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Abstract
In this paper, a review of previous research in d- and q-axis inductance identification techniques for permanent magnet syn-
chronous motor (PMSM) is presented. The d- and q-axis inductances have an important influence on both the transient and 
steady-state responses of PMSM. Therefore, their accurate information is essential not only for predicting the responses but 
also for designing system controllers. However, standardized procedures for the PMSM inductance identification have not 
yet been established. The main purpose of this paper is to provide an understanding of the various parameter identification 
methods. Conventional techniques are reviewed and introduced with their inherent advantages and drawbacks.

Keywords PMSM drives · Inductance identification · Offline identification · Online identification

1 Introduction

Recently, permanent magnet synchronous motors are widely 
used in industrial applications for high efficiency and high 
output density. As shown in Fig. 1, there are mainly three 
kinds of synchronous motors. PMSM drivers generally 
have closed-loop control systems, based on vector control 
method. Vector control is one of the most popular controls 
for PMSM, known as decoupling or field orientated con-
trol (FOC). It decouples three phase stator currents into two 
phase d- and q-axis currents which produce the flux and 

torque, respectively such that it allows direct control of flux 
and torque.

Therefore, the exact information of the d- and q-axis 
inductances is indispensable for successful controller design. 
If the exact inductances of PMSM cannot be measured or 
estimated, it may occur as a result of low-efficient operation, 
output power reduction and even out-of-synchronization. 
In addition, PMSM has a severe local self-saturation and 
cross-saturation effects, so PMSM parameters such as resist-
ance and d- and q-axis inductances are changed nonlinearly 
by conditions such as electric current, phase angle, etc. In 
particular, the d- and q-axis inductances change irregularly 
depending on the mechanical power, shape, and operat-
ing characteristics of motor, so the incorrect estimation of 
parameters cause the performance degradation of the control 
systems. Thus, accurate estimation of the inductances that 
change in real-time is a necessary element for designing the 
controller and ensuring the improved control performance.

The estimation methods are categorized into two meth-
ods: the offline and online parameter estimations according 
to the estimation time in system operation.

The offline parameter estimation techniques are classified 
according to the implementation point at standstill or oper-
ating conditions. The estimation techniques at the standstill 
conditions include the DC current decay test and AC stand-
still methods. On the other hand, the estimation techniques 
for the operating conditions include the vector-controlled 
method and generator test. The offline parameter estimation 
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methods have the merit to be easily understood by its simple 
algorithm. However, there still exist disadvantages to require 
additional equipment and measurement error caused by the 
estimation at the single operating point.

Meanwhile, the online parameter estimation techniques 
include the model reference adaptive control techniques, 
recursive least square based techniques, extended Kalman 
filter based techniques, and artificial neural network tech-
niques. The online parameter estimation techniques are 
appropriate for applications with various operation ranges, 
because they are performed during the system operation. 
However, the high-efficient microprocessor is required for 
dealing with the relatively complex procedure. In this paper, 
the state-of-the-art offline and online parameter identifica-
tion techniques are entirely reviewed and summarized by 
researching the conventional and recent advancement of 
parameter identification methods for PMSM.

2  IPMSM Equivalent Circuit

For vector control of IPMSM, the three-phase voltage 
equation of IPMSM is converted into the d-q axes voltage 
equation as in (1) through Clarke transformation and Park 
transformation.

where
p: differential operator.
Ra: stator resistance.
ψa: permanent magnet flux linkage.
Ld, Lq: d-axis and q-axis stator inductance.
vds, vqs: d-axis and q-axis stator voltages in rotor frame.
ids, iqs: d-axis and q-axis stator currents in rotor frame.
ωe: electrical stator angular velocity.
The stator resistance is easily measured through DC test 

[1–6], and permanent magnetic flux linkage is obtained by 

(1)
[
vr
ds

vr
qs

]
=

[
Ra −�Lq
�Ld Ra

][
ir
ds

ir
qs

]
+

[
0

�eΨa

]

the residual flux density of permanent magnet. However, as 
shown in Fig. 2, Ld and Lq are nonlinearly changed according 
to the d- and q-axis current, and their cross-coupling effect 
[7–9]. Therefore, a technique for accurately estimating Ld 
and Lq is certainly required for designing various control 
algorithms such as predicting torque and flux-weakening 
capabilities. Various estimation methods to obtain the exact 
values of Ld and Lq have been increasingly studied. That is 
the reason why this paper focuses on analyzing and clas-
sifying these techniques in order to provide a complete 
guideline.

