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Abstract
We address the identification and generation of the discrete-time chaotic system (DTCS) with a two-layered recurrent neural 
network (RNN). First, we propose an identification procedure of the DTCS in which the RNN is required to have less layers 
than in the conventional procedures. Next, based on Li–Yorke theorem, we propose a generation procedure which enables 
us to predict a range of chaotic behavior of the DTCS in advance. Simulation results demonstrate that the proposed identi-
fication procedure, employing the Levenberg–Marquardt algorithm and a two-layered RNN, requires lower computational 
complexity than the conventional identification procedures at comparable performance.
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1  Introduction

Dynamical systems are frequently applied in modeling arti-
ficial and natural systems of various fields such as neurosci-
ence, astronomy, physics, electronics, and ecology [1–5]. 
When the time of a dynamical system is described in the 
discrete domain, the dynamical system is called a discrete-
time dynamical system (DTDS). A number of studies have 
also addressed the discrete-time chaotic system (DTCS) [6], 

a subclass of the DTDS. For example, DTCSs are proven 
useful in the processing of climate-related data including 
prediction of weather and sea surface temperatures [7, 8]. 
More recently, DTCSs are hired in the implementation of 
pseudo random number generators and cryptosystems in 
addition to applications in sustainable energy systems, e.g. 
[9, 10]. Among the important issues in the applications of 
DTCSs are the identification and generation of DTCSs.

Some of the representative models suggested for the 
identification of dynamical systems include the recurrent 
neural networks (RNNs), information theoretic models, and 
wavelet-based models [11, 12]. Among these models, the 
RNNs have been exploited most frequently [13–16] since 
their structures can be chosen adequately in quite a flexible 
way, and appropriate parameter optimization (training) algo-
rithms for them can be selected from an abundance of exist-
ing algorithms. In the studies of DTCSs also, the RNNs have 
been used diversely. For instance, in the early studies [13, 
17], DTCSs have been identified with RNNs trained by the 
steepest descent algorithm. The identification of DTCSs has 
been considered also with enhanced algorithms such as the 
Levenberg–Marquardt (LM), hybrid algorithms, and fuzzy 
neural networks [18–20]. In the meantime, the generation 
of DTCSs has been investigated in several studies including 
those of [21, 22].

In this paper, we apply two-layered RNNs in the identifi-
cation and generation of the DTCS. The proposed method of 
identification allows the RNN to have only two layers, less 
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than in the conventional identification procedures, and thus 
results in lower computational complexity. The proposed 
generation procedure of one-dimensional DTCSs is based 
on the Li–Yorke theorem [6]: The proposed generation pro-
cedure therefore enables us to generate a DTCS with a range 
of chaotic behavior specified in advance. Simulation results 
indicate that the proposed procedure for the identification 
of DTCSs using the two-layered RNN, employing the LM 
algorithm in the training stage, exhibits comparable perfor-
mance compared to conventional identification procedures.

2 � Discrete‑Time Chaotic Systems

Consider an n-dimensional DTDS of which the state X[t] is 
expressed as

at time t = 1, 2,⋯ with the initial state X[0] = X0 . Here, the 
next-state function

is of size n × 1 , with Fi a scalar function on the n-dimen-
sional space. We define Fm(X) = F

(
Fm−1(X)

)
 for m = 1, 2,⋯ 

with F0(X) = X  .  When X = Fp(X) for a number 
p ∈ ℤ

+ = {1, 2,⋯} , the point X is called a periodic point of 
F and the function F is said to have a point of period p . For 
example, the function F(X) = 4X(1 − X) has a point of 

period 3 and X =
1

2

(
1 + cos

�

9

)
 is a periodic point of F since 

1

2

(
1 + cos

�

9

)
= F3

(
1

2

(
1 + cos

�

9

))
.

