
Vol.:(0123456789)1 3

Journal of Electrical Engineering & Technology (2020) 15:817–832 
https://doi.org/10.1007/s42835-019-00332-5

ORIGINAL ARTICLE

Design of a Stable an Intelligent Controller for a Quadruped Robot

Ammar A. Aldair1  · Auday Al‑Mayyahi1  · Weiji Wang2

Received: 22 July 2019 / Revised: 29 October 2019 / Accepted: 10 December 2019 / Published online: 20 December 2019 
© The Korean Institute of Electrical Engineers 2019

Abstract
Quadruped robots have increasingly been used in complex terrains where barriers and gaps exist. In this paper, a four-legged 
robot with intelligent controllers is designed and simulated. The designed architecture comprises 12 servo motors, three per 
leg, to provide considerable flexibility in movement and turning. Proportional Integral Derivative (PID) controllers and Fuzzy 
controllers are proposed to control and stabilize the motion of the quadruped robot. An ant colony optimization algorithm 
has been utilized to tune the parameters of the PID controller and the Fuzzy controller. After obtaining the optimal values of 
both controllers, the entire architecture is implemented using the Multibody Simscape package in MATLAB which models 
multidomain physical systems. The simulation results are conducted in a 3-dimensional environment and they are demon-
strated in three case studies; firstly, when the system is simulated without using a controller which leads to a collapse of the 
quadruped robot. Secondly, when the PID controller is combined with the system, better movement is obtained. However, the 
quadruped is unable to complete its path and collapses after a few meters. Thirdly, when the Fuzzy controller is integrated 
into the designed architecture, a significant improvement is observed in terms of minimizing elapsed time and improving 
the overall performance of the motion. The stability of the Fuzzy controller has been examined using Lyapunov criteria to 
validate its overall performance. Comparisons are conducted based on control efforts and travelled distances to demonstrate 
the suitability and effectiveness of Fuzzy controllers over PID controllers.

Keywords Quadruped robots · PID controller · Fuzzy inference system · Ant colony optimization · Lyapunov stability

1 Introduction

Robots have been developed widely in the last two decades. 
Starting from a simple mobile robot that can be easily driven 
by using two motorized wheels [1] to new structures where 
four wheels are utilized to drive the motion of a mobile robot 
[2]. When four motorized wheels are in use, four controllers 
are needed at least to control the movement of such mobile 
robots.

On sloppy, rough or irregular terrains, wheeled robots 
may lose their ability to move whereas, legged robots have 
the ability to move on complex types of terrains [3, 4]. 
In some tasks such as climbing upstairs or crossing over 
ditches, legged robots are more suitable to perform those 
types of missions rather than wheeled robots. Therefore, sig-
nificant efforts have been devoted to designing legged robots 
that imitate a gait of animals such as horses or dogs [5–10].

From the early 70 s of the last century, researchers simu-
lated a gait of human beings. The authors in Refs. [11, 12] 
used the inverted pendulum structure to study some char-
acteristics of human motion. The authors in Ref. [13] sug-
gested a three-link legged robot structure to simulate human 
gaits and to study more characteristics of human locomotion.

In recent years, more complex architectures of robotics 
systems have been introduced based on quadruped robots 
[14–18]. This type of robotics can be applied in new applica-
tions that require complex motions where quadruped robots 
can perform jumping and traverse barriers. In other words, it 
can exhibit feasible performance over irregular terrains. As 
illustrated in the literature, the most utilized types are two 
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links per leg. In complex applications, quadruped robots are 
mostly used instead of human beings such as military appli-
cations, space exploration, dangerous sites, harmful sites, 
and repeated tasks.

Quadruped robots demonstrate great advantages in the 
movement which can reach a high degree of freedom. Uncer-
tainties and high nonlinearity inherently exist in the math-
ematical model of quadruped robots; therefore, the design 
of stable and robust controllers for the quadruped robot is 
a considerable challenge. In the state of the art, researchers 
have conducted different approaches to control the motion of 
quadruped robots. In Ref. [19], a controller is designed using 
slide mode to drive a quadruped robot. In that method, track-
ing error was improved regardless of the presence of distur-
bances. In Ref. [20], a novel control scheme was presented 
for quadruped locomotion control. The control scheme was 
based on a proportional-integral (PI) controller and the Jaco-
bean to drive legs’ joints based on applied torques. Another 
controller was proposed based on neural networks [21] in 
which fuzzy neural networks were applied to control joints’ 
motion to follow the desired trajectory. In addition, a robust 
controller [22] was designed to control and stabilize a leg-
ged robot system. The robustness was investigated based on 
parametric uncertainty for a constant bound and unstruc-
tured bound of a position-velocity.

The authors in Ref. [23] presented a novel approach for 
controlling the hopping height of a monopod instantane-
ously, i.e., during the flight phase, the controller computes 
the required action to achieve the demanded height of the next 
step. In Ref. [24], the authors presented a learning approach 
to quadruped robot galloping control. The control function is 
obtained through directly approximating real gait data by a 
learning algorithm, without consideration of the robot’s model 
and the environment where the robot is located.

