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Abstract
In reality, due to the manufacturing error or the component loss in the service process, the structural parameters of bipedal 
robots may exhibit asymmetry. In this work, we consider the stable walking of an underactuated 3-D bipedal robot with 
asymmetric structure, and a novel hybrid control strategy is proposed. The control strategy consists of a continous heuris-
tic motion controller, which asymptotically drive the state of the robot to the zero dynamics manifold, and an event-based 
feedback controller that renders the hybrid zero dynamics locally asymptotically stable. The heuristic motion controller uses 
heuristic state variables as controlled variables rather than simply the actuated variables, and the controller parameters of the 
event-based feedback controller are designed in an analytical method rather than relying on the left–right symmetry property. 
The effectiveness of the presented control strategy is illustrated by a numerical simulation example.

Keywords  3-D biped · Asymmetric structure · Feedback control · Asymptotical stability

1  Introduction

With the human-like structure [1], bipedal robots are able 
to move in a variety of environments [2–5], and they are 
expected to play an important role in the areas of military 
use, disaster rescue, and family service, see [6, 7]. Com-
pared with the industrial robots, bipedal robots possess 
floating bases and high-dimensional hybrid dynamics [8], 
which makes the control problem more complicated. Cur-
rently, many of the bipedal robots are controlled using the 
zero moment point (ZMP) method [9–12], which calls for 
the full-actuation at each joint. While the full-actuation 
approach is very effective in the physical environments, it is 
usually energy-costly and the walking gait looks unnatural 
for bipedal robots [13–15].

Recently, underactuated bipedal robots have attracted 
significant research interest [16–18], and many successful 
control strategies have been proposed. In the work [19], a 
transverse linearization control approach was developed for 
an underactuated biped with one actuator. In [20], a hybrid 
zero dynamics (HZD)-based controller was designed for an 
underactuated biped with curved feet. In the recent work 
[21], the HZD-based control method was further combined 
with the velocity decomposition metric, and the results 
were validated experimentally. In these investigations, the 
researchers mainly focus on the planar bipeds. Compared 
with planar bipeds, underactuated 3-D bipeds have more 
degrees of underactuation and higher-dimensional dynam-
ics. In addition, the dynamic models of 3-D bipeds possess 
more continuous phases. These factors all complicate the 
controller design of underactuated 3-D bipeds.

To address the stable walking of underactuated 3-D 
bipeds, Chevallereau et al. [22] presented an event-based 
control strategy by using an extension of the method of vir-
tual constraints and hybrid zero dynamics. In the work [23], 
a discrete transverse linearization method was proposed to 
achieve stable walking of a 3-D compass-like biped. Com-
pared with the event-based control strategy, this method 
constructed a series of moving Poincaré sections along the 
desired periodic solution rather than simply one. In the work 
[24], the event-based control strategy was further developed 
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into a time-invariant one-step hybrid control scheme on the 
basis of right–left symmetry, linear matrix inequalities 
(LMIs), and robust optimal control (ROC). From [22], for 
underactuated 3-D bipeds, the stability of the closed-loop 
system can be affected by the choice of the control output. 
In the work [25], parametrized output functions were first 
designed, and the controller parameters were then obtained 
by solving an optimization problem. From the results, 
the controller functioned well in the presence of terrain 
variations.

In the above investigations, the robot models are assumed 
to be left–right symmetric, and then the stabilization prob-
lem of 3-D bipeds can be reduced to that of hybrid systems 
with a single continuous phase by using the symmetry prop-
erty. In practice, due to the manufacturing error or the com-
ponent loss in the service process, the structural parameters 
of bipedal robots may exhibit asymmetry. To the best our 
knowledge, few researchers focus on the stable walking of 
underactuated 3-D bipeds with asymmetric structure.

In this work, we consider the stable walking of an under-
actuated 3-D biped with asymmetric structure. In Sect. 2, the 
asymmetric 3-D biped is described and the dynamic model 
is presented. In Sect. 3, a piecewise-defined feedback con-
trol strategy is proposed. The control strategy consists of a 
heuristic motion controller that asymptotically drive the state 
of the robot to the zero dynamics manifold, and an event-
based feedback controller which renders the hybrid zero 
dynamics locally asymptotically stable. Numerical simula-
tion results are given in Sect. 4 to show the effectiveness of 

the presented control strategy. In the final section, the results 
of this work are summarized.