3  Offline Parameter Estimation Techniques

3.1  DC Current Decay Test

In the DC current decay test maintains the rotor on the 
d-axis or q-axis of the stator in order to measure the 
inductance of the u-phase DC current which decreases 

Fig. 1  Classification according to rotor shape of PMSM. a Spoke-
type permeant magnet synchronous motor. b Interior buried perma-
nent magnet synchronous motor. c Surface mounted permanent mag-
net synchronous motor
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from rated current to zero [10–25]. The test configura-
tion is depicted in Fig. 3a. The test consists of the two 
stages to apply a step voltage onto the stator winding of 
the machine at a standstill and to measure the correspond-
ing voltage and current. The procedures to fix the rotor 
in d- and q-axis direction by applying stator voltage are 
illustrated in Fig. The inductances are obtained by

The advantages of DC current decay test are that the 
test equipment is simple and easy to measure [22]. But, 
because the test is executed only at the stationary state, it 
inevitably has inductance errors and iron loss not consid-
ered during operating state [26].

In [16] dealing with these drawbacks, the armature 
of synchronous machine is supplied at standstill by 
DC-Chopper, pseudo random binary sequences (PRBS) 
voltages, PWM voltages and DC decay. The methods 
described in [23] are performed to determine the optimum 
set of the measured samples in order to gain the machine’s 
parameters. An extended DC decay test technique for arbi-
trary positions of the rotor is proposed in [24]. Another 
DC current decay test is described in [14], in which the 

(2)Ld =

[∫ ∞

0

2

3
VdD(t)dt + Rs ∫ ∞

0
ida(t)dt

]

ida0

(3)Lq =

[∫ ∞

0

2

3
VqD(t)dt + Rs ∫ ∞

0
iqa(t)dt

]

iqa0

method is proposed in order to measure it with regard to 
saturation and cross saturation effects.

3.2  AC Standstill Method

In the ac standstill method for the IPMSM, the currents and 
voltages of this phase and another phase are measured under 
the standstill condition to supply the single phase sinusoidal 
voltage [27–36]. So, d- and q-axis inductances are calculated 
from the self and mutual inductances of the stator winding. 
The a-phase self and a and c-phase mutual inductance are 
expressed as a function of the electrical angle

where Lls is leakage inductance, L0, M0 are dc term of the 
self and mutual inductances, L1, M1 represent second-har-
monic components of the self and mutual inductances. The 
self and mutual inductances of the others can be expressed 
in the same way.

The d- and q-axis inductances are obtained by using 
Park’s transformation as follows:

The connection diagram for testing is reported in Fig. 4. 
One of the phase windings is excited by AC supply such that 
the line current and induced phase voltages in one of the 
other two windings are measured at different rotor positions. 
At each rotor position, the self and mutual inductances are 
calculated by Eqs. (8) and (9).

(4)L = Lls + L0 − L1 cos 2�r

(5)M = −M0 −M1 cos 2

(
�r −

�

3

)

(6)Ld = Lls +
(
L0 −M0

)
−
(
L1∕2 +M1

)

(7)Lq = Lls +
(
L0 −M0

)
+
(
L1∕2 +M1

)
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The parameters Lls, L0, M0, L1 and M1 are determined by 
(8) and (9) such that d- and q-axis inductances are calculated 
by (6) and (7).

Even though the AC standstill test gives the simplicity and 
relatively better accuracy on the estimation of the inductances, 
it still has the problem of not reflecting the actual operating 
conditions because the inductance of IPMSM was measured 
only in the condition of standstill. Also, there exists the time-
consuming factor because of the high number of measure-
ments and long measurement times.

In [34], the multi-sine AC standstill test is introduced for 
the swift identification, by which the effect of saturation, cross 
saturation, and frequency on the d- and q-axis parameters are 
rapidly evaluated with a VSI for signal generation. Another 
improved AC standstill test is described in [27], which the 
d- and q-axis currents that are produced by the two single 
phase currents passing through the proposed circuit are iden-
tical with that produced by the three phase currents at running 
condition. In [35], a 3-phase AC voltage source is applied such 
that the vector control drive is not required. Hence, it is very 
suitable for normal laboratory experiments since the d- and 
q-axis inductances are estimated, simultaneously considering 
the saturation and cross-magnetizing effect. The method in 
[32] focuses on the new PMSM model with the stator iron 
loss. Using this model, the d- and q-axis inductances and the 
equivalent iron loss resistance on the stator are measured by 
AC standstill test.

