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Abstract
In the present work, an encryption/decryption technique, using a new bit-level scrambling and a new diffusion algorithm is 
presented. The proposed system uses a modified Chua’s circuit (MCC) for the chaotic number generation for the first time to 
our knowledge. In 2006, the MCC, which exhibited a hyper-chaotic behavior for a wide parameter regime due to its double 
frequency excitation feature was suggested by one of the authors of the present paper. However, it has not been used for secure 
communication issues. According to present technique, the generated data are transformed to the developed algorithm for 
the encryption and decryption purposes. Following the encryption procedure, the encrypted colored images are evaluated by 
a variety of tests including the analyses of secret key size, secret key sensitivity, histogram, correlation, differential attack, 
information entropy, and noise attack. The results prove that the suggested colored image encryption/decryption technique 
is satisfactory for the secure communication issues in terms of efficiency and speed.

Keywords Bit level scrambling · Chaotic sequence · Color image · Decryption · Encryption · Modified Chua’s circuit

1 Introduction

In the present world, the information technologies rapidly 
grow. That reality enforces one to apply new methodolo-
gies on the image security in many fields from companies 
to the public services [1, 2]. Today, secure communica-
tion becomes very important issue for industrial produc-
tion departments, defense industry and private usage [3, 4]. 
Especially, the image ciphering concept has become a vital 
task to prevent the information theft for important industrial 
projects and military applications.

For any secret communication issue, the techniques of 
the cryptography have taken attention of the community. 
However, traditional encryption methods such as DES, AES, 
and IDEA have some security flaws, because there are many 

tools to decrypt the images, which have been ciphered with 
conventional techniques [4–6]. Among them, some tools can 
be mentioned as correlation, histogram and bulky data [7, 8]. 
In order to avoid this insecure situation, improving innova-
tive encryption techniques is a vital task [5, 6].

Among the secure communication issues, the encryp-
tion of color images stays in a special stage. In principle, 
there exist two main processes [9, 10] (i.e. permutation and 
diffusion). These processes can be used for image encryp-
tion, but the implementation of only one of these stages at 
a bit or pixel level will not provide required security. Thus, 
the encryption procedures should be improved further than 
any decryption techniques to avoid from the insecure image 
communication. For instance, applying only the exchange 
procedure in the bit level can give satisfactory results in 
both permutation and diffusion stages [6, 11]. According 
to the literature, [11, 12] those characteristics meet the 
basic requirements of any kind of image encryption sys-
tem. Many scientists and researchers used chaos-based 
encryption systems to design and implement novel image 
encryption schemes [11–15]. Indeed, the random numbers 
received from any chaotic system have a great advantage for 
the encryption procedure. Therefore, it is not astonishing 
that many chaos-based random number generators exist in 
literature. The main characteristics for a chaos-based system 
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is that the output data (i.e. functions) never repeat, thereby 
any external source cannot have the information to decrypt 
the random data. Strictly speaking, the chaotic circuits trans-
mit the related data to encrypt the image to only a well-
synchronized slave system. A slave circuit system can only 
decrypt the image for the desired aim [16].

The progress of the technology has enabled the trans-
mission of large data over the network. Presently, multi-
media data have become an important element for the use 
of the network communication. Especially, the spread of 
color image transmission has revealed security require-
ments [17–19], but the encryption algorithms designed 
for gray images generally remain bulky in the color 
images and also traditional encryption algorithms are 
poor for color images. In addition to that, in some algo-
rithms developed for the color image encryption, RGB 
components of the image are encrypted independently 
of each fact which affects the system negatively in terms 
of [20, 21]. Color image encryption is usually realized at 
pixel level [22, 23]. In recent years, there are many bit 
level color image cipher schemes in the literature [24–26]. 
It is clear for many systems that only the permutation 
operation at a bit level gives quite satisfactory results for 
a ciphering process [6, 11, 27], whereas, since the data 
size in the color image is high, the design algorithm for 
a bit level encryption should be as optimized as possible 
so that it does not give any bad results in terms of speed.

In the present work, a new chaos-based algorithm is 
proposed for ciphering the color images. The novel fea-
ture of the paper comes from two parts, namely the algo-
rithm itself and the modified Chua’s circuit (MCC) in 
the processes of ciphering and deciphering. The proposed 
algorithm combines diffusion and permutation features 
for a bit level color image encryption. It has also been 
proven that the suggested system is resistant to any plain 
text attacks, since the key is built using the SHA-256 
[28, 29] algorithm and plain image. The new system also 
reduces the correlation because of the mixture of three-
color image components.