2 � Robot Description and Dynamic Modeling

Many previous works are focused on underactuated bipedal 
robots with symmetric structure. However, due to the manu-
facturing error or the component loss in the service pro-
cess, the structural parameters of bipedal robots may exhibit 
asymmetry. In this section, an underactuated 3-D biped with 
asymmetric structure is considered and the dynamic model 
is presented.

2.1 � Robot Description

As shown in Fig. 1, the studied 3-D biped consists of five rigid 
links: a torso and two legs with knee joints. For simplicity, 
each link is modeled by a point mass at its center. The 3-D 
biped is asymmetric because the structural parameters of the 
left and right legs are different, including the masses and the 
lengths, see Fig. 1 for the details. In the present study, angles 
(q0, q1, q2) are the yaw, pitch, and roll angles of the stance leg, 
respectively. Angles q3 and q8 are the relative joint angles of 
the stance-leg knee and swing-leg knee, respectively. Angles 
(q4, q5) and (q6, q7) are the relative joint angles of the stance-
leg hip and swing-leg hip, respectively. The angles (q3,… , q8) 
are independently actuated, whereas (q0, q1, q2) are unactuated 
due to the point contact. (q0,sw, q1,sw, q2,sw) denote the angles of 

Fig. 1   The model of the asym-
metric 3-D biped with point 
feet. In (a) and (b), the robot is 
supporting on the left and right 
legs, respectively. The struc-
tural parameters for the biped 
are as follows: L1 = 0.275 m, 
L2 = 0.275 m, L3 = 0.05 m, 
L4 = 0.274 m, L5 = 0.274 m, 
W = 0.15 m, m1 = 0.875 kg, 
m2 = 0.875 kg, m3 = 5.5 kg, 
m4 = 0.85 kg, m5 = 0.85 kg
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the swing-leg shin, and they can be calculated by the kinematic 
relationships.

In the present study, the bipedal walking consists of single 
support phases, when only one leg end is in stationary contact 
with the ground, and double support phases, when both legs 
are in contact with the ground. It is assumed that the double 
support phases can be modeled as instantaneous and rigid 
impacts. Therefore, the dynamic model for the 3-D biped is 
hybrid. For the convenience of analysis, the following assump-
tions are further made in the present study:

1.	 At impact, the swing foot neither slips nor rebounds, and 
the configuration of the robot remain unchanged, but the 
velocities undergo an instantaneous change.

2.	 In the single support phase, the position and the yaw 
angle of the stance foot remain constant, and thus 
q = [q1,… , q8]

T are defined as the generalized coordi-
nates.

2.2 � Dynamic Modeling

Due to the asymmetric structure, we have to consider the 
dynamics of the biped in both the left and the right support 
phases. In this work, the subscripts v = 1 and v = 2 stand for left 
and right, respectively. Considering the periodicity of bipedal 
walking, we use the notations v + 1=1 for v = 2 and v − 1=2 
for v = 1.

In the single support phase v ∈ {1, 2} , suppose that the 
Lagrangian is defined as

where Ek,v is the total kinematic energy, Ep,v is the potential 
energy. Then, the dynamic model can be written as

where B is an (8 × 6) full-rank, constant matrix indicating 
whether a joint is actuated or not, and u is the (6 × 1) vector 
of the input torques. Next, Eq. (2) can be rewritten in the 
following form

where Dv(q) is the positive-definite (8 × 8) mass-inertia 
matrix; Hv(q, q̇) is the (8 × 1) vector of Coriolis and gravity 
terms; Defining xv = [q, q̇]T , the dynamic model (3) can be 
written in state-space form as

where

(1)Lv = Ek,v − Ep,v

(2)
d

dt

𝜕Lv

𝜕q̇
−

𝜕Lv

𝜕q
= Bu

(3)Dv(q)q̈ + Hv(q, q̇) = Bu

(4)ẋv = fv(xv) + gv(xv)u

fv(xv) =

[
q̇

−D−1
v
Hv

]
, gv(xv) =

[
0

−D−1
v
B

]