An n-dimensional DTDS with a next-state function F is 
called an n-dimensional DTCS if there exist

	C1.	 A number p̃ ∈ ℤ
+ such that F has a point of period p 

for every integer p ≥ p̃,
	C2.	 A scrambled set S (i.e., an uncountable set containing 

no periodic point of F ) such that

(a)	 F(X) ∈ S for all X ∈ S , and
(b)	 When 

∨

X0 is a periodic point of F or is an element 
of S,

		  

for all X0 ∈ S such that X0 ≠
∨

X0,

(1)
X[t] =

[
X1[t] X2[t] ⋯ Xn[t]

]T
= F(X[t − 1]),

(2)F(⋅) =
[
F1(⋅) F2(⋅) ⋯ Fn(⋅)

]T
,

(3)lim sup
m→∞

‖‖‖‖‖
Fm(X0) − Fm

(
∨

X0

)‖‖‖‖‖
> 0,

		    and
	C3.	 An uncountable subset 

∨

S of S such that

  for all X0 ∈
∨

S and 
∨

X0 ∈
∨

S .

3 � Identification of DTCS

The structure of the two-layered RNN, which we will consider 
in the identification and generation of the DTCS, is depicted 
in Fig. 1. In Fig. 1, w2 denotes the n2 × n1 weight matrix of the 
links from layer 1 to 2, wr denotes the n1 × n2 weight matrix of 
the links from layer 2 to 1, bi denotes the ni × 1 bias vector of 
layer i , and �i denotes the transfer function of the ni neurons in 
layer i with ni denoting the number of neurons in layer i . Then, 
the state x[t] =

[
x1[t] x2[t] ⋯ xn2 [t]

]T of the two-layered 
RNN can be expressed as

with the initial state x[0] = x0 . In (6), the matrix of an ele-
ment-wise function is denoted by an underline: For example, 
we have

where x is an m × n matrix with the entry xm,n in the m-
th row and n-th column, and �1 is a scalar function whose 

(4)lim inf
m→∞

‖‖‖‖‖
Fm(X0) − Fm

(
∨

X0

)‖‖‖‖‖
= 0,

(5)
x[t] = f (x[t − 1])

= �2

(
w2�1(wrx[t − 1] + b1) + b2

)
,

(6)�1(x) =

⎡⎢⎢⎢⎣

�1(x1,1) �1(x1,2) ⋯ �1(x1,n)

�1(x2,1) �1(x2,2) ⋯ �1(x2,n)

⋮ ⋮ ⋱ ⋮

�1(xm,1) �1(xm,2) ⋯ �1(xm,n)

⎤⎥⎥⎥⎦
,

Fig. 1   Structure of the RNN employed in the proposed procedures of 
identification and generation of the DTCS
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domain is one-dimensional. It should be mentioned that, by 
the universal approximation theorem [23], the RNN shown 
in Fig. 1 can approximate any bounded and continuous func-
tion. Consequently, the next state function of any DTCS, 
a bounded and continuous function, can be represented by 
the function f  shown in (5) if the parameters are chosen 
properly.

Let us now describe the proposed identification procedure 
of a DTCS employing the two-layered RNN.

	 (i)	 Given a state sequence {X[t]}t̃
t=0

 , observe the dimen-
sion of the DTCS. Set n2 to the value of the dimen-
sion observed. Let x[0] = X[0] and �2(x) = x , and 
select n1 and �1 from ℤ+ and � , respectively. Set the 
training goal ĒI to a sufficiently small value and the 
maximum number �I of iterations to a sufficiently 
large value.

	 (ii)	 Randomly select the elements of the weights and 
biases wr , w2 , b1 , and b2 in the interval [−0.05, 0.05] , 
in which the elements of weights and biases of an 
RNN are usually initialized [24]. Define the nI × 1 
vector
		  

where nI = 2n1n2 + n1 + n2 and vec(A) is the vectori-
zation of a matrix A : That is, all columns in A are 
listed one by one vertically to form vec(A) . Set � to 0 
and w(�)

I
 to wI , and choose a very small value �I0 for 

the damping factor � . Evaluate the value 
EI,� = EI

(
w
(�)

I

)
 of the cost function

where x[t] is obtained from (5).Update the weights 
and biases as follows: Obtain w(�+1)

I
 as

and evaluate EI,�+1 , where

wI =
[
vecT

(
wr

)
bT
1

vecT
(
w2

)
bT
2

]T
,

(7)EI(wI) =
1

t̃

t̃�
t=1

‖X[t] − x[t]‖2,

(8)

w
(�+1)

I
= w

(�)

I
−

{
JT
I

(
w
(�)

I

)
JI

(
w
(�)

I

)
+ �InI

}−1

JT
I

(
w
(�)

I

)
∈I

(
w
(�)