This paper is organized as follows: in Sect. 2, some 
related studies on the secure communication literature 
have been stated. In Sect. 3, the MCC system is described 
with the relevant system parameters. Some samples on 
the hyperchaotic results and Lyapunov exponents are also 
presented in this section. In Sect. 4, the proposed secure 
communication algorithm is discussed. The experimental 
findings are given in Sect. 5. The security tests and per-
formance analyses are reported in Sect. 6. Consequently, 
the paper is closed with a brief conclusion section.

2  Related Work

In any chaotic image encryption system, there are two main 
issues: First is the chaotic system, which is used as a ran-
dom number generator. Second is an encryption algorithm, 
which has an importance in terms of efficiency and speed 
[7]. In the literature, many chaotic systems have been used 
for image encryption [30–33]. The dynamic properties of 
these chaotic systems affect the quality of the encryption 
process [34]. Conditions such as the width of the parameter 
space, the strength of randomness, simple and usefulness 
play effective roles in the selection of the chaotic generator 
[35]. On the one hand, the optimal adjustment of color image 
encryption algorithm is very important in terms of efficiency 
and speed [36].

In this work, an electronic circuit, namely MCC having 
a hyperchaotic character is used for color image encryption 
for the first time to our knowledge. In addition, bit-level 
scrambling and a new diffusion algorithm are examined as 
the second innovative part. The safety and performance tests 
prove that the system works effectively and fast enough to 
apply the encryption scheme.

3  Modified Chua’s Circuit and Its 
Hyperchaotic Feature

In this section, the formulation of the proposed modified 
Chua Circuit (MCC) and its hyperchaotic behavior are pre-
sented. The MCC is used as a random number generator for 
the encryption process in the present work. Therefore it is 
vital to encrypt any kind of image with a high efficiency. 
Initially the state equations of the MCC are shown as fol-
lows [37]:

In Eq.  (1), a, b, �, �,�, f  are the control parameters, 
which define the system dynamics and enable the system to 
produce different output data for the encryption.

The phase spaces from Eq. (1) are shown in Figs. 1 and 2 
after applying the time integration by using the Runge–Kutta 
method in MatLab. These phase spaces prove that the MCC 
system can produce strange attractors with chaotic (see in 

(1)

⎧⎪⎪⎨⎪⎪⎩

ẋ = y − bx −
1

2
(a − b)[ �x + sin (z) � − � x − sin (z) � ] ,

ẏ = −𝛽(y + x) + f sin(v),

ż = 𝜙,

v̇ = 𝜔
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Fig. 1a–d) and hyperchaotic (see in Fig. 2a–d) ones in 2D 
and 3D representations.

Lyapunov exponents are very important for the identifi-
cation of the characteristics of a dynamic system. Indeed, 
one can be assure on the chaotic behavior of any dynamics 
system after applying the Lyapunov calculation scheme [37, 
38]. The formulation of the Lyapunov exponent is given in 

Ref. [37]. For instance, there must be one positive exponent 
for a chaotic system [39]. If there would be two positive 
exponents, the system exhibits a hyperchaotic character, 
which means that the system diverges in two dimensions. 
The Lyapunov exponents of Fig. 1a–d are shown in Fig. 3a, 
b. The signs of the plots are (0, 0, −, +), which yields a 
chaotic nature. However, the exponents in Fig. 3c, d give 

Fig. 1  2-D and 3-D representations of sample chaotic attractors with parameters: a, b a = −1.17 , b = −0.49 , � = 0.55 , f = 1.99 , � = 0.2 and 
� = 6.4 , c, d a = −1.17 , b = −0.49 , � = 0.55 , f = 13.92 , � = 0.2 and � = 6.4 , respectively

Fig. 2  2-D and 3-D representations of sample hyperchaotic attractors with parameters: a, b a = −2.91 , b = −0.56 , � = 0.55 , f = 12.99 , 
� = −15.1 and � = 2.91 , c, d a = −2.91 , b = −0.56 , � = 0.55 , f = 9.01 , � = −0.13 and � = 1.29 , respectively

Fig. 3  Lyapunov exponents with the parameters, a a = −1.17 , 
b = −0.49 , � = 0.55 , f = 1.99 , � = 0.2 and � = 6.4 , b a = −1.17 , 
b = −0.49 , � = 0.55 , f = 13.92 , � = 0.2 and � = 6.4 , c a = −2.91 , 

b = −0.56 , � = 0.55 , f = 12.99 , � = −15.1 and � = 2.91 , and d 
a = −2.91 , b = −0.56 , � = 0.55 , f = 9.01 , � = −0.13 and � = 1.29 , 
respectively
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two positive exponents for Fig. 2a–d with the signs of (0, 
0, +, +), which denotes a hyperchaotic behavior form the 
relevant parameter set.