During the double support phase, qe = [xst, yst, zst, q0,… , q8]
T 

are defined as the generalized coordinates, where (xst, yst, zst) 
are the Cartesian coordinates of the stance foot. Similar to 
the work [26], the impact model in the double support phase 
can be obtained as

where q̇−
v,e

 and q̇+
v,e

 are the extended velocities before and after 
the impact, respectively, Fv,sw is the impulsive reaction force 
on the swing leg at the contact point, Dv,e is the extended 
mass-inertia matrix, and Ev,sw = �[xsw, ysw, zsw, q0,sw]

T
/
�qe 

is the Jacobian for the position of the swing foot and its 
orientation in the x–y plane. After the impact, the gener-
alized coordinates are relabeled, and the transformation is 
[q1,sw, q2,sw, q8,… , q3] → [q1,… , q8] , as shown in Fig.  1. 
Next, combining the impact model (5) with the coordinate 
relabeling, the dynamical model for the double support is 
written as

where x+
v+1

= [q+
v+1

, q̇+
v+1

]T is the initial state of the next step, 
x−
v
= [q−

v
, q̇−

v
]T is the final state.

From (4) and (6), the complete hybrid model can be writ-
ten as

where Sv+1
v

= {xv
||zsw(xv) = 0, żsw < 0} , v = 1, 2 are the 

switching surfaces. Compared with the previous work, the 
dynamic model (7) does not possesses the left–right sym-
metry property, and thus the stabilization problem of (7) 
can not be reduced to that of hybrid systems with a single 
continuous phase by using the symmetry property, which 
makes the controller design more complicated.

3 � The Proposed Control Strategy

To address the stabilization problem of the hybrid system 
(7), this section presents a novel hybrid control strategy, 
which consists of a continous motion controller and an 
event-based feedback controller. The motion controller is 
designed to asymptotically drive the state of the robot to the 
zero dynamics manifold, and the event-based feedback con-
troller is designed to render the hybrid zero dynamics locally 
asymptotically stable. Compared with previous work, the 
motion controller uses heuristic state variables as controlled 

(5)
[
q̇+
v,e

Fv,sw

]
=

[
Dv,e −ET

v,sw

Ev,sw 0

]−1 [
Dv,eq̇

−
v,e

0

]

(6)x+
v+1

= Δv+1
v

(x−
v
)

(7)
�

∶=

⎧⎪⎨⎪⎩

ẋ1 = f1(x1) + g1(x1)u, x1 ∉ S2
1

x+
2
= Δ2

1
(x−

1
) x1 ∉ S2

1

ẋ2 = f2(x2) + g2(x2)u, x2 ∉ S1
2

x+
1
= Δ1

2
(x−

2
) x2 ∉ S1

2
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variables, and the controller parameters of the event-based 
feedback controller are designed in an analytical method 
rather than relying on the left–right symmetry property.

3.1 � Heuristic Motion Controller

In this subsection, a heuristic motion controller is presented 
using the method of virtual constraints and hybrid zero 
dynamics as in [20]. Compared with previous work, the 
controller uses heuristic state variables as controlled vari-
ables, rather than simply the actuated variables. Here, four 
heuristic state variables are defined, qTor,L = q1 + q3 + q4 
defines the torso angle in the lateral plane, xcm defines the 
position of the center of mass (COM) along the x direction, 
qTor,F = q2 + q5 defines the torso angle in the frontal plane, 
and qHip,F = q5 − q6 is the hip angle in the frontal plane, see 
Fig. 2. qTor,L and xcm are used to control the motion in the 
lateral plane, whereas qTor,F and qHip,F are used to control the 
motion in the frontal plane. For simplicity, xcm is approxi-
mated by its linearization around the final configuration q−

v
 . 

It is noted that the final configurations for the left support 
phase and the right support phase are different.