Although some attempts were provided in the survey to 
control the motion of legged robots, those controllers were 
only applied for two links per leg. Additionally, the modeling 
analysis was mainly dedicated to the same rather than three 
links per leg. Therefore, in this paper, we extend the scope of 
work to three links per leg and this can exhibit a higher degree 
of freedom and flexibility while moving. However, such an 
extension will increase the complexity of designing a robust 
controller in which 12 controllers will be required. Three con-
trollers are applied per leg to control the servo motors over the 
three links per leg. The designed controllers are firstly based 
on a proportional, integral and derivative (PID) controllers 
and secondly, based on a Fuzzy controller. The novelty of 
this paper can be understood by designing a stable and robust 
controller for quadruped robots where uncertainties and high 
nonlinearity inherently exist in the mathematical model of 
a quadruped robot. Moreover, an ACO algorithm is used to 
find the optimal parameters of the 12 PID controller and the 
12 Fuzzy controllers. Furthermore, the mathematical model 

has been analyzed for three links per leg quadruped robot 
which new modelling has been proposed in this work. When 
the proposed Fuzzy controllers are compared with the PID 
controllers, it has been observed significant improvements in 
terms of the stability and time response.

The rest of the paper is organized as follows: The model-
ling of a quadruped robot is described in Sect. 2. The expla-
nation of the control system design is detailed in Sect. 3. 
Particle swarm optimization is demonstrated in Sect. 4. 
The Lyapunov stability test for the Fuzzy system has been 
performed in Sect. 4. The simulation results are conducted 
and analyzed in Sect. 5. In Sect. 6, comparisons have been 
provided and discussed. Finally, the conclusion has been 
highlighted in Sect. 7.

2  Modelling of a Quadruped Robot

A quadruped robot with multiple degrees of freedom will 
exhibit highly nonlinear behavior. The modelling of a quad-
ruped robot can be derived based on both kinematic and 
dynamic characteristics [25–27]. Figure 1 below demon-
strates the 3D structure of the quadruped robot. As shown, 
there are four legs, in any of which, three links are given to 
provide a high range of flexibility during the motion. This 
structure is implemented using the Multibody Simscape 
package. The front and rear of the right-handed side legs are 
utilized in deriving the mathematical models of kinematic 
and dynamic characteristics that govern the motion of the 
quadruped robot in a given workspace. The other two legs 
behave similarly to the front and the rear of the right-handed 
side legs.

The inspiration to derive the mathematic model is based 
on two links per leg which extend to three links per leg 
taking into consideration a new structure of the movement. 

Fig. 1  The 3D structure of the quadruped robot
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The systematic diagram of the quadruped robot is depicted 
in Fig. 2 which also shows the distribution of masses the 
elements that comprise the body of the quadruped robot. 
The front and the rear of right-handed side legs are shown 
in Fig. 3 which illustrates the kinematic analysis of the 
body’s links. These two legs will be only used in deriving 
the kinematic and dynamic models as the other two legs 
are likewise. The parameters utilized in this structure are 
identified as follows:

m ∶ mass of the body of a quadruped robot.
L ∶ length of the body of the quadruped robot.
mi ∶ mass of ith link.
Li ∶ length of ith link.
Lci ∶ the distance between the center of mass and the 

lower joint of ith link.
�i ∶ angle of ith link with respect to the horizontal axis.(
xci, yci

)
∶ are the coordinates of the center of mass of 

ith link.
The modelling of the quadruped robot can be analyzed 

based on both kinematic and dynamic characteristics as 
follows:

(a) Kinematic Model

This section deals with the derivation of the center posi-
tions of each link of the two legs shown in Fig. 3 with 
respect to the ground plane. For the first three links of the 
rear right-handed side, the center positions can be deter-
mined using the following equations:

Similarly, for the first three links of the rear left-handed 
side, the center positions can be determined using the fol-
lowing equations:

(b) Dynamic Model

The dynamic model of a quadruped robot can be analyzed 
based on its overall structure which is composed of differ-
ent bodies, joints, and links. The elements if the quadruped 
robot’s body are acting based on applied forces in addition 
to internal and external characteristics such as the moment 
of inertia, friction, gravity and body’s constraints. In this 
paper, the Lagrange dynamic equation is utilized to model 
the motion of a quadruped robot as in the following equation:

where � =
[
�1 �2 �3 �4 �5 �6

]
 is the vector angle of ith 

link with respect to the vertical ground plane.

(1)xc1 = −Lc1 cos �1

(2)yc1 = Lc1sin�1

(3)xc2 = −L1 cos �1 + Lc2cos�2

(4)yc2 = L1sin�1 + Lc2sin�2

(5)xc3 = −L1 cos �1 + L2cos�2 + Lc3cos�3

(6)yc3 = L1sin�1 + L2sin�2 + Lc3sin�3

(7)
xc4 = −L1 cos �1 + L2cos�2 + L3cos�3 + L + L4 cos �4 − Lc4 cos �4

(8)
yc4 = L1sin�1 + L2sin�2 + L3sin�3 − L4sin�4 + Lc4sin�4

(9)

x
c5
= −L

1
cos �

1
+ L

2
cos�

2
+ L

3
cos�

3

+ L + L
4
cos �

4
+ L

5
cos�

5
− L

c5
cos �

5

(10)
yc5 = L1sin�1 + L2sin�2 + L3sin�3 − L4sin�4 − L5sin�5 + Lc5sin�5

(11)

x
c6
= −L

1
cos �

1
+ L

2
cos�

2
+ L

3
cos�

3
+ L

+ L
4
cos �

4
+ L

5
cos�

5
− L

c6
cos �

6

(12)
yc6 = L1sin�1 + L2sin�2 + L3sin�3 − L4sin�4 − L5sin�5 + Lc6sin�6

(13)D(𝜃)�̈� + H
(
𝜃, �̇�

)
�̇� + G(𝜃) = T

Fig. 2  Systematic diagram of the quadruped robot

Fig. 3  The three kinematic analysis of the quadruped robot
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D(�) =
[
dij(�)

