when contrasted with T1. Whole tumor con-
sists of labels 1, 2, and 4 and is a complete extension of the 
tumor which is segmented mainly from T2 and FLAIR. It 
is utilized to check the edema’s extension and separate it 
against ventricles and other necrotic structures.

2.2 � Modalities of MRI Brain Tumor Sequence

All MRI sequences are available as a format of NIfTI 
files (.nii.gz) in BraTS database. They are described as (i) 
T1-weighted native image (T1), acquired in the orientation 
of axial, sagittal, and coronal (ii) T1-weighted image post-
contrast enhancement (T1c), (iii) T2-weighted native image 
(T2) and T2 weighted FLAIR volumes. In general, the dif-
ference between T1 and T2 images is cerebral spinal fluid 
(CSF) which appear as dark in T1 imaging and bright in T2 
imaging. Another commonly used MRI scan sequence is 
the T2-weighted FLAIR which is like a T2-weighted image. 
Abnormalities continue to be bright, though the CSF is 
attenuated and created dark in FLAIR so that it is very easy 

to differentiate the abnormality and CSF in FLAIR imag-
ing. Contrast enhancement or Gadolinium (Gad) is a post 
contrast enhancing agent in T1-weighted imaging which is 
injected throughout the MRI scan so that it changes pixel 
intensities by shortening T1. Accordingly, Gad is very 
bright on T1 images. T1c images are particularly helpful in 
observing breakdown in the blood–brain barrier and vascu-
lar structures.

3 � Methodology and Model Architecture

In this section, the algorithm and methodology used to solve 
the problem are described and architecture of the proposed 
model is also explained.

3.1 � Algorithm Description

Step 1: Assume labels for the data 
No. of patches=4,
Labels:

0: others
1: necrotic and non-enhancing tumor    

                                       
(NEC+NET)

2: edema
3: original
4: enhancing tumor
5: complete tumor

Step 2: Preprocessing
If label=5 for Complete Tumor (edema)

Img(img!=0)=1    
If label=1 for NEC+NET

Img(img!=1)=0    
If label=2 for Tumor Core (NEC+NET+ET)

Img(img=2)=0             
Img(img!=0)=1

If label=4 for Enhancing Tumor (ET)
Img(img!=4)=0

        Img(img=4)=1
Step 3: Normalization of the data with zero mean to avoid 
zero standard deviation problem.
Step 4: Choose image slice from a range of 60 to 130.
Step 5: Read one subject (patient data).
Step 6: Construct a Model for full tumor/enhancing 
tumor/tumor core.
Step 7: Prepare data for training using T2 modality.
Step 8: Train the model with specified training parameters 
for maximum number of epoch.
Step 9: Predict the test image for full tumor.
Step 10: To extract enhance tumor and tumor core, prepare 
training data using T1c modality and segmented full tumor 
image. Repeat steps 7 and 8 to get segmented enhancing 
tumor or tumor core.
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3.2 � Methodology

The MRI images in BraTS database are already skull 
stripped and resampled to 1 mm3 resolution. These images 
change as the intensity of same tissues differ across the 
image due to the bias field distortion. The N4ITK (N3) 
algorithm is used to correct the intensity non-uniformities 
of the image which are affected by the inhomogeneity of 
scanner’s magnetic field. The SimpleITK is used to read 
the NIFTI format data and covert to numpy array format. 
The data size of each subject is 240 × 240 × 155, only the 
60th–130th axial slices are picked as training data as the 
remaining part of brain is very unlikely to have any tumor. 
The mean and standard deviation are used to make the slices 
zero-mean normalized.

The deep learning model utilized to segment MRI brain 
tumor is demonstrated based on U-net and VGG16 archi-
tectures. Multi modal MRI brain tumor images of size 
240 × 240 × 3 are applied as input and the database images 
are in the format of nii (neuroimaging informatics technol-
ogy initiative) which are generally used to represent brain 
imaging data. In this methodology, brain tumor sub-regions 
like ET, TC, and WT are segmented separately. Due to com-
plexity of medical images, applying single modality of the 
image and using single model are not enough to segment 
sub region of MRI brain tumor as the tumor core is inter-
nal portion of the edema and ET is part of TC. To solve 
this problem, the advantage of full tumor prediction and 
calculation of the center point of full tumor is used, then 
the center point is used to crop out the training data for ET 
and TC. The number of cropping images depend on the size 
of full tumor and even the overlap part is cropped to do 

data-augmentation, cropping size is fixed as 64 × 64. The 
T1c image is cropped according to center point of the full 
tumor prediction. If the patch size is bigger than 64 × 64, 
then more than one patch is cropped. Then the 64 × 64 train-
ing data is applied to another deep learning model to train 
and predict. The result of tumor core prediction and enhanc-
ing tumor prediction are pasted back to original full tumor 
prediction according to the center point of it.