(1) Virtual constraints and controller design Here, to 
design the virtual constraints, a controlled variable vector 
is firstly designed based on the heuristic state variables, and

where qa = [q3,… , q8]
T denote the actuated variables. The 

controlled variable vector C collects all the controlled vari-
ables, and a linear relation exists between C and q, namely

where T is a constant matrix.
Next, suppose that a known periodic motion q∗(t) can 

be reparametrized as a function of θ, and θ is some strictly 

(8)C = [qTor,L, xcm, qTor,F, qHip,F, qa]
T

(9)C = Tq

monotonic variable in each continuous phase. Then the con-
trolled variables in the phase v ∈ {1, 2} can be designed as

where Mv is an (6 × 10) full-rank, constant selection matrix 
indicating whether a controlled variable is selected or not. In 
this work, the variable θ is defined as � = −q1 − 0.5q3 . Let 
qu = [�, q2]

T denote the unactuated variables, then we have

where Ψ is an (8 × 8) invertible matrix. From Eqs. (9) and 
(11), the controlled variables Cv in the phase v ∈ {1, 2} can 
be rewritten as

where M11 and M12 are (6 × 1) submatrices of MvT�  , and 
M13 is an (6 × 6) invertible submatrix of MvT� .

Based on the controlled variables (12), the virtual con-
straints in the phase v ∈ {1, 2} are designed as

To enforce the constraints, we differentiate Eq. (13) twice 
with respect to time as in [27], obtaining

where V� = −M13q
∗
a
(�) −M12q

∗
2
(�) . Substituting (3) into 

(14), we have

In order to asymptotically drive the state of the robot to the 
constraint surface Zv = {xv|yv = 0, ẏv = 0} , the controller in 
the phase v ∈ {1, 2} can be designed as

which results in

(10)Cv = MvC(�)

(11)q = �

[
qu
qa

]

(12)Cv = MvT�

⎡
⎢⎢⎣

�

q2
qa

⎤
⎥⎥⎦
= [M11 M12 M13]

⎡
⎢⎢⎣

�

q2
qa

⎤
⎥⎥⎦

(13)
yv = Cv(�) − C∗

v
(�)

= M13

(
qa − q∗

a
(�)

)
+M12

(
q2 − q∗

2
(�)

)

(14)ÿv =
𝜕yv

𝜕q
q̈ +

𝜕2yv

𝜕q2
q̇2 =

𝜕yv

𝜕q
q̈ +

𝜕2V𝜃

𝜕𝜃2
𝜃̇2

(15)ÿv =
𝜕yv

𝜕q

[
D−1

v
Bu − D−1

v
Hv

]
+

𝜕2V𝜃

𝜕𝜃2
𝜃̇2

(16)
u = (

𝜕yv

𝜕q
D−1

v
B)−1(

𝜕yv

𝜕q
D−1

v
Hv −

𝜕2V𝜃

𝜕𝜃2
𝜃̇2)

− (
𝜕yv

𝜕q
D−1

v
B)−1(

KP

𝜀2
yv +

KD

𝜀
ẏv)

(17)ÿv +
KP

𝜀2
yv +

KD

𝜀
ẏv = 0

Fig. 2   Heuristic state variables in the lateral and frontal planes
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From [26], Eq. (17) will converge sufficiently rapidly to the 
constraint surface Zv if KP > 0 , KD > 0, and ε > 0 is chosen 
to be some sufficiently small constant. Zv is also called the 
zero dynamics manifold, and the dynamics of the system 
restricted to this set is known as the zero dynamics.

