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Abstract
In this study, back-stepping integral sliding mode control (BISMC) with iterative learning control (ILC) algorithm are pre-
sented for nonlinear translational and rotational dynamics of the Quadrotor UAVs. The proposed controller (BISMC) can 
track desired trajectories and (ILC) is responsible for inclining the accuracy and robustness of the control strategy. In order 
to prove the stability of the closed loop system, Lyapunov theorem is used. The simulation results indicate that the proposed 
control strategy has high accuracy, suitable robustness, disturbance rejection, good trajectory tracking and fast transient 
responses for the Quadrotor UAVs despite the uncertainties and external disturbances.

Keywords  Back-stepping integral sliding mode control · Quadrotor UAVs · Iterative learning control · Disturbance 
rejection

1  Introduction

Nowadays, Quadrotor UAV plays a significant role in people 
life and researchers have paid more attention for designing 
better control strategy for it. Due to the Quadrotor UAVs fea-
tures such as speed, small size and environmentally friendly, 
it has been applying for weather monitoring, relief and res-
cue operation and military purposes, etc. The dynamic of 
the Quadrotor UAVs is highly coupled, nonlinear and under 
actuated, therefore it’s very difficult to design a robust con-
troller despite the external disturbances and uncertainties. 
One more fact should be taken into consideration is that 

the Quadrotor UAVs is affected by aerodynamic effects and 
inertial torque during the flight pass.

It’s well known that sliding mode control (SMC) is a 
nonlinear control strategy which could cope with the uncer-
tainties and external disturbances on sliding surface [1–5] 
and this powerful method repeatedly was applied for the 
Quadrotor UAVs. In [6], an adaptive sliding mode control by 
feedback linearization were used for a Quadrotor helicopter. 
In [7, 8], a new fuzzy integral sliding surface was designed 
for improving the stability of the nonlinear system. In [9], a 
finite-time control algorithm based on SMC was improved 
for altitude control of the Quadrotor UAVs and multi vari-
able finite-time control were used in [10, 11]. In order to 
cope with the uncertainties, an adaptive sliding mode control 
was designed for the Quadrotor UAVs. Additional references 
about SMC can be found in [12, 13]. In [14], a Mixed H2/
H∞ Controller based on LMI based Approach is used. The 
mentioned control strategies can improve the robustness of 
the system.

In the recent years, combination of back-stepping and 
sliding mode control was used for controlling the altitude 
and the position of the Quadrotor UAVs which back-step-
ping is used to track the desired trajectory [15] and SMC is 
responsible for inclining the robustness of the system [16, 
17]. In [18], back-stepping and sliding mode techniques were 
applied to distributed secondary control of micro Quadrotor 
UAVs. A new fuzzy back-stepping sliding mode control was 
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provided for the under-actuated Quadrotor UAVs in [19]. In 
[20], an adaptive back-stepping control method was designed 
and analyzed for fault-tolerant of the nonlinear system. In 
[21], despite of unmodeled dynamics, a new fuzzy adap-
tive back-stepping controller was used. In [22], a multi vari-
able sliding mode with back-stepping controller based on 
disturbance observe was presented. A hybrid method based 
on fuzzy integral back-stepping controller was designed for 
hovering the Quadrotor [23]. In [24], combination of neural 
network and back-stepping was designed for helicopter.

Iterative learning control is formulated based on its previ-
ous experiments and repeatedly performed for a same task in 
order to increase the accuracy and the robustness against the 
uncertainties and external disturbances. In [25], a novel fuzzy 
PID-type iterative learning control was applied for the Quadro-
tor UAVs and in order to account with the unmodeled dynamic 
and systematic error, an adaptive tracking control with iterative 
learning control were used in [26]. In [27], an online PID-
iterative learning control with switching gain was used for 
circular trajectory motion in three dimensions. For the precise 
Quadrotor UAVs trajectory tracking, optimization based on 
iterative learning control was used [28]. In [29], for accurate 
control of a team of Quadrotors, a distributed iterative learning 
control was used. According to the mentioned references, itera-
tive learning control can incline the accuracy of the system and 
reject the disturbances by using simple update rules.