3.3  Vector Control Method

The vector control method is based on terminal measurements 
of the fundamental voltage and current peaks and their phases 
with respect to the rotor position [33, 37–42]. The a-phase 
current, voltage, and rotor position are measured by a current 
probe, a differential probe, and a position sensor, respectively.

Shown in Fig. 5, the d- and q-axis current are calculated 
from the a-phase current waveform and the rotor position. 
Similarly, from the measured amplitude and the phase of the 
fundamental of the voltage, the d- and q-axis voltages are 
obtained.

The d- and q-axis flux linkages can be calculated by

(8)La =

√(
Va

/
Ia
)2

− R2
s

2�f

(9)Mac =
Vc

2�fIa

(10)vd = idRs − �e�q

If the magnet flux is constant and the cross-coupling 
inductances are zero, the d- and q-axis inductance can be 
directly estimated from the flux linkages.

The d- and q-axis inductance as follows

Since vector control method are based on the meas-
ured voltages and currents, estimated parameters include 
the effect of saturation and cross-coupling effects. Vector 
control method is also used to estimate the inductance of 
the motor even with space harmonics. However, the vector 
controlled method requires the extra equipment such as the 
dynamometer, the oscilloscope and the position sensor.

3.4  Other Methods

The other existing approaches to off-line inductance esti-
mation are based on finite element method, described 
in [7, 43–47]. The methods of [43, 46] calculate motor 
parameters considering magnetic nonlinearity by using 
equivalent magnetic circuits, whereas the procedures of 
[44 ,7] consider the saturation and cross-coupling effects.

(11)vq = iqRs + �e�d

(12)Ld
(
id, iq

)
=

�d − �f

id

(13)Lq
(
id, iq

)
=

�q

iq

Fig. 5  Calculation of the individual d and q components from the 
measured current and the phase relationship [37]
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The method to obtain the parameters of PMSM without 
torque measurement has been proposed in [48], in which 
there are advantages with taking into account iron losses, 
avoiding uncertainties due to the value of copper resistance. 
In [49], the inductances are identified by injecting high-fre-
quency signal to the estimated d- and q-axes. The method 
considers the detailed identification error caused by the 
inverter nonlinearity influence at different rotor positions.

Reference [50] provides the well summarized review on 
the off-line synchronous inductance estimation methods.

4  Online Parameter Estimation Techniques

4.1  Recursive Least Square

This group of methods uses known parameters, such as volt-
ages and currents, to identify unknown parameters through 
mathematical models [51–65]. Unknown parameters can 
be found to minimize the error between observation and 
estimation.

Mathematical model of least squares is expressed as

where Y(k) is the output, Θ(k) is the unknown parameter 
vector of the model and Z(k) is the input vector.

The unknown parameter vector Θ(k) can be obtained from 
the known vectors Y(k) and Z(k) by a general recursive least 
square method. The unknown parameters of the mathemati-
cal model can be obtained by

where εi(k) is the square value of the prediction error and Θ̂
(k) is the estimated parameter matrix.

By minimizing the least square function from (14), the 
estimated parameters are determined by the discrete time 
approach with respect to the parameter matrix Θ(k), as 
follows:

where K(k) is the gain matrix which updates parameters 
proportional to the error, P(k) is covariance matrix which 
must be definite and λ is forgetting factor given by 0 < λ < 1. 
The mathematical model for RLS is obtained from voltage 

(14)Y(k) = ΘT (k)Z(k)

(15)𝜀i(k) =
(
Y(k) − Θ̂(k)Z(k)

)2

(16)Θ̂(k) = Θ̂(k − 1) + K(k)
(
Y(k) − ZT (k)Θ̂(k − 1)

)

(17)K(k) = P(k − 1)Z(k)
(
�I + ZT (k)P(k − 1)Z(k)

)−1

(18)P(k) =
(
I − K(k)ZT (k)

)
P(k − 1)

/
�

equations of IPMSM. The observation consists of the indi-
rect reference stator voltage and the measured stator current.