(2) HZD method and Poincaré analysis By the HZD 
method, the stability of the full hybrid model can be deduced 
on the basis of the dynamics restricted in the zero dynam-
ics manifolds, i.e., the hybrid zero dynamics, which would 
significantly reduce the computational cost. To apply this 
method, the virtual constraints (13) are modified as

where hc(�) is the correction term to achieve hybrid invari-
ance and its coefficients are selected such that the post-
impact constraints and their velocities are zero. Under the 
virtual constraints (18), the variable Vθ in the controller (16) 
is updated as

Now, from [26], the stability of a given periodic orbit O 
of (7) can be evaluated using the restricted Poincaré map 
P

Z

∶ S1
2
∩ Z2 → S1

2
∩ Z2 expressed as

where the generalized Poincaré phase-v map PZ
v
 follows 

a solution of the hybrid zero dynamics from a state in 
Sv
v−1

∩ Zv−1 to some state in Sv+1
v

∩ Zv , v = 1, 2, and we have

where z∗
v
= O ∩ (Sv+1

v
∩ Zv) , v = 1, 2 are the fixed points. Let 

A = �P
Z

(z∗
2
)
/
�z2 be the Jacobian of Pz at the fixed point 

z∗
2
= O ∩ (S1

2
∩ Z2) . Then, the periodic orbit O is asymptoti-

cally stable if the magnitude of the eigenvalues or the spec-
tral radius of A is less than 1. Let Av be the Jacobian of PZ

v
 at 

the fixed point z∗
v−1

 . Then, from the chain rule, the derivative 
of (20) at the fixed point is

3.2 � Event‑Based Feedback Controller

In this subsection, a novel event-based feedback controller is 
developed to render the HZD locally asymptotically stable. 
Firstly, a parametrized controller is designed and an explicit 
expression of the Jacobian of the Poincaré return map is 
derived. Then, an analytical method is proposed to design 
the controller parameters.

(1) Control objective To render the HZD locally asymp-
totically stable, the virtual constraints (18) are firstly para-
metrized as

(18)yv = M13

(
qa − q∗

a
(�) − hc(�)

)
+M12

(
q2 − q∗

2
(�)

)

(19)V� = −M13(q
∗
a
(�) + hc(�)) −M12q

∗
2
(�)

(20)P
Z

(z2) ∶= PZ
2
◦PZ

1
(z2)

(21)PZ
v
(z∗

v−1
) = z∗

v

(22)A = A2A1

where hs(�, �v) is an additional term to shift the eigenvalues 
of the Poincaré map, which is designed to be a third-order 
polynomial of θ such that

where �v ∈ �v and �v ∈ R6 represent the finite-dimensional 
parameter vector and the set of admissible parameters, 
respectively; �v,ini and �v,f  are the initial and final values of 
θ, respectively. Then, similar to (16), the parametrized con-
troller in the phase v ∈ {1, 2} can be designed as

with

Under the controller (25), we can define the parameterized 
restricted Poincaré return map for the closed-loop system as 
PZ
�
∶ (S1

2
∩ Z2) × �1 × �2 → S1

2
∩ Z2 by

where PZ
v,�
(zv−1, �v) is the parameterized version of PZ

v
 , and 

for all zv−1 ∈ (Sv
v−1

∩ Zv−1) , the following result can be 
immediately obtained

Then, differentiating the above equation with respect to zv−1 
at the fixed point z∗

v−1
 , we have

Next, the controller parameter βv is updated by an event-
based feedback law

Then, the objective is to design the controller parameters K1 
and K2 such that the Jacobian of the restricted Poincaré 
return map PZ

�
 has its eigenvalues in the unit circle.

(23)

yv,� = M13

(
qa − q∗

a
(�) − hc(�) − hs(�, �v)

)

+M12

(
q2 − q∗

2
(�)

)

(24)

⎧
⎪⎨⎪⎩

hs(�v,ini, �v) = 0.5�v
hs(0.5�v,ini + 0.5�v,f , �v) = �v
hs(0.1�v,ini + 0.9�v,f , �v) = 0

�hs(0.1�v,ini + 0.9�v,f , �v)
�
�� = 0

(25)
u𝛽 = (

𝜕yv,𝛽

𝜕q
D−1

v
B)−1(

𝜕yv,𝛽

𝜕q
D−1

v
Hv −

𝜕2V𝜃,𝛽

𝜕𝜃2
𝜃̇2)

− (
𝜕yv,𝛽

𝜕q
D−1

v
B)−1(

KP

𝜀2
yv,𝛽 +

KD

𝜀
ẏv,𝛽)