]
(i, j = 1,… , 6) is the inertia matrix; 

H
�
𝜃, �̇�

�
= col

�∑6

j=1(j≠i)
�
hij
�
�̇�j
�2�� is the centrifugal matrix; 

G(�) = col
[
Gi(�)

]
 is the gravity vector;

T =
[
T1 T2 T3 T4 T5 T6

]T is the vector of external 
torque applied at joints.

The D(�) is a 6 × 6 inertia matrix and can be given as 
follows:

The parameters of the inertia matrix D(�) can be deter-
mined as in below:

(14)D(�) =

⎡
⎢⎢⎢⎢⎢⎢⎣

d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31
d41
d51
d61

d32
d42
d52
d62

d33
d43
d53
d63

d34
d44
d54
d64

d35
d45
d55
d65

d36
d46
d56
d66

⎤
⎥⎥⎥⎥⎥⎥⎦

d11 = I1 + m1L
2
1c
+
(
m2 + m3 + m4 + m5 + m6 + m

)
L2
1

d12 = p12 cos
(
�1 + �2

)
, d13 = p13 cos

(
�1 + �3

)

d14 = p14 cos
(
�1 − �4

)
, d15 = p15 cos

(
�1 − �5

)

d16 = p16 cos
(
�1 + �6

)
, d21 = d12,

d22 = I2 + m2L
2
2c
+
(
m3 + m4 + m5 + m6 + m

)
L2
2

d23 = p23 cos
(
�2 − �3

)
, d24 = p24 cos

(
�2 + �4

)

d25 = p25 cos
(
�2 + �5

)
, d26 = p26 cos

(
�2 − �6

)

d31 = d13, d32 = d23,

d33 = I3 + m3L
2
3c
+
(
m3 + m4 + m5 + m6 + m

)
L2
3

d34 = p34 cos
(
�3 + �4

)
, d35 = p35 cos

(
�3 + �5

)

d36 = p36 cos
(
�3 − �6

)

d41 = d14, d42 = d24, d43 = d34

d44 = I4 + m4L
2
4c
− 2m4L4L4c +

(
m5 + m6

)
L2
4

d45 = p45 cos
(
�4 − �5

)
, d46 = p46 cos

(
�4 + �6

)

Ii is the moment of inertia with respect to an axis that passes 
through the mass center of ith link and it is perpendicular to 
the motion plane.

The centrifugal matrix H
(
𝜃, �̇�

)
 is also a 6 × 6 matrix 

and its parameters can be calculated as in the following 
equations:

d51 = d15, d52 = d25, d53 = d35, d54 = d45,

d55 = I5 + m5L
2
5c
− 2m5L5L5c +

(
m5 + m6

)
L2
5

d56 = p56 cos
(
�5 + �6

)

d61 = d16, d62 = d26, d63 = d36, d64 = d46

d65 = d56, d66 = I6 + m6L
2
6c

(15)H(�) =

⎡
⎢⎢⎢⎢⎢⎢⎣

h11 h12 h13 h14 h15 h16
h21 h22 h23 h24 h25 h26
h31
h41
h51
h61

h32
h42
h52
h62

h33
h43
h53
h63

h34
h44
h54
h64

h35
h45
h55
h65

h36
h46
h56
h66

⎤⎥⎥⎥⎥⎥⎥⎦

h11 = 0, h12 = −p12 sin
(
�1 + �2

)
, h13 = −p13 sin

(
�1 + �3

)
,

h14 = p14 sin
(
�1 − �4

)
, h15 = p15 sin

(
�1 − �5

)
,

h16 = −p16 sin
(
�1 + �6

)
,

h21 = h12, h22 = 0, h23 = p23sin
(
�2 − �3

)

h24 = p24sin
(
�2 + �4

)
, h25 = p25sin

(
�2 + �5

)

h26 = p26sin
(
�2 − �6

)

h31 = h13, h32 = −h23, h33 = 0, h34 = −p34sin
(
�3 + �4

)

h35 = p35sin
(
�3 − �5

)
, h36 = p36sin

(
�3 − �6

)

h41 = −h14, h42 = h24, h43 = h34, h44 = 0

h45 = −p45sin
(
�4 − �5

)
, h46 = −p46sin

(
�4 + �6

)

h51 = −h15, h52 = h25, h53 = h35, h56 = −h45, h55 = 0
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where

The parameters of gravity vector G(�) can be computed 
as follows:

h56 = −p56sin
(
�5 + �6

)

h61 = h16, h62 = −h26, h63 = −h36, h64 = h46,

h65 = h56, h66 = 0.