Generally, in the RLS method, the influence of the noise 
on the parameter identification is trivial, as shown in [56]. 
However, when the four parameters are simultaneously 
estimated by using the RLS algorithm, it imposes a heavy 
burden on the controller and could not be converged on the 
solution due to poorness of available data. Thus, in [60], 
the method for estimating the d- and q-axis inductances at 
the sampling rate and estimating the resistance and torque 
constant in a separate program executed at a lower frequency 
is proposed. In [54, 57], the model of the estimated rotat-
ing reference frame is used for the parameter identification 
method.

Since the RLS parameter estimator uses the fixed gain, 
the accuracy of the estimation is not guaranteed without the 
parameter variation, and the disturbance observer could pro-
vide the unstable transient response characteristic. Parameter 
fluctuation and inaccuracy in real-time estimation lead to 
degrading system performances.

4.2  Model Reference Adaptive System based 
Techniques

The model reference adaptive system (MRAS) is the very 
popular control method tuned by control factors that can be 
updated according to the change of system responses. The 
output of the system is compared to the desired response 
from the reference model, which is independent of d- and 
q-axis inductances but the adjustable model dependents on 
these parameters. The error signal is input to the adapta-
tion mechanism. The output of the adaptation mechanism is 
determined in order to apply to tuning the adjustable model 
and also for feedback. The d- and q-axis inductances are 
corrected based on this error [66–78]. The stability of the 
closed loop estimator is ensured using Popov’s hyper-stabil-
ity theory. Figure 6 shows the structure of the MRAS.

Based on MEAS, the identified algorithm of d- and q-axis 
inductances can be written as

Reference 
Model

+
-

Adaptive
Mechanism

Adjustable 
Model

e

ˆˆ ,d qL L

,r
dqs rv ω r

dqsi

ˆr
dqsi

Fig. 6  Structure of MRAS scheme for inductance estimation
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The MRAS method is relatively easy to estimate the 
motor parameters, so it is applied to solve the voltage imbal-
ance of inverter or converter [73]. Also, the Ld and Lq esti-
mation methods of the motor using this technique can accu-
rately obtain the estimated values under various conditions.

However, the error of the d- and q- axis inductance 
directly affecting the stator current command has a vital 
influence on the motor efficiency, so the stator resistance 
must be estimated to compensate the voltage drop compo-
nent. This method also has drawbacks in that it is difficult to 
design the adaptive mechanism and synchronize the PI gain 
at various operating points.

4.3  Artificial Neural Network (ANN) Techniques

The artificial neural networks have single or multi-layers 
consisting of input and output, which requires less compu-
tation and gives faster convergence time compared to other 
algorithms such as MRAS and extended Kalman filter (EKF) 
[79–85]. In [80–83], The adaptive linear neuron (adaline) 
networks with only inputs and outputs are used to estimate 
the parameters. The ANN structure for the PMSM is shown 
in Fig. 7.

The mathematical model of adaline neural networks is as

where Xi is the inputs, Wi is the weights and O(Wi,Xi) is the 
activation function.

A learning control mechanism samples the inputs, the 
output, and the desired output and uses these to adjust the 
weights. The weighting adjustment is obtained through the 
least mean square (LMS) algorithm as follows:

(19)L̂d(t) = L̂d(0) + k1 ∫
t

0

(
iq − îq

)
d𝜏 + k2

(
iq − îq

)

(20)L̂q(t) = L̂q(0) + k1 ∫
t

0

(
id − îd

)
d𝜏 + k2

(
id − îd

)

(21)O
(
Wi,Xi

)
=

n∑
i=0

WiXi

where 0 < i < 1 and η is the learning rate and usually is a 
small number between 0 and 1 (typically η < 1/n).

In [85], the harmonics in the rotor flux linkage is considered 
and the corresponding torque ripple is minimized by on-line 
torque constant estimation. A novel feature of adaptive on-
line weights and biases up-dating of the ANN has also been 
included in [84]. The method of [79] consists of four layered 
feed-forward neural networks with an input layer, an output 
layer and two hidden layers.

Using a neural network, it is possible to calculate parameter 
variations such as inductance, armature resistance and back 
emf constant for motor drive in real-time and to enable high 
performance and robustness control. The controller of the neu-
ral network can reduce the computational complexity and sim-
plify the control method, thus constituting a more practical and 
efficient control system for the IPMSM drive system by vector 
control. In addition, field weakening control is implemented 
by using neural network in order to achieve fast response by 
minimum loss in operating range. However, there is a large 
inductance error when the initial value is inaccurate.