The main novelty of this paper is designing back-stepping 
integral sliding mode control with iterative learning control 
for the Quadrotor UAVs. On the other hand, the back-step-
ping is responsible for tracking the desired trajectory and 
the highly coupled feature of under-actuated of the dynamic 
are sought by virtual controller. Next, the integral sliding 
mode controller is designed and analyzed for coping with the 
uncertainties and external disturbances. In addition, in order 
to improve the accuracy of the tracking, iterative learning 
control is designed according to previous experiments which 
is resulted in better tracking, accuracy and robustness and 
lower errors of states.

The remaining part of this paper are organized as fol-
low: Sect. 2 presents the Quadrotor UAVs dynamics. The 
back-stepping integral sliding mode control using Lyapunov 
theory are given in Sect. 3. Designing the iterative learning 
control is presented in Sect. 4. Simulation results are pre-
sented in Sect. 5 and finally, Sect. 6 Concludes the paper.

2 � Quadrotor UAVs Model

In this paper, the model for dynamic of the Quadrotor UAVs 
is considered from [30], which is nonlinear, strongly coupled 
and under actuated. The Quadrotor UAVs structure is shown 
in Fig. 1 which consists of four rotors. In this structure two 
types of coordinate system such as earth coordinate ξ = [x, 

y, z] and body coordinate ƞ = [φ, θ, Ψ] were defined. The [x, 
y, z] denote the position of the Quadrotor UAVs and [φ, θ, 
Ψ] refer to roll angle, pitch angle and yaw angle which could 
control the altitude of the Quadrotor UAVs. It should be 
mentioned that the movement of the Quadrotor UAVs in dif-
ferent directions are achieved based on the thrust generated 
by adjusting the rotational speeds of the four rotors. Accord-
ing to [30], the translational and the rotational dynamic 
model for the Quadrotor UAVs can be defined as follow:

where ω is the angular velocity vector, τ refers to the 
torque vector for the three axes, J denotes the inertia tensor, 
Ωr = Ω1 − Ω2 + Ω3 − Ω4 is the component torques in the 
three directions, R is the rotation matrix, Jr describes the 
moment of the rotor inertia, T is the force vector, d� and dT 
are the disturbance vectors for the translational and rota-
tional subsystems respectively.

Based on Eq. (1), equations of the motion in each axes are 
described as follow [28]:

(1)
𝜏 = Jω̇ + ω(Jω + JrΩre3) + d𝜏

mv̇ = RT −mge3 − dT

(2)ẍ = (sin θ cosφ cosΨ + sinφ sinΨ)
(
b

m

)
u1 −

dx

m

(3)ÿ = (cosφ sin θ cosΨ − sinφ sinΨ)
(
b

m

)
u1 −

dy

m

(4)z̈ = − g + cos θ cosφ
(
b

m

)
u1 −

dz

m

(5)φ̈ = θ̇Ψ̇
Iy − Iz

Iy
+ θ̇Ωr

Jr

Ix
+

Lb

Ix
u2 −

dφ

Ix

(6)θ̈ = φ̇Ψ̇
Iz − Ix

Iy
+ φ̇Ωr

Jr

Iy
+

Lb

Iy
u3 −

dθ

Iy

Fig. 1   Quadrotor UAVs Structure
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where L is the Quadrotor UAVs arm length, d is the drag 
coefficient, b refers to the thrust coefficient, m denote the 
total Quadrotor UAVs mass and IX,Y,Z are the moments of 
inertia about x, y, z axes. The parameters of the motion equa-
tions are defined in Table 1.

The relationship between the control inputs and the rotors 
speed in each axes is described as:

It should be mentioned that the translational dynamic is 
controlled by u1 and the rotational dynamic is related to u2 , 
u3 and u4.