Figure 1 presents the proposed approach in a flowchart 
form. Instead of using all MRI modalities, T2 and FLAIR 
data are used for full tumor segmentation using 23 layers DL 
model. Only T1c modality for enhancing tumor and tumor 
core segmentation using 18 layers DL model are used to 
accelerate training. The whole tumor is primarily obtained 
by segmenting the T2-weighted images and is utilized to 
check the edema’s extension in T2-weighted FLAIR and 
discriminate it against ventricles and other necrotic struc-
ture. Enhancing tumor and tumor core are both segmented 
by evaluating the hyper-intensities in T1-weighted contrast 
enhanced images and patches obtained from full tumor 
images earlier.

3.3 � Deep Learning Model Architecture

The segmentation process of brain tumor sub regions con-
sists of two models. A 23-layer deep learning model is 
used to segment full tumor by training the model with 
T2 weighted and T2 FLAIR modalities. Figure 2 shows 
the proposed DL model architecture. This segmentation 
result is used as one of the input and another is T1c images 
which are applied to train the 18 layers DL model to seg-
ment ET and TC separately that is shown in Fig. 1. It is 

PredictTraining

T1c

T2, FLAIR

T1c

Training

Training

Cropping

Pre-
Processing

Pre-
Processing

Pre-
Processing

DL
Model

(23 layers)

DL
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Result

Predict
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Fig. 1   Segmentation of glioma sub regions using proposed methodology
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clear that all the modalities of data are not considered at a 
time. This is the first difference from original U-net. The 
proposed 18 layer DL model is obtained by removing C4 
block from contracting path and E1 block from expand-
ing path. The proposed DL models are thought of as an 
auto-encoder, wherever a contracting path tries to learn 
features of the image and an expanding path attempts to 
utilize these features to reconstruct the image with low 
dimensional data like the ground truth. The convolu-
tion or pooling layers are stacked in the contracting path, 
whereas in the expanding path up-sampling or transposed 

convolution layers are incorporated. With the up-sampled 
output of various phases, high-resolution features are con-
catenated from the contracting path in order to localize. 
These are known as skip connections [25, 26]. The differ-
ence between original U-net and proposed DL model is 
that a batch normalization layer is connected after each 
convolution layer to keep the gradient levels controlled, 
speed up convergence and decrease the result of internal 
covariate shift, so that the network’s parameters are not 
changed rapidly during backpropagation. The convolu-
tion layers with 3 × 3 filters are considered and use the 

Fig. 2   Architecture of proposed deep learning model
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same padding to retain the convolution layer output size, 
which is also different from original U-net. From VGG16 
architecture, two convolution layers/batch normalization 
layers are stacked to extend the receptive field at the least 
resolution. After two convolution layers and batch nor-
malization, a max-pooling layer of size 2 × 2 with a stride 
of 2 is considered for down-sample the image size to 1/2. 
The feature channels are doubled at every down-sampling 
step. There exists an up-sampling of the feature map on 
each expanding path followed by a transposed convolution 
of size 2 × 2 halving the feature channels, a concatena-
tion feature map is cropped with the respective contracting 
path, and two 3 × 3 convolutional filters. Since it is binary 
segmentation for each model, the final one is a 1 × 1 con-
volution layer with one filter, producing binary prediction 
that 1 is tumor and 0 is non tumor.

4 � Performance Evaluations

The performance measures [27] such as accuracy, error 
rate, sensitivity, specificity, F1-measure, dice similarity 
coefficient (DSC), and Jaccard similarity coefficient (JSC) 
are used to evaluate the proposed DL model performance. 
The performance metrics are mostly evaluated on the basis 
of the confusion matrix and is shown in the Table 1. DSC 
and JSC coefficients are taken to measure the surface simi-
larity of the glioma sub-regions.