In order to show the dependence on the input parameter 
f, the maximal Lyapunov exponents are depicted in Fig. 4. 
It is obvious that the system reaches to a hyperchaotic 
regime beyond f  = 9. By using another parameter of the 
system i.e. � , a bifurcation diagram has been produced 
in Fig. 5. It is obvious that the chaotic nature appears for 
larger � values (i.e. 0.49). A periodic regime exists for 
low � values.

4  Chaos Based Image Encryption Scheme

4.1  Secret Key Generation

SHA-256, which is a traditionally used cryptographic 
hash algorithm, produces a 256-bit hash value. And this 
value changes completely when there is a slight change in 
the input of the algorithm. The function is used to gener-
ate the keys of this cryptosystem. Indeed, first of all, a 
48-bit digest output which is described as PK is obtained 
from the plain image for input to the SHA-256 function. 
On the other hand, random noise RN is generated at the 
beginning of each encryption process using randi func-
tion of the MatLab. Subsequently, a 256-bit digest hash 
value SK is generated by executing SHA-256 with the PK 
and RN input. Thus, the secret key produced is completely 
unique thanks to SHA-256, even if there is a slight change 
in the plain image, or even no changes at all. As a result, 
all of this indicates that our encryption system can be 
resistant to against chosen-plaintext, chosen-ciphertext 
and known-plaintext attacks. The secret key generation 
is explained in detail below by pseudocodes written in 
MatLab.

ImgA plain color image is presented as input to the fol-
lowing algorithms:

Fig. 4  The variation of maximal Lyapunov exponents with respect to 
parameter f. Other parameters are a = −2.91 , b = −0.56 , � = 0.55 , 
� = −0.13 , and � = 1.29 , respectively

Fig. 5  The bifurcation diagram for parameter � . The other parameters 
are a = −1.17 , b = −0.49 , f = 13.92 , � = 0.2 and f = 4.1 , respec-
tively



1417Journal of Electrical Engineering & Technology (2020) 15:1413–1429 

1 3

Row Collection Algorithm
( )

[ ] ( )

( ) )( )(( )

( ) ( ) )( )(( )( )

end
end

end
mus iibitxor

else
mus i

iif
rof i r

size
function

,: , 652 ;ImgAnoi 1 , domrowCollectnoi irowCollect

,: , 652 ;ImgAnoi i domrowCollect
1

: 1  
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ImgArowCollectionrowCollect

−=

=
==

=
=

=

Column Collection Algorithm
( )
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( ) ( ) )( )(( )( )

end
end

end
isumibitxor

else
isum

iif
rof i r

size
function
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Color Components Collection Algorithm
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end
sum
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PK Pre-Key Generate Algorithm
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end

prekeyBinorToHexbinaryVectPK
ionBinrgbCollectonBinbgCollecti

onBinrbCollectionBinrgCollectiectionBincolumnCollionBinrowCollect
prekeyBin

ionrgbCollectniBnoi ed ibrgbCollect
onbgCollectiniBno ed ibbgCollecti
onrbCollectiniBno ed ibrbCollecti
onrgCollectiniBno ed ibrgCollecti

nectioncolumnColled ibectionBincolumnColl
noi rrowCollectniBnoi ed ibrowCollect

r n k ezis
pkGenerateonpkGeneratifunction

=









=

=
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=
=

=
=

=
=
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ImgA, ,
ImgA

One-time Secrey Key Generate Algorithm

[ ]( )
( )

( )
end

tacrts KP NRKS ahs
andomBinorToHexbinaryVectRN

randiandomBin
ateetKeyGenerneTimeSecrfunction

652 ( , )
r

0 1 , 61 ,1 'r
oSK

=
=

=
=

Here hex2de(.) function converts the secret key from hex-
adecimal number to a decimal number, subset(i, j,K) returns 
elements between the ith index and jth index of the K 1-D 
array.

(3)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x�
1
=
�
hex2de(subset(1, 10, SK))10−11

�

+
�
hex2de(subset(11, 16, SK))10−14

�

y�
1
=
�
hex2de(subset(17, 26, SK))10−11

�

+
�
hex2de(subset(27, 32, SK))10−14

�

z�
1
=
�
hex2de(subset(33, 42, SK))10−11

�

+
�
hex2de(subset(43, 48, SK))10−14

�

v�
1
=
�
hex2de(subset(49, 58, SK))10−11

�

+
�
hex2de(subset(59, 64, SK))10−14

�

Supposing that a hexadecimal number as hi , secret key SK 
can be defined as the hexadecimal number array as follows:

4.2  Obtaining the Initial Values of the Chaotic 
Equation from the Secret Key

The fact that chaotic systems are sensitive to initial values 
makes these systems very important for encryption systems. 
In this study, we have tried to reflect the slightest change 
in the secret key to the initial values. So, we get the values 
a1, a2, b1 and b2 to make sure that the slightest change in 
secret key causes changes in all initial values.