(26)V�,� = −M13

(
q∗
a
(�) + hc(�) + hs(�, �v)

)
−M12q

∗
2
(�)

(27)PZ
�
(z2, �1, �2) ∶= PZ

2,�

(
PZ
1,�
(z2, �1), �2

)

(28)PZ
v,�
(zv−1, 0) = PZ

v
(zv−1)

(29)
�PZ

v,�

�zv−1
(z∗

v−1
, 0) =

�PZ
v

�zv−1
(z∗

v−1
)

(30)�v = −Kv(zv−1 − z∗
v−1

)
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(2) Design of the controller parameters Here, an ana-
lytical method is proposed to design the controller param-
eters K1 and K2. To achieve this goal, the explicit expres-
sion of the Jacobian of the Poincaré return map is firstly 
derived.Since βv is a function of zv−1 , the parameterized 
Poincaré map PZ

v,�
 can be represented by the equivalent 

restricted Poincaré map PZ
v,e

∶ Sv
v−1

∩ Zv−1 → Sv+1
v

∩ Zv , and 
we have

Then, the restricted Poincaré return map PZ
�
 can be repre-

s e n t e d  by  t h e  e q u i va l e n t  P o i n c a r é  m a p 
PZ
e
∶ (S1

2
∩ Z2) → S1

2
∩ Z2 and

Next, the Jacobian of PZ
e
 at the fixed point z∗

2
 is given by

Now, the stability of the closed-loop system can be evaluated 
by checking the eigenvalues of the Jacobian Ae. In the fol-
lowing, an explicit expression of the Jacobian Ae is derived.

Since the hybrid system (7) is C1 in each phase, the Poin-
caré return map PZ

e
 is C1 in a neighborhood of z∗

v
 , v = 1, 2. 

Then, according to the chain rule, the Jacobian Ae can be 
obtained as

From Eq. (31), we have

Next, combining Eq. (35) with Eqs. (28) and (21), we can 
obtain that

Then, substituting Eq. (36) into Eq. (34), we have

where Av,e = �PZ
v,e
(z∗

v−1
)
/
�zv−1 , v = 1, 2. Next, an explicit 

expression of Av,e is further derived.
According to the chain rule, the Jacobian of PZ

v,e
 at the fixed 

point z∗
v−1

 can be obtained from (31), and

(31)PZ
v,e
(zv−1) = PZ

v,�

(
zv−1, �v(zv−1)

)

(32)PZ
e
(z2) ∶= PZ

2,e
◦PZ

1,e
(z2)

(33)Ae =
�PZ

e

�z2
z∗
2

(34)Ae =
�(PZ

2,e
◦PZ

1,e
)

�z2
(z∗

2
) =

�PZ
2,e

�z1

(
PZ
1,e
(z∗

2
)
)
.
�PZ

1,e

�z2
(z∗

2
)

(35)PZ
1,e
(z∗

2
) = PZ

1,�

(
z∗
2
, �2(z

∗
2
)
)
= PZ

1,�
(z∗

2
, 0)

(36)PZ
1,e
(z∗

2
) = z∗

1

(37)Ae = A2,eA1,e

(38)Av,e =
�PZ

v,�

�zv−1
(z∗

v−1
, 0) +

�PZ
v,�

��v
(z∗

v−1
, 0).

��v

�zv−1
(z∗

v−1
)

Next, according to Eqs. (29) and (30), we have

where Av = �PZ
v
(z∗

v−1
)
/
�zv−1 , Fv = �PZ

v
(z∗

v−1
, 0)

/
��v . Similar 

to [22], the Jacobians Av and Fv can be directly calculated 
using numerical differentiation approaches. Therefore, the 
Jacobian Av,e depends only on the constant gain matrix Kv. 
Based on Eqs. (37) and (39), we have

Then, the asymptotical stabilization of the hybrid system 
(7) has been transformed into the design of the controller 
parameters K1 and K2 such that

where �(.) denotes the spectral radius.Now, based on 
Eq. (40), we are able to design the controller parameters K1 
and K2 using explicit expression, and they are designed as

where F+
v
 is the pseudo inverse of Fv, and mv is the positive 

constant to be designed. Next, we will show that if m1 and 
m2 are designed such that m1m2 > 𝜆 , where � is the spectral 
radius of A, then the closed-loop system is locally asymptoti-
cally stable. From (40) and (22), we have