p12 = m2L2cL1 +
(
m3 + m4 + m5 + m6 + m

)
L1L2

p13 = m3L1L3c +
(
m4 + m5 + m6 + m

)
L1L3

p14 = m4L1L4c −
(
m4 + m5 + m6

)
L1L4

p15 = m5L1L5c −
(
m5 + m6

)
L1L5

p16 = m6L1L6c

p23 = m3L2L3c +
(
m4 + m5 + m6 + m

)
L2L3

p24 = m4L2L4c −
(
m4 + m5 + m6

)
L2L4

p25 = m5L2L5c −
(
m5 + m6

)
L2L5

p26 = m6L2L6c

p34 = m4L3L4c −
(
m4 + m5 + m6

)
L3L4

p35 = m5L3L5c −
(
m5 + m6

)
L3L5

p36 = m6L3L6c

p45 = −m5L4L5c +
(
m5 + m6

)
L4L5

p46 = −m6L4L6c

p56 = −m6L5L6c

G1 =
[
m1L1c +

(
m2 + m3 + m4 + m5 + m6 + m

)
L1
]
gcos

(
�1
)

G2 =
[
m2L2c +

(
m3 + m4 + m5 + m6 + m

)
L2
]
gcos

(
�2
)

G3 =
[
m3L3c +

(
m4 + m5 + m6 + m

)
L3
]
gcos

(
�3
)

g is acceleration of gravity.
It is assumed that U =

[
u1 u2 u3 u4 u5 u6

]
 is the vector 

of the driving torques of the six rotating joints of quadruped 
robot which are generated from the servo motors, thus, the 
following equation can be written as:

where S ∈ ℝ
6×6 is a transformation matrix which can be 

given as:

3  Control System Design

In this section, control systems are designed and implemented as 
will be discussed in the following subsections. These two control-
ling systems are the PID controller and the Fuzzy logic controller. 
In the designed system, there are four legs in which each leg has 
three links. Therefore, there will be twelve links in total. Each 
link is driven from a separate servo motor. The structure of each 
group of links is identical to others. Hence, we will only intro-
duce the control system for one link and the others are exactly 
the same architecture. The block diagram of each link has two 
inputs and three outputs. The inputs are the ‘B’ which represents 
the port that connects the current link with the previous one. The 
second input is ‘t’ which represents the control signal supplied to 
the torque of a servo motor. The outputs are F, q and w, F is the 
connection point between the current link and the next one. The 
q and w are the angle and speed of a current link, respectively. 
Figure 4 below shows the block diagram of a link in a leg.

Based on the operation of the DC servo motor, the speed 
and torque of the DC servo motor can be controlled by send-
ing electrical pulses of variable width. For each servo motor, 
there is a minimum pulse and a maximum pulse and any of 
which has a repetition rate. The width of the sent electrical 
pulses changes the value of the applied voltage accordingly 
where the speed of a servo is dependent. Furthermore, as the 
voltage changes, the flowing current will be changed which 
leads to the torque being changed as well.

G4 = −
[
m4

(
L4 − L4c

)
+
(
m5 + m6

)
L4
]
gcos

(
�4
)

G5 = −
[
m5

(
L5 − L5c

)
+ m6L5

]
gsin

(
�5
)

G6 =
(
L6c + L6

)
m6gsin

(
�6
)

(16)T = SUT

S =

⎡⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0

−1 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 −1 −1 0

0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
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Overall, there will be three block diagrams in our design 
for each leg, thus, twelve block diagrams in the entire 
system. Consequently, this requires twelve controllers to 
achieve feasible movement of a quadruped robot.

3.1  PID Controller

The PID controller is widely used in many industrial appli-
cations [28]. The structure of the PID controller consists of 
three parameters, i.e., proportional gain ( kP ), integral gain 
( kI ) and derivative gain ( kD ), any of which can be tuned to 
obtain an optimal value based on specifications of a given 
system. The main equation that governors the operation of 
such a controller is illustrated below.

where e(t) is an error signal between two signals, i.e., ref-
erence and actual values. The reference value is supplied 
signal based on the desired input of a plant and the actual 
value is the real output response of that plant.

The parameters of the PID controller play a crucial role 
in changing an overall performance and a time response of 
the system and it can significantly influence the operation 
conditions either positively or negatively. In order to reach 
the best response possible, the  kp,  ki and  kd need to be tuned 
optimally. The architecture of a PID controller in connection 
with only one link in a leg is given in Fig. 5 below.

To obtain optimal performance of PID controllers, we need 
to optimize their parameters using optimization algorithms. 
Recently, many optimization algorithms are developed such as 
Genetic Algorithm (GA) [29], Particle Swarm Optimization 
(PSO) algorithm [30], Artificial Bee Colony (ABC) algorithm 
[31] and Ant Colony Optimization (ACO) [32, 33], any of which 
has its own structure and method in order to approach an opti-
mal solution for a given optimization algorithm. The ACO algo-
rithm has been developed as a meta-heuristic algorithm that can 
address high combinational optimization problems. It has unique 
advantages such as the construction graph used in the ACO algo-
rithm that can make the search space represented less redundant. 
In addition, it has fewer parameters and strong robustness [34]. 

(17)uPID(t) = kPe(t) + kI ∫ e(t)dt + kDė(t)

The principle operation of ACO is based on the behavior of ants 
which can be represented by individuals that can find a suitable 
solution for an optimization problem. The best solution can be 
determined globally by the cooperation of all ants together.