The initial values x1, y1, z1, v1 and the initial parameter f  
for Eq. (1) can be derived as follows:

(2)
SK =

[
h1, h2,… , h64

]
, ∃i ∈ [1, 2,… , 64] ∀hi ∈ [0 − 9], [A − F]
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In Eq. (3), we determine the multiplications 1011 and 1014 
in order to adjust the relevant decimals of the x1, y1, z1 and v1.

The values of a1, a2, b1 and b2 are calculated according to 
the program schemes in Figs. 6 and 7 using subset , concat , 
roundD , hex2de and sum functions. The subset and hex2de 
functions are mentioned above. The concat(.∕.) function con-
catenate the values given into it. The roundD(.) returns the 
decimal portion of the given decimal number and sum(.) is 
aggregate function.

where the number 9.1 refers to the lower chaotic param-
eter for f. Since a1,2 and b1,2 refers to the numbers lower 
than 1, we make the multiplication higher by using the term (
2 − (a, b)1,2

)
.

4.3  Encryption Algorithm

Figure 8 represents the overall flow chart of the encryption 
procedure. The steps of the flow chart are explained as the 
following:

Input: Plain image P, secret key SK
Output: Cipher image C
If we assume that the horizontal and vertical magnitudes 

are W and H respectively, the size of the color plain image 
is W × H × 3 . Then the total size of the colored image is as 
follows:

Step 1. Take the initial values 
(
x1, y1, z1, v1

)
 and the initial 

parameter f of the chaotic system using Eqs. (3, 4).
Step 2. With the help of the iteration method, generate 

chaotic numbers array CN whose size are (s × 4) + 5000 by 
solving this time-continuously chaotic system. And then, 
remove the first thousand chaotic values that could adversely 
affect the encryption system.

Step 3. With the help of these numbers CN produced by 
chaotic generator, generate the key matrix KM to be applied 
in the diffusion and scrambling stages.

(4)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

x1 = x�
1

�
2 − a1

�
y1 = y�

1

�
2 − a2

�
z1 = z�

1

�
2 − b1

�
v1 = v�

1

�
2 − b2

�
f = 9.1 + a1

(5)s = W × H × 3

(6)
n = s × 4,

cs = n + 4000;

Here, CN(i) means that the ith element of CN, which is a 
1-D array. The round function rounds the entered decimal 
number to the nearest number. The second parameter of the 
function determines the decimal point of the number to be 
rounded. The abs function takes the absolute value of the 
entered number. ‘^’ is the exponent operator that we know.

The unique function deletes repetitive elements of an 
array. The sort function returns the new index numbers 
of the array by sorting the array from small to large. The 
subset(i, j,K) returns elements between the ith index and jth 
index of the K. As a result, we can define the KM matrix as 
follows:

Step 4. Resize the plain image P for each pixel by starting 
from component R sequentially from upper point to bottom 
point, then left to right, with components G and B. After 
that, convert each pixel into a 8-digit binary format. As a 
result, a matrix of s rows and 8 columns is obtained. The 
getBinimage function applies all these operations to give the 
PB matrix.

The first column of the PB matrix corresponds to the first 
bit in the binary format of the decimal values corresponding 
to each row in this matrix. The same logic is used from 1th 
column to the 8th column.

Separate the first 4 columns and the last 4 columns of the 
binary matrix. Indeed, vertically divide the matrix PB in 
half. The matrix containing the first four columns of PB is 
PB1 , the other matrix is called PB2.

Step 5. Perform the mapping method to the matrix PB2 
by using the KM key matrix.

(7)

for i = 1 ∶ cs

CN(i) = abs
((
CN(i) − round(CN(i), 6) × 10∧6

))
;

end

CN� = unique(CN);

CN�� = subset
(
1, s × 4,CN�

)
;

KM = sort
(
CN��

)

(8)

∀i, j ∈ [1, 2,… , n],

KM =
[
km1, km2,… kmn

]
, kmi ∈ [1, n], Z+,

∀i ≠ j ⇒ ∀kmi ≠ kmj

(9)PB = getBinimage(P)

(10)

PB�
2
= reshape

(
PB2, n, 1

)
PB��

2
= PB�

2
(KM)

PB2 = reshape
(
PB��

2
, s, 4

)
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Here, reshape resizes any matrix according to the values 
given. The PB�

2
(KM) operation scrambles the values in PB′

2
 

to different positions according to KM. Indeed, the operation 
can be explained as follows:

Let’s assume A is an array. In that case, when I is a subset 
of the positive integers,A(I) is a subset of the A . We define 
it as follows:

Fig. 6  Flow diagram where a1, a2 ∈ [0, 1] decimal values are obtained

Fig. 7  Flow diagram where b1, b2 ∈ [0, 1] decimal values are obtained
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Step 6. Perform diffusion method to matrices PB1 and PB2 
by using the key matrix KM.