Then, from the definition of the spectral radius, we can eas-
ily prove that �(Ae) = �(A)∕ (m1m2) . Since m1m2 > 𝜆 , we 
have

Therefore, the closed-loop system is locally asymptotically 
stable. It is obvious that a pair of large constants m1 and m2 
will leads to a smaller spectral radius �(Ae) . However, a very 
large m1 and m2 may cause large torques during the feedback 
control. Usually, m1 and m2 are designed to be the same, and 
�(Ae) is designed within the interval [0.3, 0.8] . Once �(Ae) is 
determined, the constants m1 and m2 can be obtained.

4 � An Illustrative Example

In this section, we present a numerical example to verify the 
control strategy developed in Sect. 3. The asymmetric 3-D biped 
is shown in Fig. 1. To implement the control strategy, a periodic 
walking gait for the asymmetric 3-D biped is firstly designed.

For underactuated bipeds, to design a walking gait is to find 
a set of proper coefficients that define the evolution of the actu-
ated variables qa. For this goal, the evolution functions of the 
actuated variables in the left and right single support phases 
are firstly designed as

(39)Av,e = Av − FvKv

(40)Ae = (A2 − F2K2)(A1 − F1K1)

(41)𝜌(Ae) < 1

(42)Kv = (1 − 1
/
mv)F

+
v
Av

(43)Ae =
A2A1

m1m2

=
A

m1m2

(44)𝜌(Ae) <
1

𝜆
𝜆 = 1



1381Journal of Electrical Engineering & Technology (2019) 14:1375–1384	

1 3

and

respectively, where s = (� − �v,ini)
/
(�v,f − �v,ini) is the nor-

malized independent variable, and the coefficients �v,k , v = 1, 
2 are (6 × 1) vectors of real numbers. Next, the coefficients 
�1,k and �2,k are obtained through a nonlinear optimization 
process. To simplify the optimization process, the nominal 
final state x−

1
= [q−

1
, q̇−

1
]T is chosen as a known condition, 

and

During the optimization process, the final state 
x−
2
= [q−

2
, q̇−

2
]T and the coefficients α1,2 and α1,3 are chosen 

to be the optimization variables, and other coefficients can 
be directly calculated from x−

1
 and x−

2
 by solving the bound-

ary conditions of Eqs. (43) and (44) at � = �v,ini and � = �v,f  . 
The optimization process is then performed similar to [22]. 
In this work, the optimization results are obtained as follows:

(45)
h1,d =

5∑
k=0

�1,k
5!

k!(5 − k)!
sk(1 − s)5−k

(46)h2,d =

3∑
k=0

�2,k
3!

k!(3 − k)!
sk(1 − s)3−k

q−
1
= [−0.333,−0.027, 0.360,−0.293, 0.064, 0.038,−0.506, 0.212]T

q̇−
1
= [−1.184,−0.477, 0.099, 0.278,−0.100, 0.099, 1.398, 0]T

q−
2
= [−0.365, 0.041, 0.229,−0.391,−0.055,−0.009,−0.881, 0.167]T ,

q̇−
2
= [−0.420, 0.487,−1.941,−1.128, 0.861, 0.407,−2.477,−1.674]T ,

𝛼1,2 = [0.997,−1.978,−0.220, 0.455,−0.510, 0.240]T ,

𝛼1,3 = [1.078,−0.893, 0.010, 0.299,−0.923, 1.564]T .

Now, a periodic and asymmetric walking gait has been 
obtained. The nominal joint profiles over two consecutive 
steps are shown in Fig. 3, where the unactuated variable 
θ is monotonic over each step. Figure 4 shows the torque 
required to produce the periodic motion. Figure 5 shows 
the profiles of the ground reaction forces on the stance foot 
and the profile of the swing leg tip, from which the physical 

Fig. 3   The nominal joint profiles over two consecutive steps

Fig. 4   The torque required to produce the periodic motion over two 
consecutive steps

Fig. 5   The profiles of the ground reaction forces on the stance foot 
and the profile of the swing leg tip
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constraints of bipedal walking are satisfied. In the following, 
the presented control strategy is applied to achieve stable 
walking.