In this paper, the ACO algorithm will be utilized to tune 
the parameters of the twelve PID controllers in the offline 
mode. Therefore, a parameter matrix (PM) can be created 
which has three columns and N rows as shown below:

where each row of PM matrix represents the candidates of 
kP, kI and kD , respectively; N is the total number of candi-
dates for any parameters. For reducing the time of optimiza-
tion search, the maximum and minimum values are assumed 
known. The values of candidates’ elements of kP, kI and kD 
are equally distributed between these values (maximum and 
minimum values). The problem is to find the optimal value 
for each parameter that minimizes the cost function.

Figure  6 illustrates the graphical representation for 
selecting the best parameters of the PID controller using the 
ACO algorithm. The three columns represent the tunable 
parameters of a PID controller. The selection of the node in 
any column “by ant” is based on pheromone trails between 
nodes of each parameter. The connection matrix between 
the columns is called the pheromone matrix � ∈ ℝ

3×N . 
Each element of the pheromone matrix is denoted by 
�ij for i = 1, 2, 3 and j = 1, 2,… ,N . The selection of the spe-
cific node from any column “by ant” is achieved according 
to the state transition rule as illustrated in algorithm no. 1.

Algorithm no.1 given below, summaries the tuning pro-
cedures of ant colony optimization algorithm to select opti-
mal parameters for a PID. The algorithm starts by defining 
the inputs and outputs and then providing tuning processing 
based on the behavior of the ACO algorithm to obtain optimal 

(18)PM =

⎡⎢⎢⎢⎢⎢⎢⎣

P11 P12 P13

P21 P22 P23

. . .

. . .

. . .

PN1 PN2 PN3

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

kP1 kI1 kD1
kP2 kI2 kD2
. . .

. . .

. . .

kPN kIN kDN

⎤⎥⎥⎥⎥⎥⎥⎦

Fig. 4  Block diagram of a link 
in a leg

Fig. 5  PID controller for one link in a leg
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parameters of PID controller. The numbers of iterations that 
are needed to find the best parameters of the PID control-
ler can be reduced by introducing knowledge in the range of 
parameters of the PID controller (maximum and minimum 
values). The learning tours of the ACO algorithm are stopped 
when the cost function is equal to or less than a small value �.

In other words, we firstly initialized the elements of 
the parameter matrix (PM) where �ij(0) = �0 , secondly, 
the selection of the values of candidates for each control 
parameter has been accomplished by using Step no. 4 in 
the Algorithm no. 1 above. Thirdly, the choice of the PID 
controller’s parameters has been achieved by using Step 
no. 9 in the same algorithm. Fourthly, the control signal 
of the PID controller is computed by using Eq. (17) given 
earlier which is applied to the plant. Then, the value of the 
cost function needs to be calculated by Step no. 12 as in 
the above algorithm. Finally, the value of the cost function 
is compared with the set value � , consequently, if the cost 
function ( CF ) ≤ � , then the optimal values are reached, 
otherwise, another set of PID controller’s parameters will 
be chosen based on Step no. 9 and the following will re-
occurring until the main condition of the cost function is 
satisfied. It seen that, the cost function is based on a mean 
squared error.

3.2  Fuzzy Controller

Fuzzy control has successfully proved its suitability and 
effectiveness to solve complex problems [35–38]. The prin-
ciple operation of Fuzzy control systems is based on multi-
ple stages, i.e., fuzzification, inference engine, and defuzzi-
fication. The implementation of those stages is based on 
selecting appropriate membership functions and inference 
engine rules which are specifically designed to a particular 
problem. In this work, twelve fuzzy controllers are designed 
(one for each joint) to control the gait of a quadruped robot. 
Each fuzzy control system has two inputs (an error and a 
change of error) and one output (control signal). The input 
membership functions are assumed symmetrical about the 
y-axis. For each input variable, five equally spaced triangular 
membership functions are selected. Other types of member-
ship functions have been tested such as Gaussian functions 
and Bell functions. However, it is found that the triangular 
membership functions are more suitable than the others. 
It is assumed that the parameters of the input membership 
functions are inadaptable. The universe of discourse of error 
membership functions is ranged from ‘− 20’ to ‘20’, while 
the universe of discourse of change of error membership 
functions is ranged from ‘− 5’ to ‘5’. The input member-
ship functions are labelled as Negative Big (NB), Negative 
Small (NS), Zero (ZE), Positive Small (PS), and Positive 
Big (PB). While the distribution of seven output triangular 
membership functions on the output universe of discourse 
is initialized randomly. Table 1 shows the rules relationships 
between error and change of error from one side and the out-
put ‘q’ from the other side. The centres of output member-
ship functions are assumed adaptable. Figure 7 below shows 
the block diagram of a Fuzzy controller for one link in a leg.

Fig. 6  Graphical representation of ACO for selection process
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As explained earlier regarding the tuning of PID con-
trollers using the ACO algorithm, the latter is used to tune 
the parameters of the centres of membership functions the 
fuzzy controllers. The algorithm no. 2 demonstrates the 
steps to reach optimal values of centres of output mem-
bership functions. Likewise, the algorithm starts by iden-
tifying the inputs and the outputs, ranging boundaries of 
the minimum and maximum values. The control signal 
generated from the fuzzy controller is computed from the 
equation below:

where ui(x) is the output value of ith rule, �premise(i)(x) is the 
value of the premise. It is computed from the following 
equation.

where: �Aik
 ( xk) is the input membership function of kth lin-

guistic value; and X is the universe of discourse of the input 
linguistic variables.