(11)

A =
{
a1, a2,… , an

}
, I =

{
i1, i2,… im

}
∶

A(I) =
{
ai1 , ai2 ,… , aim

}
=
{
A
(
i1
)
,A

(
i2
)
,… ,A

(
im
)}

,

i ∈ I ⇒ A(i) = ai

(12)

KM� = reshape(KM, s, 4);

PD1 = bi2de
(
PB1

)
;

PD2 = bi2de
(
PB2

)
;

for i = 1 ∶ s

sm1 = mod
(
PD1(i), 4

)
;

if sm1 == 0 sm1 = 4; end

PD2(i, ∶) = bitxor

(
PD2(i),

mod
(
KM�(i, sm1), 15

)
)
;

sm2 = mod
(
PD2(i), 4

)
;

if sm2 == 0 sm2 = 4; end

PD1(i, ∶) = bitxor

(
PD1(i),

mod
(
KM�(i, sm2), 15

)
)
;

end

CB1 = de2bi
(
PD1

)
;

CB2 = de2bi
(
PD2

)
;

Here, while the function bitxor applies bitwise xor logi-
cal operation, the bi2de function converts the number from 
the binary format to decimal one. The de2bi is the opposite 
bi2de and the mod function is the standard modulus opera-
tor. KM�(i, j) denotes the element of ith row and jth column 
in the KM′ matrix.

Step 7. In contrast to the separation in step 4, combine 
the matrices CB1 and CB2 . Convert binary matrix to decimal 
matrix. Finally, get the encrypted image by converting this 
matrix to the original dimensions of the image.

It will be shown that the algorithm above has certain 
superiorities on the other algorithms in the literature. Ini-
tially, the present algorithm gives good results for all secu-
rity tests. It is not time-consuming and complicated. Indeed, 
it uses the image in 2 half parts, which are regarded as 
important and unimportant parts as in Fig. 8.

4.4  Decryption Algorithm

The cipher image C is the input data for this process and the 
deciphered P is denoted as “output”, as the inverse of the 
encryption process.

Step 1. Obtain the key matrix KM by applying steps 1, 2 
and 3 of the above encryption process exactly.

(13)
CD = bi2de(CB);

C = reshape(CD,W,H, 3);

Fig. 8  The flow chart of the encryption process
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Step 2. Similar to step 5 in the encryption scheme, obtain 
the CB1 and CB2 matrices using the encrypted image instead 
of the plain image this time.

Step 3. Perform diffusion method to CB1 and CB2 matrices 
using KM matrix.

(14)

KM� = reshape(KM, s, 4);

CD1 = bi2de
(
CB1

)
;

CD2 = bi2de
(
CB2

)
;

for i = 1 ∶ s

sm2 = mod
(
CD2(i), 4

)
;

if sm2 == 0 sm2 = 4; end

CD1(i, ∶) = bitxor

(
CD1(i),

mod
(
KM�(i, sm2), 15

)
)
;

sm1 = mod
(
CD1(i), 4

)
;

if sm1 == 0 sm1 = 4; end

CD2(i, ∶) = bitxor

(
CD2(i),

mod
(
KM�(i, sm1), 15

)
)
;

end

PB1 = de2bi
(
CD1

)
;

PB2 = de2bi
(
CD2

)
;

The functions used here are defined in the encryption 
process in the previous section.

Step 4. Perform mapping method to the CB2 matrix using 
the KM key matrix.

Step 5. Obtain the decoded P matrix from the PB1 and 
PB2 matrices, similar to step 7 in the encryption algorithm.

5  Experimental Results

For the experiments, many parameter sets can be used. As 
a sample parameter set, we have considered the parameters 
of the chaotic circuit as a = −2.91,b = −0.56,� = 0.55

,� = −0.13 and � = 1.29 . Because, the dynamic system 
exhibits a hyperchaotic behavior with these first parameters 
for f ≥ 9.1 . Along with plain image and random noise, the 
secret key produced with the help of the SHA-256 function is 
2A8649DDF54B044DC1A50329C54B4960010066BA8FD-
005D4392B536545B04ECE. Then, the initial state variables 
and driving amplitude f  of MCC are obtained from this 
secret key.