4.4  Extended Kalman Filter (EKF) Based Techniques

The extended Kalman filter is an optimal recursive estimator 
for nonlinear systems [70, 75, 86–90]. It provides a solution 
that considers the effects of the disturbance noises including 
system and measurement noises. The EKF is developed in the 
discrete-time state by taking into account the nonlinear model 
of the IPMSM as follows

where f is the system transition function, h is the measure-
ment function and uk-1 is the control input. wk−1 and vk are 
process and output noise respectively. They are assumed to 
be zero mean Gaussian white noises with covariance Qk and 
Rk respectively.

For the EKF, mathematically, the predictor step is given by

And the corrector step is given by

In (23) and (24), Pk is the covariance matrix correspond-
ing to the state estimation error and Kk is called the Kalman 

(22)Wi(t + 1) = Wi(t) + 2�
[
d(t) − O

(
Wi,Xi

)]
Xi(t)

(23)
{

xk = f
(
xk−1, uk−1

)
+ wk−1

yk = h
(
xk
)
+ vk

(24)
{

x̂k|k−1 = f
(
x̂k−1|k−1, uk−1

)
Pk|k−1 = Fk−1Pk−1|k−1FT

k−1
+ Qk−1

(25)

⎧⎪⎨⎪⎩

Kk = Pk�k−1HT
k

�
HkPk�k−1HT

k
+ R

�−1
x̂k�k = x̂k�k−1 + Kk

�
yk − Hkx̂k�k−1

�
Pk�k =

�
I − KkHk

�
Pk�k−1

Fig. 7  ANN structure for PMSM
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filter gain. After both the prediction and correction steps 
have been performed then x̂k is the current estimate of the 
states and yk can be calculated directly from it. Both x̂k and 
Pk are stored and used in the predictor step of the next time 
period. The state transition and observation matrices are 
defined to be the following Jacobians

The EKF is a recursive optimal filter with the ability to 
estimate the state variables of a nonlinear system with the 
minimized estimation error variance so that the state vari-
ables and parameters of the system in a noise environment 
can be estimated appropriately. In addition, the EKF can 
estimate the parameters from the mathematical model of the 
device through the process of measurement noise covariance 
matrices from operating input–output data.

However, the EKF may fail to converge on the appropri-
ate state values if the system model is inaccurate. It also 
processes input data with noise repeatedly which may lead 
to a high computational burden.

4.5  Other Methods

As another on-line parameter estimation technique, affine 
projection algorithm is reported in [91, 92]. The d- and 
q-axis stator inductances are estimated at high convergence 
rate, while the stator resistance, the magnetic flux linkage, 
and the motor torque are estimated at slow convergence rate. 
Therefore, the estimated parameters and motor torque from 
the affine projection algorithms can be used to continuously 
update the control gains for the adaptive controllers.

A direct method of calculating the phase inductance is 
proposed in [93], which calculates the phase inductance from 
the phase voltage equations. In [94], the motor parameters are 
estimated by tuning the controller gains that cancel the pole 
of the motor transfer function. The real-time estimation algo-
rithms proposed by [95–97] identify the inductance matrix 

(26)Fk−1 =
𝜕f

𝜕x

||||x̂k−1|k−1, uk−1
, Hk =

𝜕h

𝜕x

||||x̂k|k−1

including the rotor position from current harmonics generated 
by inverter.

5  Conclusion

The inductance is an essential parameter of PMSM to design a 
controller to obtain high-performances with respect to torque, 
speed, or sensorless controls. The various research outputs on 
inductance identification techniques for PMSM are introduced 
and summarized in this paper.

The inductance estimation techniques of PMSM are classi-
fied into off-line and on-line parameter identification methods 
according to the operating time. The pros and cons of off-line 
parameter estimation, DC decay, AC standstill, vector con-
trolled and other methods, and on-line parameter identifica-
tion methods, RLS, MRAC, ANN, EKF and introduced other 
methods, are analyzed with the viewpoint of the applicability, 
responding performance, robustness against the disturbance 
and noise, and calculation complexity. PMSM parameter iden-
tification techniques introduced in this paper are summarized 
in Table 1.

Most of the significant identification methods popular in 
an industry are categorized into the criteria systems and dealt 
with in this paper, even if there exist the untouched techniques 
for lack of space. We attempted to provide the sufficient ref-
erences for a better understanding of readers with various 
research backgrounds.
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