(19)u(x) =

∑
i ui(x) × �premise(i)(x)∑

i �premise(i)(x)

(20)

�
premise(i)(x) = min

{
�
A
i1

(
x
1

)
, �

A
i2

(
x
2

)
,… , �

A
in

(
x
n

)}
∈ [0, 1],

∀x
i
∈ X, where i = 1,… ,R

4  Lyapunov Stability Test for Fuzzy System

To prove that the controlled system stays stable and has an 
acceptable response, the testing of the stability of the pro-
posed controller should be achieved to confirm the effective-
ness and suitability of the proposed controller even different 
significant disturbances are applied to the controlled system. 
Therefore, in this section, the Lyapunov stability criterion 
[39] is used to test the stability of the fuzzy control system. 
The Lyapunov stability criterion states that the nonlinear 
system is stable if the following conditions are satisfied [40]:

1. 𝜇(x) > 0 for all values of states x ≠ 0.
2. �̇�(x) ≤ 0 for all values of states x.

Table 1  The rules inference for each fuzzy controller

Output (q) Change in error ( ̇e)

NB NS ZE PS PB

Error ( e)
NB NS NS NS ZE PB
NM NS NB ZE PS PB
NS NB ZE PS PS PS
ZE NS NB PS PB PB
PS NS NS PB PB PB

Fig. 7  Fuzzy controller for one link in a leg
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where �(x) is a Lyapunov function which is assumed as:

where � ∈ ℝ
n×n is assumed as a symmetric positive definite 

matrix. Depending on this assumption, the first condition of 
the Lyapunov stability criterion is satisfied. The first deriva-
tive of the Lyapunov function is written as:

The state-space equations of any nonlinear system can 
be written as [1]:

where: x ∈ ℝ
n×1 is the state variable; A(x) ∈ ℝ

n×1 is non-
linear function vector; B(x) ∈ ℝ

n×1 is nonlinear function 
vector; u(x) is the control signal and n is the number of the 
state variables.

If the fuzzy system is proposed as a controller for a 
nonlinear system, the control signal is given by Eq. (18).

Therefore, Eq. (21) can be rewritten as:

where the terms of the equation above are given by: 
� (x) = A(x)T�x + x

T�A(x) and �(x) = B(x)T�x + x
T�B(x)

The vector �(x) is defined into three regions:

1. Positive region: 𝛷(x) > 0 or it is described as the follow-
ing set: �+ve = {x ∈ X��(x)⟩0}.

2. Negative region: 𝛷(x) < 0 or it is described as the fol-
lowing set: 𝛷−ve = {x ∈ X|𝛷(x) < 0}.

3. Zero region: �(x) = 0 or it is as the following set: 
�ze = {x ∈ X|�(x) = 0}.

If the Lyapunov function exists, then the following 
points should be satisfied:

1. � (x) ≤ 0, ∀x ∈ �ze.
2. u

i
(x) ≤ −

� (x)

�(x)
for x ∈ X

a

i
∩�+ve and ui(x) ≥ −

� (x)

�(x)
for

x ∈ X
a

i
∩�−ve for i = 1,… ,R.

3. For any initial state x0 ∈ X , the set {x ∈ X|�̇�(x) = 0}.

Now, the second condition of the Lyapunov stability 
criterion should be satisfied for all regions of vector �(x).

1. If �(x) is positive, for any arbitrary initial state x0 ∈ X , 
then:

(21)�(x) = x
T�x

(22)�̇�(x) = ẋ
T𝜌x + x

T𝜌ẋ

(23)ẋ = A(x) + B(x)u(x)

(24)∴�̇�(x) = 𝛤 (x) +𝛷(x)u(x)

ui
�
x0

� ≤ −
�
�
x0

�

�
�
x0

� ⇒ u
�
x0

�
=

∑
i ui

�
x0

�
× �premise(i)

�
x0

�
∑

i �premise(i)
�
x0

� ≤
−� (x0)
�(x0)

∑
i �premise(i)

�
x0

�
∑

i �premise(i)
�
x0

� = −
�
�
x0

�

�
�
x0

�

  ∴�̇�(x) ≤ 0 ⇒ the second condition of the Lyapunov 
stability criterion is satisfied.

2. If �(x) is negative, for any arbitrary initial state x0 ∈ X , 
then:

  ∴�̇�(x) ≤ 0 ⇒ the second condition of the Lyapunov 
stability criterion is satisfied.

3. If �(x) is zero, for any arbitrary initial state x0 ∈ X , 
then:

  ∴�̇�(x) ≤ 0 ⇒ the second condition of the Lyapunov 
stability criterion is satisfied.

It can be seen that, the Lyapunov condition for the stabil-
ity requirement is satisfied. Therefore, the proposed fuzzy 
controller is globally asymptotically stable.