(15)

PB�
2
= reshape

(
PB2, n, 1

)
PB��

2
(CK) = PB�

2

PB2 = reshape
(
PB��

2
, s, 4

)

Fig. 9  The plain images and their corresponding encoded results. a Vikings, e encrypted Vikings, b Baboon, f encrypted Baboon, c Airplane, g 
encrypted Airplane, d Lena and h encrypted Lena, respectively
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The sizes of plain images are 456 × 408 , 512 × 512 , 
512 × 512 , and 256 × 256 for the Vikings, Baboon, Airplane 

and Lena plain images, respectively (Fig.  9a–d). The 
encrypted versions of these images are given in Fig. 9e–h, 
respectively.

6  Security and Performance Analyses

6.1  Key Space Analysis

All the chaotic systems have a common feature: They are 
very dependent on the initial values. In other words, if any 
slight change occurs in the initial values of the functions, the 
functions produce entirely different result after sufficiently 

Fig. 10  a One bit-modified version of Fig. 9d, b encrypted image of a, c the difference between Fig. 9b, h

Table 1  Minimum, maximum 
and average UACI(%) values

Image R G B

Max Mean Min Max Mean Min Max Mean Min

Vikings 33.4156 33.3658 33.3479 33.3825 33.3482 33.3108 33.4182 33.3716 33.3556
Baboon 33.4684 33.4426 33.4281 33.5922 33.5371 33.4915 33.5163 33.4994 33.4635
Airplane 33.4428 33.4195 33.3841 33.4087 33.3856 33.3692 33.3867 33.3421 33.3242
Lena 33.5830 33.4926 33.4471 33.4826 33.4620 33.4483 33.5683 33.4961 33.4102
Lena Ref. [45] 33.45 33.38 33.46
Lena Ref. [46] 33.48 33.46 33.42
Lena Ref. [47] 33.43 33.46 33.62

Table 2  Minimum, maximum 
and average NPCR(%) values

Image R G B

Max Mean Min Max Mean Min Max Mean Min

Vikings 99.6226 99.6118 99.6012 99.6095 99.6001 99.5944 99.6193 99.6167 99.5963
Baboon 99.6184 99.6021 99.5753 99.6028 99.5934 99.5812 99.6482 99.6216 99.6081
Airplane 99.6229 99.6148 99.5916 99.6156 99.5962 99.5894 99.6149 99.6032 99.5926
Lena 99.6218 99.6069 99.5945 99.6423 99.6102 99.5982 99.6193 99.5921 99.5736
Lena Ref. [45] 99.59 99.59 99.60
Lena Ref. [46] 99.61 99.61 99.61
Lena Ref. [47] 99.57 99.58 99.57

Table 3  Information entropies of the cipher images

Image R G B

Vikings 7.9978 7.9974 7.9971
Baboon 7.9997 7.9991 7.9992
Airplane 7.9985 7.9988 7.9987
Lena 7.9995 7.9988 7.9991
Lena Ref. [45] 7.9993 7.9993 7.9994
Lena Ref. [47] 7.9814 7.9810 7.9816
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large time duration. The key space should be capable of 
neutralizing brute-force attacks for the encryption algo-
rithm designs with a sufficient reliability. The encryption 

system key includes the initial values ( x1, y1, z1, v1 ) and 
initial parameter of f  . In general, for systems with chaotic 
features, the precision of the initial conditions should be 

Fig. 11  Distributions of the correlations between the plain and the encoded images. a, c, e are the diagonal, vertical and horizontal of plain 
image, b, d, f are the diagonal, vertical and horizontal of cipher image respectively

Table 4  Correlation coefficients 
for adjacent pixels in the 
original images and their cipher 
images

Images Directions Original Encrypted

R G B R G B

Vikings Diagonal 0.9409 0.9498 0.9569 0.0062 − 0.0039 − 0.0036
Vertical 0.9777 0.9804 0.9668 0.0021 − 0.0106 0.0036
Horizontal 0.9647 0.9711 0.9677 0.0185 0.0140 − 0.0165

Baboon Diagonal 0.8527 0.7124 0.8415 − 0.0120 − 0.0106 0.0065
Vertical 0.8683 0.7782 0.8790 − 0.0113 − 0.0175 0.0165
Horizontal 0.9253 0.8626 0.9113 − 0.0267 − 0.0249 0.0006

Airplane Diagonal 0.9112 0.9449 0.8952 0.0103 0.0043 − 0.0007
Vertical 0.9670 0.9612 0.9530 − 0.0133 − 0.0193 0.0004
Horizontal 0.9762 0.9685 0.9689 0.0340 0.0114 0.0023

Lena Diagonal 0.9303 0.9287 0.8760 − 0.0125 0.0184 0.0096
Vertical 0.9661 0.9673 0.9530 0.0118 0.0221 0.0030
Horizontal 0.9461 0.9268 0.9147 0.0009 − 0.0041 − 0.0009