In order to design the controller, the state variables are 
selected as follow:

Then according to Eqs. (2–7), a state space representation 
for Quadrotor UAVs can be achieved as:

(7)Ψ̈ = φ̇θ̇
Ix − Iy

Iz
+

d

Iz
u4 −

dΨ

Iz

(8)U =

⎡
⎢⎢⎢⎣

u1
u2
u3
u4

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

1 1

0 −1

1 1

0 1

1 0

1 −1

−1 0

1 −1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Ω2
1

Ω2
2

Ω2
3

Ω2
4

⎤
⎥⎥⎥⎦
.

(9)X = [x, y, z,φ, θ,Ψ, ẋ, ẏ, ż, φ̇, θ̇, Ψ̇].

It’s crystal clear that the body coordinate angles and their 
time derivation don’t depend on the earth coordinate states 
and the whole of the dynamic can be decoupled into two 
subsystems: the angular rotations and the linear translation. 
The control system schematic diagram for this approach is 
shown in Fig. 2.

In this section the desired trajectories are calculated by 
considering Eqs. (2) and (3) which extremely depend on 
the roll and pitch angles and the desired positions are trans-
formed into commands of the roll angle and the pitch angle:

where ẍd and ÿd can be approximated by ẍd = kxex and 
ÿd = kyey where kx and ky are positive constants. The desired 
commands for both roll and pitch angles are designed as 
follow:

Ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x7
x8
x9
x10
x11

x12
�
sin x5 cos x4 cos x6 + sin x4 sin x6

��
b

m

�
u1 −

dx

m�
cos x4 sin x5 cos x6 − sin x4 sin x6

��
b

m

�
u1 −

dy

m

−g + cos x5 cos x4

�
b

m

�
u1 −

dz

m

x11x12
Iy−Iz

Iy
+ x11Ωr

Jr

Ix
+

Lb

Ix
u2 −

d𝜑

Ix

x10x12
Iz−Ix

Iy
+ x10Ωr

Jr

Iy
+

Lb

Iy
u3 −

d𝜃

Iy

x11x12
Ix−Iy

Iz
+

d

Iz
u4 −

dΨ

Iz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)ẍd =
(
sin x5d cos x4d cos x6d + sin x4d sin x6d

)( b

m

)
u1

(11)ÿd =
(
cos x4d sin x5d cos x6d + sin x4d sin x6d

)( b

m

)
u1

(12)x4d = cos−1
(

mkxex

bu1 sin x5d cos x6d
−

sin x4d sin x6d

sin x5d cos x6d

)

Table 1   Parameters of quadrotor UAVs dynamic

Parameters Value Unit

L 0.232 m
b 3.13 × 10−5 n s2

d 7.5 × 10−7 m s2

m 0.52 kg
Ix 6.228 × 10−3 kg m2

Iy 6.228 × 10−3 kg m2

Iz 1.121 × 10−2 kg m2

Jr 6 × 10−5 kg m2

Ωmax 297 rad/s

Fig. 2   The control system schematic diagram
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It can be concluded from the analysis of Eqs. (2) and (3) 
that the position of the Quadrotor UAVs indirectly are con-
trolled by � , θ which are adjusted by u2 and u3 . In addition, 
the altitude of the Quadrotor UAVs and the yaw angle are 
directly controlled by u1 and u4 respectively.

3 � BISMC Design for Translational Subsystem

Define z3 = x3 − x3d as error of the altitude. The time deriva-
tion of z3 will be ż3 = ẋ3 − ẋ3d.

According to stability theory (Lyapunov), a positive 
candidate function is defined as v1 =

1

2
z2
3
 and the time 

derivation of v1 will be v̇1 = z3ż3.