True Positives (TP) are the cases when the tumor (1) 
data point of ground truth image is correctly labeled as 
tumor (1) data point of the segmented image.

True Negatives (TN) are the cases when the non-tumor 
(0) data point of ground truth image is correctly labeled as 
non-tumor (0) data point of the segmented image.

False positives (FP) are the cases when the non-tumor 
(0) data point of ground truth image is wrongly labeled as 
tumor (1) data point of the segmented image.

False negatives (FN) are the cases when the tumor (1) 
data point of ground truth image is correctly labeled as 
non-tumor (0) data point of the segmented image.

Accuracy gives the relation between the number of 
correctly labeled data points to the total number of data 
points:

Precision or specificity is expressed as the ratio of num-
ber of true positives to number of positive calls. It is also 
called as positive predictive rate (PPR):

Figures 4, 5, 6, and 7 images show in first row a–d: T1 
image, T2 FLAIR image, T1-contrast image; from second 
row e–h: ground truths of WT (full), TC (core), ET (enhanc-
ing tumor), all sub-regions combination (all); from third 
row i–l: prediction of WT (full), TC (core), ET (enhancing 
tumor), all sub-regions combination (all).

Recall or sensitivity is defined as probability of a positive 
test given that the patient has tumor. It is otherwise called 
as true positive rate:

F1 Score is expressed as the accuracy of a test and is 
interpreted as a weighted average of recall and accuracy, 
whereas F1 score touches its highest value at 1 or closer to 
1 and the poorest value at 0 or closer to 0:

Error rate is expressed as the ratio of data points that are 
classified incorrectly to the total data points taken. It can be 
defined as 1-accuracy:

DSC is a quantity of overlap among the expected image 
and ground truth image:

JSC is another widely used surface overlap measurement 
which can be defined as the surface overlap between seg-
mented image and its corresponding ground truth image:

5 � Results and Discussion

The proposed deep learning models are trained with BraTS 
2018 database which consists of 285 MRI scan images of gli-
oma patients. Among them, 210 images belong to high grade 

(1)Accuracy =
(TP + TN)

(TP + TN + FP + FN)
∗ 100

(2)Specificity =
TP

TP + FP

(3)Sensitivity =
TP

TP + FN

(4)F1 − Score =
2 ∗ Pr ecision ∗ Recall

Pr ecision + Recall

(5)Error rate =
FP + FN

TP + TN + FP + FN
∗ 100

(6)Dice =
2 ∗ TP

TP + FP + FN

(7)Jaccard =
TP

TP + FP + FN

Table 1   Confusion matrix

Ground truth predicted Tumor (1) (positive) Non tumor 
(0) (nega-
tive)

Tumor (1) TP FP
Non tumor (0) FN TN
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glioma (HGG III-IV) patients, that is, malignant brain tumor 
images and the remaining 75 are low grade glioma (LGG I-II) 
representing the benign brain tumor images. The data pro-
vided in the BraTS database is supervised, preprocessed, and 
ground truths of the training dataset are also provided. The 
training dataset of BraTS 2018 data base is split into two data-
sets namely training and testing datasets with a ratio of 70:30. 
Therefore, the training dataset consists of 200 patients and the 
testing dataset consists of 85 patients. For each patient having 
four modalities of MRI scan sequences and each of the modali-
ties again comprises 155 slices with volumetric images. The 
four imaging modalities in the BraTS database are described 
as T1, T1c, T2, and T2 FLAIR images, and all of them are 
available in sagittal view, axial view, and coronal view. Axial 
view imaging modalities of the database are considered for 
experimentation. The entire work is implemented using Keras, 
TensorFlow as a backend in Python environment and executed 
on google colaboratory platform using defined datasets.

The most popular medical image segmentation models, 
U-net and VGG16 model architectures are considered to 

propose a deep learning model to perform the segmentation. 
In this work, various sub regions of brain tumor like ET, TC, 
and WT are detected and segmented. A data augmentation is 
applied to the original dataset to produce more training data 
virtually. The data augmentation is to enhance efficiency 
of the network by providing more training data. The data 
augmentation includes simple transformation like rotation, 
flipping, shifting, shear operation, brightness, elastic distor-
tion, and zooming. These operations result in displacement 
field of images, tumor global shape is slightly distorted in 
horizontal direction, and more training data is generated.