Lena Ref. [1] Diagonal 0.9587 0.9412 0.8625 − 0.0002 − 0.0006 − 0.0101
Vertical 0.9728 0.9596 0.8797 − 0.0002 0.0139 0.0011
Horizontal 0.9819 0.9705 0.9203 0.0363 − 0.0008 − 0.0092

Lena Ref. [2] Diagonal 0.9696 0.9555 0.9182 0.0009 − 0.0014 − 0.0019
Vertical 0.9893 0.9824 0.9575 − 0.0002 0.0018 0.0002
Horizontal 0.9797 0.9690 0.9328 − 0.0005 − 0.0013 − 0.0002
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as high as possible such as 14 or 15 digits after the comma 
[5], so that the key space can reach at 1070 . The key space 
is S = 1070 ≅ 2232 > 2100 [40], so that the cryptosystem can 
resist to brute-force attacks.

6.2  Key and Plain Image Sensitivity Analyses

It should be pointed out that any small modification at the 
initial values of the chaotic system would yield entirely dif-
ferent outputs. The key of the Modified Chua crypto system 
is a ‘nonce’, based on the hash value generated by the plain 
image and a random sequence. Thus, if the startup condi-
tions are changed slightly, this would cause to generate dif-
ferent encrypted images. In the MCC system, it is observed 
that the algorithm is very delicate to the slightest variation 
in the key after applying the experiments.

Figure 10a is a one bit modified version of the Lena 
image and its encrypted state is given in Fig. 10b. The dif-
ferences between Figs. 9h and 10b is also given in Fig. 10c. 
From this point of view, results of the encryptions are also 
divergent from each other.

6.3  Resistance to Known Plaintext and Chosen 
Plaintext Attacks

According to the proposed algorithm, the key strongly 
depends on the hash value of the original image. There-
fore, different keys would be produced for different kind 
of images. Any attacker cannot decipher a particular image 
with a key used from another image. To conclude, the imple-
mented software may be resistant to both the known—plain-
text and chosen—plaintext attacks.

Fig. 12  Histogram of plain and encrypted images of Lena respectively

Table 5  Quantitative results of 
resisting noise attack

Image Density MSE PSNR Correlation

R G B R G B R G B

Vikings 0.01 107 109 107 27.8260 27.7520 27.8289 0.9936 0.9941 0.9905
0.05 545 550 551 20.7660 20.7287 20.7171 0.9687 0.9694 0.9654
0.1 1076 1085 1096 17.8138 17.7772 17.7335 0.9274 0.9390 0.9180

Baboon 0.01 109 111 111 27.7630 27.6874 27.6879 0.9936 0.9954 0.9912
0.05 543 536 539 20.7802 20.8372 20.8176 0.9657 0.9764 0.9660
0.1 1080 1075 1082 17.7975 17.8151 17.7902 0.9309 0.9516 0.9337

Airplane 0.01 106 105 111 27.8645 27.9097 27.6741 0.9944 0.9933 0.9938
0.05 546 549 558 20.7587 20.7343 20.6663 0.9667 0.9717 0.9719
0.1 1080 1099 1079 17.7948 17.7210 17.7999 0.9438 0.9396 0.9498

Lena 0.01 108 107 112 27.8058 27.8307 27.6265 0.9934 0.9920 0.9914
0.05 551 536 541 20.7226 20.8430 20.7987 0.9635 0.9639 0.9541
0.1 1094 1056 1047 17.7401 17.8934 17.9298 0.9345 0.9260 0.9100
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6.4  Differential Attacks

Typically, in an image encryption unit, it is considered that the 
encrypted media should differ from its unencrypted version. To 
determine such a difference between the versions, the criteria 
NPCR [41] and UACI [42] are generally used in the literature.

In other words, the crypto system, which is recommended 
here should guarantee that the encrypted versions of two 
images become different to each other, when one bit modi-
fication is made into one of them. Tables 1 and 2 show the 
NPCR and UACI test findings for 1500 randomly selected 
pairs. The findings are satisfactory and the software is found 
to be robust against differential attacks.

6.5  Information Entropy Analysis

Information entropy is used for the measurement of an arbi-
trary distribution in a media file. The formulation of this 
operation is presented as follows [43]:

(16)H(m) =

2n−1∑
i=0

p
(
mi

)
log2

1

p
(
mi

)

The information entropy for an encrypted version should 
be as high as possible, indeed it should be 8 for ideal results 
as in Ref. [44]. That makes the information difficult to 
expose. Here, Table 3 gives the information entropy results 
of three pieces of the encrypted image by using the Eq. (16). 
It is found that the results are close to 8.