5  Simulation Results

The simulation results are conducted to investigate the 
performance of the designed controllers and validate their 
effectiveness in guiding a quadruped robot to reach a given 
destination without interruptions. Three case studies are 
considered, i.e., firstly, an open-loop system where no con-
trollers are used in the robot movement. Secondly, a closed-
loop system using PID controllers and thirdly, a closed-loop 
system using fuzzy controllers as demonstrated in the fol-
lowing subsections.
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1. Case study 1: open-loop system

In this case, no controllers are used in the looping system 
and it is required by the quadruped robot to achieve a feasi-
ble movement linearly on a road. The reference movement 
in the input is based on chosen angles. The robot should 
be able to complete its motion stably with being collapsed. 
However, this could not be approachable as the robot has 
lost its stability and collapsed immediately after the simula-
tion starts. Figure 8a shows the quadruped robot standing at 
the initial position before running the simulation. When the 
operation is activated, the robot is collapsed without elaps-
ing any distance as depicted in Fig. 8b.

2. Case study 2: closed loop using PID controller

From the previous results, it was observed that there is 
a need to design a more efficient controller to stabilize the 
movement of the quadruped robot and move it smoothly and 
feasibly to its destination without breakdown. In response to 
such a situation, we endeavor to introduce PID controllers. 
As there are twelve servomotors in the robotic mechanism, 
therefore, twelve PID controllers are needed to control the 
movement of the quadruped robot parallelly across all the 
three links in the four legs. In order to achieve the design of 
the twelve PID controllers, an ACO algorithm is utilized to 
tune the parameters of each PID controller to reach optimal 
performance. The required data for the ACO algorithm is 
provided as in Table 2 below, which illustrates the number 
of iterations, ants, and nodes. After completing the tuning 
process, the optimal parameters of each PID controller are 
obtained as given in Table 3.

The simulation results using PID controllers have demon-
strated some improvements over the previous case study as 
shown in Fig. 9 below. The quadruped robot commences his 
movement successfully starting from Fig. 9a and has reached 
a selected position after a few meters as shown in Fig. 9b. 
However, the quadruped robot has not been able to reach the 
expected target as it is halted at the middle distance as can 
be noted in Fig. 9c.

The control efforts for the proposed PID controller 
are provided to demonstrate its effectiveness. Figure 10 
shows the control efforts of the front left leg for three 
links, i.e., ankle, hip, and knee. The time responses of 
the control efforts illustrate that their values reach high 
magnitudes about 350 Nm. Such values mean that the PID 
control exerts high efforts to drive the quadruped robot. 
In Figs. 11, 12 and 13 demonstrate the control efforts for 
the other three legs. The simulation results show that the 
control efforts are quite high.

3. Case study 3: closed loop using fuzzy controller

As provided earlier, there are still some drawbacks in the 
overall operation of the quadruped robot. In order to obtain 
the best performance possible, we propose novel Fuzzy con-
trollers to control the motion of the quadruped robot and 
stabilize its movement until it reaches the required posi-
tion. The best-chosen parameters for the ACO algorithm 
are provided in Table 4. These parameters are the number 
of iterations, ants and nodes which represent the main ele-
ments in implementing the ACO algorithm. Accordingly, 
the five centres of areas are obtained as given in Table 5 
for all the twelve Fuzzy controllers. From Fig. 14a–c, it is 
observable that the quadruped robot has stably and feasibly 
managed to travel along the given distance without being 
halted at any position in its route while moving. Based on 
the obtained results, it has been confirmed that all the afore-
mentioned implications have been successfully eliminated 
and the proposed Fuzzy controllers have improved the over-
all performance significantly.

Similarly, the control efforts for the proposed Fuzzy 
controllers are obtained to demonstrate its performance as 
shown in Figs. 15, 16, 17 and 18. The control efforts are pro-
vided for every three links per leg which means twelve con-
trol signals are delivered to the system. It is noticeable that 
the control efforts for Fuzzy controllers have been decreased 
significantly in comparison with the PID controllers. This, in 
turn, provides a Fuzzy controller with great advantage as this 
is a key improvement in addition to the stabilized movement 
along the given path.

Fig. 8  Case study 1 a quadruped robot stands at its initial posture, b 
quadruped robot has just attempted to move but collapsed immedi-
ately at the same position, this is without any controller

Table 2  The parameter of 
the ACO algorithm for PID 
controllers

Parameter Value

No. of iteration 120
No. of ants 300
No. of nodes 700
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6  Comparison of the Proposed Controllers

In this section, we introduce some comparisons to investi-
gate the suitability and effectiveness of the proposed con-
trollers, i.e., PID and Fuzzy controllers in controlling the 
quadruped robot to move stability over the given path and 
reach its destination. The comparisons are based on the total 
travelled distances in relationship to the elapsed time for the 
whole path and the values of the control effort applied in 
the designed controllers. As can be clearly seen in Fig. 19, 
the Fuzzy controllers have led the quadruped robot to reach 
its final destination. Therefore, the total distance is higher 
compared to the other two case studies. In the case of no 

Table 3  Optimal parameters of PID controllers

PID controller based 
on ACO

Kp Ki Kd

Controller #1 50.1254 2.5487 3.6457
Controller #2 60.3548 1.2459 3.6548
Controller #3 64.2648 2.2457 2.3648
Controller #4 55.3467 4.0215 1.2486
Controller #5 77.2548 2.6541 0.9875
Controller #6 82.6457 1.5642 1.0245
Controller #7 55.3467 4.0215 1.2486
Controller #8 77.2548 2.6541 0.9875
Controller #9 82.6457 1.5642 1.0245
Controller #10 50.1254 2.5487 3.6457
Controller #11 60.3548 1.2459 3.6548
Controller #12 64.2648 2.2457 2.3648

Fig. 9  Case study 2 a quadruped robot stands at its initial posture, 
b quadruped robot has moved a few metres and c when the quadru-
ped robot has proceeded further but this is the final reached position 
based on PID controllers

Fig. 10  Control efforts of PID controller for front left leg

Fig. 11  Control efforts of PID controller for front right leg

Fig. 12  Control efforts of PID controller for rear right leg
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controller is applied, the distance is zero as the quadruped 
robot has not travelled any noticeable distance. Only, a few 
meters have been travelled when the PID controllers are uti-
lized. However, this is not the target as the quadruped robot 
is unable to reach the final required position.