According to Sect.  3.1, a heuristic motion con-
troller is first designed, and the controlled vari-
ables in the left and right single support phases are 
c h o s e n  a s  C1 = [qTor,L, q4, xcm, qHip,F, q7, q8]

T  a n d 
C2 = [qTor,L, q4, qTor,F, xcm, q7, q8]

T  , respectively. Then, by 
the HZD approach, the stability property under the motion 
controller is evaluated by checking the spectral radius of the 
Jacobian of the restricted Poincaré return map PZ. By using 
the numerical differentiation approach [16], the Jacobian of 
PZ at the fixed point z∗

2
 is computed as

with �(A) = 5.264 . As a comparison, we also consider the 
motion controller whose controlled variables are simply the 
actuated variables. In that case, the corresponding Jacobian 
is computed as

with �(A) = 26.217 . It is obvious that under the presented 
heuristic motion controller, the spectral radius is much 
smaller, which indicates that the stability property is well 
improved.

Next, the presented event-based controller is applied by 
following Sect. 3.2, and we set m1 = 4, m2 = 4. Under the 
event-based controller, the Jacobian Ae is computed as

Since 𝜌(Ae) = 0.329 < 1 , the closed-loop system is locally 
asymptotically stable. To illustrate the local stability, the 
hybrid zero dynamics of the 3-D biped in closed-loop is 
simulated with an initial state slightly deviating from the 
fixed point z∗

2
 . Here, an initial error of 0.01 rad is intro-

duced on the underactuated variable and a velocity error 
of 0.05 rad/s is introduced on each underactuated variable 
velocity. Figure 6 shows the phase plots of the underactuated 
variables, from which the asymmetric 3-D biped is appar-
ently stabilized. As a comparison, we also consider the case 
when the controller simply uses the actuated variables as 
the controlled variables, and the phase plots are shown in 
Fig. 7. From Fig. 7, the robot falls down within 3 steps, and 

(47)A =

⎡
⎢⎢⎣

5.058 −0.037 1.030

−0.705 1.048 0.101

0.630 −3.016 −0.542

⎤
⎥⎥⎦

(48)A =

⎡⎢⎢⎣

14.061 1.755 3.197

2.130 0.824 0.437

52.186 6.172 11.945

⎤⎥⎥⎦

(49)Ae =

⎡
⎢⎢⎣

0.316 −0.002 0.064

−0.044 0.065 0.006

0.039 −0.188 −0.033

⎤⎥⎥⎦

thus the effectiveness of the presented control strategy is 
demonstrated.

5 � Conclusion

This work considered the stabilization problem of an under-
actuated 3-D biped with asymmetric structure, and a novel 
hybrid control strategy was proposed. In this strategy, a heu-
ristic motion controller that uses heuristic state variables 
as controlled variables was first designed to asymptotically 
drive the state of the robot to the zero dynamics manifold, and 
then a novel event-based feedback controller, whose control-
ler parameters were designed in an analytical method, was 
designed to render the hybrid zero dynamics locally asymptoti-
cally stable. Finally, a numerical asymmetric walking gait was 
designed and used to show the validity of this control strat-
egy. In future research, we will consider extending this control 

Fig. 6   Phase plots for θ and q2 over 25 walking cycles, where the 
initial state is represented by a cycle, each variable converges to the 
nominal periodic orbit represented by the red curve, and the straight 
lines correspond to the impact phases

Fig. 7   Phase plots for θ and q2 when the controller simply uses the 
actuated variables as the controlled variables. The initial state is rep-
resented by a cycle, and the nominal periodic orbit is represented by 
the red curve. The robot falls down within 3 steps
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strategy to underactuated 3-D bipedal running or bipedal walk-
ing with toe-rotation.
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