In preprocessing, the data is normalized with zero mean 
to avoid zero standard deviation problem. Generally, the 
cross entropy loss evaluates the class label prediction for 
each pixel vector individually and averages it over all pix-
els. This can be a problem if various classes in the database 
have unbalanced representation in the image, as training 
is dominated by the most prevalent class. Instead of cross 
entropy loss, a soft dice coefficient loss is used as a cost 
function which is evaluated for each class separately and 

Fig. 3   Brain Tumor segmentation of patient name Brats18_2013_3_1 
using deep learning models. Images show in first row a–d: T1 image, 
T2 FLAIR image, T1-contrast image; from second row e–h: ground 

truths of WT (full), TC (core), ET (enhancing tumor), all sub-regions 
combination (all); from third row i–l: prediction of WT (full), TC 
(core), ET (enhancing tumor), all sub-regions combination (All)
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then averaged to yield a final score. The stochastic gradi-
ent decent momentum is considered as optimizer with spe-
cific parameters to minimize the cost function. The adap-
tive momentum estimator is adopted to assess the factors. 
The hyper parameters for training process are considered as 
learning rate of 0.0001 and maximum number of epochs is 
equal to 60.

The proposed model to extract the sub regions of MRI 
brain tumor is trained with a dataset which is 70% of BraTS 
training dataset having both HGG and LGG cases. The 
model and methodology are evaluated on randomly selected 
ten number of HGG case patient images from the testing 
dataset (which is split into 30% of BraTS training dataset). 
The HGG cases are considered for evaluation because they 
are aggressive tumors leading to patient life threat. For each 
patient, the evaluation is done on three sub-regions extracted 
from the MRI brain tumor and the time taken for evaluating 
each patient is approximately 26 s. Sub-regions of MRI brain 
tumor considered for evaluation are the ET, TC, and WT. 
The whole tumor includes 1, 2, and 4 labels, tumor core is 
a combination of 1 and 4 labels, and ET is represented label 
4 only. The WT is a complete extension of the tumor and is 
primarily segmented from T2 images and the extension of 
edema with T2 weighted FLAIR images is validated.

Figures 3, 4, 5, 6 and 7 show the MR images of five 
patients considered randomly to extract the sub regions of 
MRI brain tumors using DL models. Images shown in fig-
ures from a–d in first row of each figure are T1, T2, FLAIR, 
and T1c. Second row e–h in each figure are ground truth 
of whole tumor (full), ground truth of tumor core (core), 
ground truth enhancing tumor (et), ground truth of all sub-
regions combination (all). Third row i–l in each figure are 

prediction of whole tumor (full), prediction of tumor core 
(core), prediction of enhancing tumor (et), prediction of all 
sub-regions combination (all).

Data of ten patients is chosen randomly to extract the 
sub regions like ET, TC, and WT and the proposed models 
are evaluated. The performance metrics like accuracy, error 
rate, sensitivity, specificity and two more measurements 
are considered to measure structural overlap between pre-
dicted sub regions (in segmented image) to ground truth 
sub regions (in ground truth image). Figure 4 shows effec-
tive sub-region segmentation of MRI brain tumor using the 

Fig. 4   Brain Tumor segmentation of patient name Brats18_2013_5_1 
using DL models

Fig. 5   Brain Tumor segmentation of patient name Brats18_CBICA_
AQU_1 using DL models

Fig. 6   Brain Tumor segmentation of patient name Brats18_CBICA_
BHK_1 using DL models
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proposed methodology and is shown in Fig. 1. The ET, TC, 
and WT, are extracted with an accuracy of 96.68%, 98.88%, 
and 98.37%, respectively. These results assist the radiologist 
and a doctor can detect the exact size, shape (structural), 
location of the sub-regions of brain tumor like ET, TC, and 
WT respectively.