Define z6 = ẋ3 − a1 , where a1 is a virtual control input. 
Then v̇1 is written as:

In order to make sure that Eq. (15) is stable, a1 is imple-
mented as:

where c1 is a non-zero positive constant. In addition, the time 
derivation of v1 can be computed as:

The integral sliding mode surface for the altitude state 
is considered as follow:

By considering the switching law as:

where ε is a positive constant and the time derivation of s1 
is calculated as follow:

By combination of the Lyapunov theory and the integral 
sliding mode, the control input u1 is designed as follow:

For the stability analysis, a positive Lyapunov function 
is selected as:

The time derivation of Eq. (22) is calculated as:

(13)x5d = sin−1
(

mkyey

bu1 cos x4d cos x6d
+

sin x4d sin x6d

cos x4d cos x6d

)

(14)v̇1 = z3(ẋ3 − ẋ3d)

(15)v̇1 = z3z6 + z3(a1 − ẋ3d).

(16)a1 = ẋ3d − c1z3

(17)v̇1 = z3z6 + z3(ẋ3d − c1z3 − ẋ3d) = −c1z
2
3
+ z3z6.

(18)s1 = z6 + k1 ∫ z3.

(19)ṡ1 = −𝜀s1 − sgn (s1)

(20)ż6 + k1z3 = −𝜀s1 − sgn (s1).

(21)

u1 =
m

cos x5cos x4b

[
−
(
k1 + c1

)
z3 + g − 𝜀s1 − sgn

(
s1
)
+ ẋ6d +

dz

m

]
.

(22)v2 =
1

2
v2
1
+

1

2
s2
1
.

And

By substituting (21) into (24), the necessary condition 
of Lyapunov theorem verified ( ̇v2 < 0).

3.1 � BISMC Design for Rotational Subsystem

By defining z4 = x4 − x4d as error of the roll angle, the time 
derivation of z4 will be ż4 = ẋ4 − ẋ4d.

The stability of the roll angle state is analyzed by Lya-
punov theory with defining a positive definite function as 
v3 = 1

2
z2
4
 and the time derivation of v3 will be v̇3 = z4ż4 . Then:

Define z10 = ẋ4 − a2 , where a2 is virtual control input. Then 
v̇3 can be concluded:

In order to make sure that Eq. (26) is stable, a2 is defined 
as:

where c2 is a non-zero positive constant. Furthermore, the 
time derivation of v3 can be achieved as:

The integral sliding mode surface for the roll angle state 
is defined as follow:

Now consider the reaching law as:

where ε is a positive constant. By the time derivation of 
Eq. (29):

According to Eqs.  (28)–(31), the control input u2 is 
designed as follow:

For examining the stability, a positive Lyapunov function 
is defined as:

(23)v̇2 = v1v̇1 + s1ṡ1.

(24)v̇2 = v1v̇1 + s1

(
−g + cos x5 cos x4

(
b

m

)
u1 −

dz

m

)
.

(25)v̇3 = z4(ẋ4 − ẋ4d).

(26)v̇3 = z4z10 + z4(a2 − ẋ4d).

(27)a2 = ẋ4d − c2z4,

(28)v̇3 = z4z10 + z4(ẋ4d − c2z4 − ẋ4d) = −c2z
2
4
+ z4z10.

(29)s2 = z10 + k2 ∫ z4

(30)ṡ2 = −𝜀s2 − sgn (s2)

(31)ż10 + k2z4 = −𝜀s2 = sgn (s2)

(32)
u2 =

Ix

Lb

[
−(k2 + c2)z4 − 𝜀s2 − sgn

(
s2
)

+ẋ10d +
d𝜑

Ix
− x11Ωr

Jr

Ix
− x11x12

Iy − Iz

Iy

]
.

(33)v4 =
1

2
v2
3
+

1

2
s2
2
.
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The time derivation of Eq. (33) is calculated as follow:

And

By replacing (32) into (35), the necessary condition of 
Lyapunov theorem is verified ( v̇4 < 0).