The execution time is made to be fixed in all conducted 
case studies and it equals to 35 s. Regarding the scalability 
of the proposed algorithms, it has been observed that the 
performance of the Fuzzy controller presents significant 
adaptability of the designed system in comparison with the 
performance of the PID controller.

Furthermore, control efforts have been compared between 
Fuzzy and PID controllers to evaluate the significance of 
improvements between both types of controllers. The com-
parisons are only conducted for the front right leg; thus, 
three comparisons are needed for each link. In Fig. 20, the 
control efforts for the ankle joint of both Fuzzy and PID 
controllers are provided. They clearly demonstrate the 
effectiveness of the Fuzzy controller in achieving the target 
while minimizing the control efforts remarkably. Likewise, 
in Fig. 21, it is observable that the control effort of the Fuzzy 
controller for the hip joint is reduced. Finally, the last com-
parison is obtained as depicted in Fig. 22 for the knee joint 
which also shows a feasible response of the control efforts 
for the Fuzzy controller over the PID controller. These simu-
lation results demonstrate and validate the privileges of the 
designed Fuzzy controller over the PID controller.

7  Conclusion

In this paper, we proposed the modelling of the quadruped 
robot based on three movable links per leg. This will intro-
duce the robot with great advantages to move feasibly and 
smoothly. The architecture of this design has been imple-
mented for each individual link and combined together to 
obtain the whole system. The latter has been tested without 
applying any controller and it is noticed that the robot is not 
capable of performing any movement. Hence, we proposed 
two novel controllers, i.e., PID and Fuzzy controllers which 
there are twelve controllers for each servomotor in each link. 

Fig. 13  Control efforts of PID controller for rear left leg

Table 4  The parameter of 
the ACO algorithm for Fuzzy 
controllers

Parameter Value

No. of iteration 10
No. of ants 50
No. of nodes 60

Table 5  Optimal centres of area for Fuzzy controllers

Fuzzy controller 
based on ACO

Centre

c
1

c
2

c
3

c
4

c
5

Controller #1 − 5.5 − 3.8 − 1.01 2.789 6.74
Controller #2 − 8.1 − 3.4 0.97 2.45 6.45
Controller #3 − 9.45 − 5.234 0.95 3.02 8.36
Controller #4 − 7.5 − 3.3 0.59 3.54 6.34
Controller #5 − 10.3 − 4.12 0.015 3.25 11.23
Controller #6 − 12.2 − 6.36 0.701 4.16 8.23
Controller #7 − 7.49 − 3.37 0.59 3.54 6.348
Controller #8 − 10.3 − 4.12 0.015 3.25 11.233
Controller #9 − 12.2 − 6.36 0.701 4.16 8.23
Controller #10 − 5.51 − 3.84 − 1.01 2.78 6.74
Controller #11 − 8.12 − 3.45 0.975 2.45 6.45
Controller #12 − 9.45 − 5.23 0.952 3.02 8.369

Fig. 14  Case study 3 a quadruped robot stands at its initial posture, 
b quadruped robot reaches approximately the middle distance and c 
when the quadruped robot has successfully reached the target based 
on Fuzzy controllers
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Fig. 15  Control signal of Fuzzy controller for front left leg

Fig. 16  Control signal of Fuzzy controller for rear left leg

Fig. 17  Control signal of Fuzzy controller for rear right leg

Fig. 18  Control signal of Fuzzy controller for front right leg

Fig. 19  Travelled distance for the three case-studies

Fig. 20  Control efforts of the ankle joint
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The PID controller has demonstrated a relatively practical 
start but has not been able to take the quadruped robot to 
the final position. Instead, the Fuzzy controller is capable of 
achieving the required of our design and has shown effec-
tiveness and suitability after the performance has been vali-
dated. The parameters of both PID and Fuzzy controllers 
have been tuned using an ant colony optimization algorithm 
which has optimized the performance of each designed con-
troller by obtaining its optimal parameters.

To investigate the overall performance of the proposed 
controllers and the whole designed system, two main com-
parisons are introduced based on the travelled distance 
against the elapsed time and the control efforts. The simula-
tion results have shown high effectiveness and robustness 

of the proposed Fuzzy controllers in comparison to PID 
controllers. Moreover, the stability of the Fuzzy controllers 
has been approved by using the Lyapunov stability method.

In future work, the proposed three links per leg archi-
tecture will be constructed using a 3D printer. Hence, real-
time experiments will be conducted to validate the proposed 
control systems practical and then some comparisons will 
be done between the theoretical and practical experiments 
thoroughly.
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