Table 2 shows the results of DL model evaluation in 
terms of performance metrics such as accuracy, error rate, 
specificity, sensitivity, and F1-score. The model has an accu-
racy of 99.74%, error rate of 0.26%, specificity of 0.9776, 
sensitivity of 0.9572, and F1-score of 0.9670. Considering 
all these results, it is concluded that the deep learning model 
has outperformance by reducing false negatives in the pre-
diction phase. From Table 3, the sub regions of MRI brain 
tumor are calculated in terms of structural overlap similarity 
metrics dice coefficient and Jaccard coefficient. It shows how 
much the extracted sub region is structurally similar with sub 
region of ground truth of MRI brain tumor. The results show 
that the extracted sub regions like ET, TC, and WT are very 

close to ground truths with average dice scores of 0.9152, 
0.9281, and 0.9670 and average Jaccard scores of 0.8471, 
0.8835, and 0.9374 respectively. 

From Table 4, the first three models are trained on 
BraTS 2018 database. These models stood in first three 
places of BraTS 2018 challenge and their dice scores for 
MRI brain tumor sub regions segmentation are tabulated. 
In BraTs 2017 challenge, Pereira et al., Havaei et al., Kam-
nitsas et al., and Dong et al. stood in the first three posi-
tions and the dice scores obtained are tabulated in Table 4. 
The proposed DL models prove that it is performing better 
with dice scores attained on an average of 0.92, 0.91, and 
0.96 for TC, ET, and WT of the brain tumor sub regions. 
Figures 8, 9, and 10 show that the plots of dice score of 
TC, ET, and WT verses various models.  

6 � Conclusions

In this paper, brain tumor segmentation of glioma sub-regions 
is performed using two models. Firstly, a 23 layer deep learn-
ing model is used to segment whole tumor and an 18 layer 
DL model is used to segment ET and TC. These models are 
constructed on the basis of U-net and VGG16 model archi-
tectures. The whole tumor is mainly obtained by segmenting 
the T2-weighted images and is utilized to check the edema’s 
extension in T2-weighted FLAIR and categorized when com-
pared to ventricles and other necrotic structures. Enhancing 
tumor and tumor core are both segmented by evaluating the 
hyper-intensities in T1-weighted contrast enhanced images. 
The proposed models and method have produced outperform-
ing results in terms of DSC, JSC, accuracy, sensitivity, and 
specificity for ET, TC, and WT sub regions of MRI brain 
tumor. The results on the testing dataset of BraTS 2018 data-
base shown that the proposed DL models and methodology 
achieve outperforming results with average DSC of 0.9670, 
0.9281, 0.9152 and JSC of 0.9374, 0.8835, 0.8471 for ET, TC, 
and WT, respectively. The proposed model (23 layers) has 
the performance metrics such as accuracy of 99.74%, error 

Fig. 7   Brain Tumor segmentation of patient name Brats18_
TCIA01_147_1 using DL models

Table 2   Performance evaluation 
metrics of DL models

Name of the subject Accuracy Error-rate Specificity Sensitivity F1-score

Brats18_2013_3_1 99.8993 0.1007 0.9750 0.9926 0.9837
Brats18_2013_5_1 99.6823 0.3177 0.9858 0.9444 0.9646
Brats18_CBICA_AQU_1 99.6719 0.3281 0.9722 0.9669 0.9695
Brats18_CBICA_BHK_1 99.9167 0.0833 0.9867 0.9867 0.9867
Brats18_TCIA01_147_1 99.8056 0.1944 0.9804 0.9804 0.9804
Brats18_TCIA01_201_1 99.4514 0.5486 0.9475 0.8691 0.9066
Brats18_TCIA03_265_1 99.9340 0.0660 0.9887 0.9908 0.9897
Brats18_TCIA03_474_1 99.3542 0.6458 0.9721 0.8864 0.9273
Brats18_TCIA08_167_1 99.7656 0.2344 0.9855 0.9611 0.9732
Brats18_TCIA08_234_1 99.8889 0.1111 0.9829 0.9942 0.9885
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rate of 0.26%, specificity of 0.9776, sensitivity of 0.9572, 
and F1-score of 0.9670. The experimental results show that 
the regions ET, TC, and WT are extracted and located effec-
tively. In the clinical practice, this pathology system assists 
the radiologist to detect size, location, and shape of the brain 
tumor precisely and hence the radiologist or a doctor can take 
consistent decisions, plan the best possible treatment so that 
the patient survival rate is improved.
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