It should be mentioned that the next steps are similar with 
u2 , so u3 and u4 can be achieved in the same way:

4 � Iterative Learning Control

In this section, the iterative learning control (ILC) is 
designed and analyzed for the system for precise tracking 
of the desired trajectory. ILC is based on previous experi-
ments so that in each iteration the recorded trajectories are 
analyzed in order to calculate the next commands as control 
inputs for better converging the actual values to reference 
trajectories. Standard iterative learning control scheme is 
shown in Fig. 3. On the other hand, ILC is able to cope 
with repetitive disturbance or systematic error in the model. 
The formulation of the iterative learning control is inspired 
from [31].

At first, the states and the relative control inputs are con-
sidered separately in two vectors as follow:

(34)v̇4 = v3v̇3 + s2ṡ2.

(35)

v̇4 = v3v̇3 + s1

(
x11x12

Iy − Iz

Iy
+ x11Ωr

Jr

Ix
+

Lb

Ix
u2 −

dφ

Ix

)
.

(36)
u3 =

Iy

Lb

[
−(k3 + c3)z5 − 𝜀s3 − sgn

(
s3
)

+ẋ12d +
d𝜃

Iy
− x10Ωr

Jr

Iy
− x10x12

Iz − Ix

Iy

]

(37)

u4 =
Iz

d

[
−(k4 + c3)z6 − 𝜀s4 − sgn

(
s4
)
+ ẋ12d +

dΨ

Iz
− x11x12

Ix − Iy

Iz

]

(38)
U =

[
U1U2U3U4

]T

X =
[
X9X10X11X12

]T
,

where 

Due to the perfect model (39), the desired trajectory can 
be tracked using the back-stepping integral sliding mode 
controller as:

The main idea of the ILC is not approximating the uncer-
tainties of the model but is calculating the commands input 
as unknown disturbance input Ud . That is to combine with 
UBISMC for better tacking the desired trajectory. The total con-
trol input is designed as follow:

The update law for estimation of the next command for 
the unknown disturbance input Ud is described as:

where K is a positive matrix and F is a matrix which is 
achieved according to Eq. (39) along the desired trajectories 
by linear time varying method as follow:

In addition, �j refers to the error vector between the 
desired trajectory and the actual value.

Then Eq. (41) can be written around the ideal operating 
point of UBISMC.

Finally, Eq.  (44) can be achieved as function of the 
unknown disturbance input as:

(39)

⎡
⎢⎢⎢⎣

X9

X10

X11

X12

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−g + cos x5 cos x4

�
b

m

�
u1 −

dz

m

x11x12
Iy−Iz

Iy
+ x11Ωr

Jr

Ix
+

Lb

Ix
u2 −

d�

Ix

x10x12
Iz−Ix

Iy
+ x10Ωr

Jr

Iy
+

Lb

Iy
u3 −

d�

Iy

x11x12
Ix−Iy

Iz
+

d

Iz
u4 −

dΨ

Iz

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(40)Xref = f (UBISMC).

(41)

Utotal = UBISMC + Ud

Ẋj = f (Utotal)

Ẋj = f (UBISMC + Ud).

(42)Ud,j+1 = Ud,j − FTK�j

(43)F =

⎡
⎢⎢⎢⎣

dX9

dU1

⋯
dX9

dU4

⋮ ⋱ ⋮
dX12

dU1

⋯
dX12

dU4

⎤
⎥⎥⎥⎦
.

(44)𝛿j = Ẋj − Ẋref

(45)

Ẋj = f (UBISMC + Ud) ∼ f (UBISMC) +
(

d

dU
f ||UBISMC

)
⋅ Ud

(46)𝛿j = Ẋj − Ẋref =
(

d

dU
f ||UBISMC

)
⋅ Ud = FUd

Fig. 3   Iterative learning control scheme
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5 � Simulation

In this section, the effectiveness of the proposed method in 
comparison with only BISMC is validated. The desired tra-
jectories for x, y and z axes are selected as: xd = sin

(
2�

50
t
)
 , 

yd = cos
(

2�

50
t
)
 and zd = 3t and Eqs. (10) and (11) refer to 

reference commands for � and θ. The initial states are 
defined as x(0) = 0, y(0) = 1, z(0) = 0, �(0) = 0, �(0) = 0, 
Ψ(0) = − 0.12. The external disturbances are defined as 
follow:

dx = 2 sin t, dy = 2 sin t, dz = 2 sin t,

d� = 0.1 sin
(
2�

50
t
)
, d� = 0.1 sin

(
2�

50
t
)
,

dΨ = 0.1 sin
(
2�

50
t
)
.