I

)
,

(9)∈I (wI) =

⎡
⎢⎢⎢⎣

X1[1] − x1[1]

X2[1] − x2[1]

⋮

Xn2
[̃t] − xn2 [̃t]

⎤
⎥⎥⎥⎦
,

is the n2 t̃ × 1 error vector and the n2 t̃ × nI matrix

is the Jacobian of ∈I (wI) with ∈I,i and wI,i denoting 
the i-th elements of ∈I and wI , respectively. If 
EI,𝜏+1 ≤ EI,𝜏

(
EI,𝜏+1 > EI,𝜏

)
 , store w(�+1)

I

(
w
(�)

I

)
 , divide 

(multiply) � by a pre-fixed value �I1 larger than one, 
and increase � by one (zero). If � = �I go to step (iii); 
on the other hand, if 𝜏 < 𝜏I , repeat from (8).

	 (iii)	 If EI,𝜏I
≤ ĒI , stop the procedure, and the identi-

fication is considered to be successful: Reset wr 
and w2 to matrices whose elements in the i-th 
row and j-th column are the 

(
i + (j − 1)n1

)
-th and (

n1(n2 + 1) + i + (j − 1)n2
)
-th elements of w(�I )

I
 , 

respectively, and b1 and b2 to vectors whose i-th ele-
ments are the 

(
n1n2 + i

)
-th and 

(
2n1n2 + n1 + i

)
-th 

elements of w(�I )

I
 , respectively. On the other hand, if 

EI,𝜏I
> ĒI , increase n1 by one and repeat (ii).

The proposed procedure of identification of the DTCS is 
depicted in Fig. 2.

4 � Generation of One‑Dimensional DTCS

Theorem 1 [6]  If a one-dimensional DTDS with a next-state 
function F has a point X[0] such that

then the DTDS is a one-dimensional DTCS and the interval 
[min(X[2],X[3]), max(X[2],X[3])] includes a point of period 
p for every p ∈ ℤ

+, and a scrambled set S and a set 
∨

S speci-
fied in C2 and C3.

Based on Theorem 1, let us now propose a procedure to 
generate one-dimensional DTCSs with the RNN shown in 
Fig. 1.

	 (i)	 Create a sequence {X[t]}3
t=0

 such that
		  

(10)

JI(wI) =
𝜕 ∈I

�
wI

�
𝜕wI

=

⎡
⎢⎢⎢⎢⎢⎢⎣

𝜕∈I,1

𝜕wI,1

𝜕 ∫I,1

𝜕wI,2

⋯
𝜕∈I,1

𝜕wI,nI
𝜕∈I,2

𝜕wI,1

𝜕∈I,2

𝜕wI,2

⋯
𝜕∈I,2

𝜕wI,nI

⋮ ⋮ ⋱ ⋮
𝜕∈I,n2 t̃

𝜕wI,1

𝜕∈I,n2 t̃

𝜕wI,2

⋯
𝜕∈I,n2 t̃

𝜕wI,nI

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(11)
X[3] ≤ X[0] < X[1] < X[2] or

X[3] ≥ X[0] > X[1] > X[2],

(12)
X[3] < X[0] < X[1] < X[2] or

X[3] > X[0] > X[1] > X[2].
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In the RNN of Fig.  1, let n2 = 1 , x[0] = X[0] , 
and �2(x) = x  ,  and select n1 and �1 from 
ℤ

+ and � ,  respectively. Set the training 
goal ĒG to a value sufficiently smaller than 
min(|X[3] − X[0]|, |X[0] − X[1]|, |X[1] − X[2]|) and 
maximum number �G of iterations to a sufficiently 
large value. Note that the two equalities in (11) have 
been removed in (12) to avoid the impractical case 
of ĒG = 0.