6.6  Correlation Coefficient Analysis

There exists a relationship between neighboring pixels in 
any original image. In order to counteract statistical attacks 
for this relationship, the correlation on the neighboring pix-
els in an encrypted image should be minimal. The following 
formulation can be applied to calculate this correlation value 
between two adjacent pixels [48].

(17)rxy =
cov(x, y)√
D(x)

√
D(y)

,

(18)cov(x, y) =
1

N

N∑
i=1

(
xi − E(x)

)(
yi − E(y)

)
,

Fig. 13  The cipher images with salt and pepper noise and their deciphered forms a, d noise with d = 0.01. b, e Noise with d = 0.05. c, f Noise 
with d = 0.1
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Figure 11 shows the correlation distributions of two hori-
zontally, vertically and diagonal adjacent pixels in the plain 
and ciphered Lena images. It is clear that the correlation 
between the neighboring pixels decreases substantially.

Table 4 gives the correlation values between the plain 
images and their encrypted versions. The test results prove 
that the correlation between the adjacent pixels of the 
encoded image version is very low, whereas the correlation 
between the plain images exists quite high. This ensures that 
the encryption performed here is effective.

6.7  Histogram Analysis

The histogram of an image provides information about the dis-
tribution of its pixel values and represents this image. As seen 
in Fig. 12, the histogram of the original image has several peaks 
while the encrypted image has a nearly constant distribution.

6.8  Resisting Noise Attack Analysis

The encoded image version is inevitably exposed to different 
types of noises, when the data passes through a real commu-
nication channel. This noise can cause problems during the 
acquisition of the original image. Therefore, the algorithm 
should be noise resistant, so that the encryption scheme can 
be valid. The Peak Signal-to-Noise Ratio (PSNR) is used to 
measure the quality of the decoded image after the attacks. 
For the image components, PSNR can be obtained by the 
following formulation [49]:

MSE is the mean square error between the original and 
recovered images and is represented as I1(i, j) and I2(i, j) respec-
tively, with the size of mxn. Figure 13 shows the encrypted 
image Lena exposed to the Salt Pepper noise with different 
density of this and its deciphered ones. The MSE and PSNR 
of these decoded images are shown in Table 5. From this 
Table 5 and Fig. 13, we can understand that the original image 
is entirely obtained again, which is noticeable, the PSNR value 
is about 30 dB, and the decoded images are highly correlated. 
This means that the decoded images are very close to the origi-
nal image. Thus, it can be said that the proposed algorithm is 
resistant to resisting noise attacks to some degree.

(19)E(x) =
1

N

N∑
i=1

xi, D(x) =
1

N

N∑
i=1

(
xi − E(x)

)2
.

(20)PSNR = 10 × log10

(
255 × 255

MSE

)
(dB)

(21)MSE =
1

mn

m∑
i=1

n∑
i=1

‖‖I1(i, j) − I2(i, j)
‖‖2

6.9  Speed Analysis

The encryption speed is one of the key issues for the secure 
communication. Some precautions have been taken in 
order to speed up the encryption/decryption in the system. 
Initially, time-consuming operations were not used in the 
algorithm. For instance xor operation has been used to save 
computer time. Besides, the data obtained from the chaotic 
system is used for both diffusion and penetration process, 
thereby time is saved for the data production scheme, too. 
For instance, when Matlab R2017b is used in a PC with 
Intel Core i7-6700 CPU @3.4GHZ, 8 GB memory operating 
under Windows 10, the averaged time for the encryption of 
Lena image is 0.14 s, which is a sufficient value.

7  Conclusions

An original encryption/decryption algorithm has been devel-
oped for the encryption and the decryption of the images by 
using the modified Chua’s circuit (MCC) system, which exhib-
its a hyperchaotic behavior for a large parameter regime due to 
the double frequency dependent nature. The Lyapunov spec-
trum has been found to characterize the hyperchaotic regime of 
the data. To our knowledge, the MCC system has been used for 
the first time for such an encryption study. Besides, the scram-
bling feature, which is implemented at a bit level and novel dif-
fusion system using the MCC has been applied in the algorithm.

Following the encryption procedure, the encrypted 
colored image has been tested by a variety of tests includ-
ing the secret key size and secret key sensitivity, histogram 
analysis, correlation analysis, differential analysis and infor-
mation entropy analysis. The results of the analysis prove 
that the proposed algorithm is quite effective and provides an 
efficient technique for the color image encryption/decryption 
in the area of secure communication. The hyperchaotic MCC 
data give sufficient input to the algorithm to fulfill the secu-
rity requirements. In addition to the security test results, the 
speed analyses give sufficient results. For instance, it gives 
0.14 s for the encryption of colored image Lena.
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