Fig. 4   Position X (M)

Fig. 5   Position Y (M)

Fig. 6   Position Z (M)

Fig. 7   Roll angle (rad)

Fig. 8   Pitch angle (rad)
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In addition, the controller parameters are selected as: 
k1 = 100 , k2 = 100 , k3 = 100 , k4 = 100 , K, ε, c1 , c2 , c3 , 
c4 > 0. The parameters of the Quadrotor UAVs dynamic 
were listed in Table 1.

It should be mentioned that the desired trajectory, the 
actual tracking by BISMC with ILC, and the comparative 
method are shown in red, blue, and black.

The simulation results are shown in Figs. 4, 5, 6, 7, 8, 
9, 10, 11, 12 and 13. The time responses for the position 
tracking of the Quadrotor UAVs for x, y, and z axes in the 
two control strategies are shown in Figs. 4, 5 and 6 respec-
tively. As can be seen from these Figures, the proposed con-
troller method has better tracking performance from their 
perspective reference commands, higher accuracy, and fast 
transient responses in comparison with another method in 
the presence of the uncertainties and external disturbances. 
It can be concluded that the trajectories tracking errors for 
the mentioned method is fewer than the comparative method 
by using the iterative learning control. By this means that, 

Fig. 9   Yaw angle

Fig. 10   Control input U
1
 (N)

Fig. 11   Control input U
2
 (N)

Fig. 12   Control input U
3
 (N)

Fig. 13   Control input U
4
 (N)
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ILC process uses from previous information’s to improve 
tracking accuracy by calculating the total control signal.

The time responses of the roll, the pitch, and the yaw 
angles under the two control schemes are drawn in Figs. 7, 
8 and 9. From this Figures, it’s crystal clear that the BISMC 
with ILC has more accurate performance for tracking the 
desired commands in comparison with the BISMC despite 
the uncertainties and external disturbances. From Figs. 4, 5, 
6, 7, 8 and 9, it can be concluded that the iterative learning 
control by calculating the unknown disturbance input Ud in 
each iteration can reject the disturbances and help to the pro-
posed controller (BISMC) for better tracking performance.

Figures 9, 10, 11 and 12 show the results of the control 
inputs for the translational and the rotational subsystems. 
ILC uses unknown disturbance input Ud and UBISMC , therefor 
in some control signals more control efforts are observed. 
Based on researches, the results of control inputs are in the 
acceptable ranges. In order to justify the better tracking of 
the mentioned control strategy, numerical indexes are given 
in Table 2 which shows the integral of squared errors and 
the control signals as error of the position state with u1 and 
integral of the squared rotational angles states with their 
control signals as u2 , u3 , and u4 for the proposed method and 
the comparative method. From this Table, it can be seen that 
despite the more control efforts for the mentioned control 
strategy, the numerical indexes are almost in a same range.

6 � Conclusion

In this paper, the combination of the back- stepping inte-
gral sliding mode control was designed and analyzed for 
the Quadrotor UAVs. The main aim of the proposed con-
troller (BISMC) is to track the desired trajectories which 
were implemented by the guidance laws (10) and (11). For 
precise control, an iterative learning control algorithm in 
addition to the proposed controller (BISMC) implemented. 
The iterative learning control was updated by some simple 
formulas according to the previous experiments in the pres-
ence of the uncertainties and external disturbance. Next, the 
commands which were generated by the iterative learning 
control as unknown disturbance input Ud were added to the 
UBISMC . The simulation results illustrated that the iterative 
learning control with (BISMC) can be much better than only 

(BISMC) in term of accuracy and fast response and distur-
bance rejection.
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