	 (ii)	 Randomly select the elements of the weights and 
biases wr , w2 , b1 , and b2 in the interval [−0.05, 0.05] : 
Note that the bias b2 is a scalar in the one-dimen-
sional DTCS. Define the (3n1 + 1) × 1 vector 
wG =

[
wT
r

bT
1

w2 b2
]T . Set � to 0 and w(�)

G
 to wG , 

and choose a very small value �G0 for the damping 
factor � . Evaluate the value EG,� = EG

(
w
(�)

G

)
 of the 

cost function

		  

where x[t] is obtained from (5) with the selected wr , 
w2 , b1 , and b2 . Update the weights and biases as fol-
lows: Obtain w(�+1)

G
 as

and evaluate EG,�+1 , where

is the 3 × 1 error vector and the 3 × (3n1 + 1) matrix

is the Jacobian of ∈G (wG) with ∈G,i and wG,i denoting 
the i-th elements of ∈G and wG , respectively. If 
EG,𝜏+1 ≤ EG,𝜏

(
EG,𝜏+1 > EG,𝜏

)
 , store w(�+1)

G

(
w
(�)

G

)
 , 

divide (multiply) � by a pre-fixed value �G1 larger 
than one, and increase � by one (zero). If � = �G go 
to step (iii); on the other hand, if 𝜏 < 𝜏G , repeat from 
(14).

	 (iii)	 If EG,𝜏G
≤ ĒG , stop the procedure: We now have a 

one-dimensional DTCS whose next-state function 
is described by (5). Reset wr , b1 , and w2 to vectors 
whose i-th elements are the i-th, (n1 + i)-th, and 
(2n1 + i)-th elements of w(�G)

G
 , respectively, and b2 to 

the last element of w(�G)

G
 . If EG,𝜏G

> ĒG , on the other 
hand, increase n1 by one and repeat ii).

The proposed generation procedure of a one-dimensional 
DTCS is summarized in Fig. 3.

It is obvious that a DTCS generated by the proposed 
procedure has a range of chaotic behavior predictable in 
advance: In other words, we can specify a range of chaotic 
behavior in advance if we employ the proposed procedure 
when generating a DTCS. This is a noticeably important 
advantage of the proposed procedure over the conventional 

(13)EG(wG) =

√√√√1

3

3∑
t=1

|X[t] − x[t]|2,

(14)

w
(�+1)

G
=w

(�)

G
−

{
JT
G

(
w
(�)

G

)
JG

(
w
(�)

G

)
+ �I3n1+1

}−1

× JT
G

(
w
(�)

G

)
∈G

(
w
(�)

G

)

(15)∈G (wG) =

⎡
⎢⎢⎣

X[1] − x[1]

X[2] − x[2]

X[3] − x[3]

⎤
⎥⎥⎦
,

(16)

JG(wG) =
� ∈G

�
wG

�
�wG

=

⎡⎢⎢⎢⎢⎣

�∈G,1

�wG,1

�∈G,1

�wG,2

⋯
�∈G,1

�wG,3n1+1

�∈G,2

�wG,1

�∈G,2

�wG,2

⋯
�∈G,2

�wG,3n1+1

�∈G,3

�wG,1

�∈G,3

�wG,2

⋯
�∈G,3

�wG,3n1+1

⎤⎥⎥⎥⎥⎦
,

Fig. 2   Block diagram of the proposed identification procedure
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ones. In addition, the required length of the training state 
sequence is only three, and consequently, the additional bur-
den in computation incurred by the proposed procedure is 
negligible: Specifically, since the dimension of the error vec-
tor (15) is relatively small, the proposed procedure requires 
low computational power for the training stage (e.g. in terms 
of obtaining (14) and evaluating EG,�+1).

5 � Simulation Results

In this section, we investigate the performance of the pro-
posed identification procedure. Since the generation of 
DTCSs is rather obvious, we consider mainly the identifica-
tion of DTCSs.

5.1 � Identification

Consider two of the most well-known DTCSs; the logistic 
and Hénon systems of which the states at time instant t are 
given as

and

respectively. We have obtained state sequences {X[t]}199
t=0

 
and {X[t]}199

t=0
 from the logistic and Hénon systems with 

X[0] = 0.2 and X[0] = [1 0]T , respectively, and used the 
sequences in the identification.

For each of the two DTCSs, the identification has been 
repeated 100 times with the corresponding state sequence 
employing the transfer function

We have selected n1 = 8 ,  �I = 1000 ,  ĒI = 10−8 , 
�I0 = 10−3 , and �I1 = 10 . From the state sequences, we 
have then observed that the dimensions of the logistic and 
Hénon systems are one and two, respectively: We have 
therefore let n2 be one and two for the logistic and Hénon 
systems, respectively. Because the value �I is sufficiently 
large so that the RNNs can be trained to their best, all 
of the 200 repetitions of the identification with the initial 
value 8 of n1 has been observed to be successful.

5.2 � Generalization Performance

To investigate the generalization performance, we have 
generated state sequences {X[t]}49

t=0
 and {X[t]}49

t=0
 from 

the logistic and Hénon systems with X[0] = 0.7 and 
X[0] = [0.5 0]T , respectively. For each of the 100 RNNs 
obtained by the 100 repetitions in the identification of 
the logistic system, we have obtained a state sequence 
{x[t]}49

t=0
 with x[0] = 0.7 . Similarly, we have obtained a 

state sequence {x[t]}49
t=0

 with x[0] = [0.5 0]T  for each of 
the 100 RNNs obtained by the 100 repetitions in the iden-
tification of the Hénon system. We have next calculated 
the mean squared error (MSE), 1

50

∑49

t=0
(X[t] − x[t])2 for the 

logistic system and 1

50

∑49

t=0
‖X[t] − x[t]‖2 for the Hénon 

system, between the state sequence from the RNN and the 
target state sequence.

Table 1 shows the average of the 100 MSEs. Included 
also in the table are the results from the procedures in 

(17)X[t] = 4X[t − 1](1 − X[t − 1])

(18)
X[t] =

[
X1[t] X2[t]

]T

=

[
1 + X2[t − 1] − 1.4X2

1
[t − 1]

0.3X1[t − 1]

]
,

(19)�1(x) =
1

1 + e−x
.

Fig. 3   Block diagram of the proposed generation procedure
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[18] and [19]. It is observed that the generalization per-
formance of the proposed identification procedure is 
similar to that of the procedure in [19] and is slightly 
worse than that of the procedure in [18]. Nonetheless, we 
would like to note that, unlike the procedure in [18] which 
employs a global optimization algorithm, the proposed 
identification procedure and the procedure in [19] hire the 
LM algorithm, a local optimization algorithm: In general, 
local optimization algorithms consume less time than 
global optimization algorithms. It should also be noted 
that the RNNs employed in the proposed identification 
procedure, procedure in [18], and procedure in [19] hire 
two, three, and four layers, not counting layer 0 which is 
a delayed duplicate of the last layer: A smaller number of 
layers generally implies a smaller number of parameters, 
and as a result, lower requirement for computation.

We have next considered the generalization perfor-
mance of the proposed procedure in comparison with that 
of the procedure in [20] for a discretized version of Lor-
enz system of which the state at time instant t  is given as

(20)

d

dt
X(t) =

�
dX1(t)

dt

dX2(t)

dt

dX3(t)

dt

�T

=

⎡⎢⎢⎣

q1
�
X2(t) − X1(t)

�
q2X1(t) − X2(t) − X3(t)X1(t)

X2(t)X3(t) − q3X3(t)

⎤
⎥⎥⎦
,

with q1 = 1 , q2 = 5.46 , q3 = 20, and initial value 
X(t) = [−0.3 0.3 0.2] . We have chosen other parameters the 
same as those adopted for the logistics and Hénon systems. 
From the results shown in Table 2, it is observed that the 
generalization performance of the proposed identification 
procedure, even with less number of layers, is better than 
that of the procedure in [20] for the Lorenz system.

In essence, the proposed identification procedure (A) 
exhibits generalization performance comparable to those 
of the conventional procedures, (B) employs a local opti-
mization algorithm and requires less layers in the RNN 
than the conventional procedures, and as a result, (C) 
requires less consumption of computation time than the 
conventional procedures.

6 � Conclusion

Employing two-layered recurrent neural networks, we have 
addressed the identification and generation of discrete-time 
chaotic systems. The proposed identification procedure 
requires a smaller number of layers in the recurrent neu-
ral network than the conventional procedures. Unlike the 
conventional generation procedures, the generation proce-
dure proposed in this paper allows us to predict the range of 
chaotic behavior in advance when generating discrete-time 
chaotic systems. Simulation results have indicated that the 
proposed identification procedure of discrete-time chaotic 
systems shows comparable performance compared to other 
conventional identification procedures at reduced complex-
ity. The proposed procedure can be hired, for example, in the 
implementation of pseudo random number generators and 
cryptosystems in addition to various applications including 
sustainable energy systems.
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