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Abstract
The application of electromyography (EMG) has shown great success in rehabilitation engineering. With the existing multi-
ple-channel EMG recording system, the detection and classification of EMG pattern have become viable. The purpose of this 
study is to investigate the relation between sampling rate and EMG pattern recognition by using spectrogram. The features 
are extracted from spectrogram coefficients and the principal component analysis is applied for dimensionality reduction. In 
addition, the optimal Hanning window size is identified and selected before performance evaluation. For noise evaluation, 
the additive white Gaussian noise (AGWN) is added to the EMG signal at 30, 25, 20 dB SNR. The results illustrated that the 
512 Hz sampling rate can maintain a small decrement of 0.76% accuracy compared to 1024 Hz. However, when the AGWN 
is added, the 256 and 512 Hz sampling rates showed a greater reduction in overall classification performance. For a lower 
SNR, the gaps in classification accuracy between 1024 Hz, 512 Hz and 256 Hz sampling rates are obviously presented. It 
signifies that reducing the sampling rate lower than 1024 Hz might not be a good choice since the noise and artifact have to 
be taken into consideration in a real system.
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1 Introduction

Electromyography (EMG) is a well-known bioelectrical sig-
nal that provides muscle information with different features 
[1, 2]. EMG signal can be analyzed to detect the medical 

abnormalities and identify the human motions [3]. Presently, 
there are two types of EMG data acquisition methods which 
are needle and surface electrode [4, 5]. As compared to nee-
dle, the surface electrode can be applied without assisting 
of the medical doubters.

Previous study revealed several important issues in the 
classification of EMG signal for practical application such 
as window length and sampling rate [6, 7]. Recent studies 
focused on the analysis of window length in obtaining the 
optimal performance between classification accuracy and 
controller delay duration [7, 8]. Nevertheless, the selection 
of sampling rate is also important in EMG pattern recogni-
tion. In one study, Chen et al. suggested that 400 Hz sam-
pling rate could achieve comparable classification accuracy 
by using time-domain (TD) features [4]. However, the rela-
tion between the sampling rate and the presence of noise 
is remaining uninvestigated in time–frequency distribution 
(TFD). The usage of low sampling rate leads to fast compu-
tation time, but the signal information is limited.

Surface EMG signal contains useful information, but it 
is often corrupted by various types of noise in the process 
of recording. Current technology immunes to some of the 
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noise source, but there are various noises and artifact which 
are unavoidable [9]. According to literature, the presence 
of noise depended on several factors such as human’s skin, 
body structure and blood flow velocity [10]. Hence, mul-
tiple types of noise can be found within the EMG signal. 
Various time–frequency signal processing methods have 
been applied to EMG signal for noise reduction purpose [3, 
11–13]. However, noise and artifact are still the challenging 
problem in the analysis of EMG signal. Noise is usually 
involved in a real system and it needs to be considered in the 
selection of sampling rate.

In recent days, signal processing methods and machine 
learning techniques have becoming the attention of the 
researchers [11, 14]. For the choice of classification method 
the k-nearest neighbor (k-NN) has been commonly used 
[15–17]. Recently, k-NN algorithm showed the promising 
classification results with low computation cost [17]. On the 
other hand, support vector machine (SVM) with Gaussian 
Radial Basis based kernel is widely used because it offers 
excellent results in EMG studies [18].

The aim of this study is to investigate the relation between 
EMG pattern recognition and sampling rate using spectro-
gram. In this study, the optimal window size in spectrogram 
is first evaluated and selected. In the next step, 256, 512 and 
1024 Hz sampling rate are evaluated. It was reported that 
lower than 1024 Hz sampling rate can provide promising 
results in EMG signals classification [6]. However, the noise 
evaluation is not included in the study. Therefore, in the 
second step, the additive white Gaussian noise (AWGN) is 
added into the signal at 30, 25 and 20 dB SNR for evaluating 
the robustness of EMG signal at a different level of sam-
pling rate. In this analysis, k-NN and SVM are employed to 
classify ten different hand movement types. In addition, the 
performance of 256, 512 and 1024 Hz sampling rate under 
the interference of noise are also compared.

2  Material and Methods

2.1  EMG Data Collection

Two wearable EMG devices namely Shimmer (Shimmer3 
Consensys EMG Development Kits) with standard setting 
were used in data collection. The resolution was set at 
24 bits with a gain of 12. The EMG signal was gathered 
from four useful hand muscles namely extensor digitorum 
(ch1), flexor carpi radialis (ch2), extensor carpi radialis 
longus (ch3) and flexor carpi ulnaris (ch4) with two refer-
ence electrodes at the elbow. The signal was sampled at 
1024 Hz and band-pass filtered between 20 and 500 Hz. 
The skin was shaved and cleaned with alcohol pad before 
the electrode placement. The surface electrodes with 
30 mm diameter were used and the inter-electrode distance 

was set at 20 mm to reduce the crosstalk. The bipolar elec-
trode configuration was recommended by SENIAM and it 
was shown in Fig. 1 [19, 20].

In this study, the EMG signals were recorded from 
ten healthy subjects (eight males, two females) with age 
ranging from 24 to 47 years (mean age ± standard devia-
tion: 28.6 ± 9.7 years). The subjects were given a detailed 
explanation on the experimental procedure and provided 
an informed consent before starting the study.

During data acquisition, the subjects were sitting com-
fortably on the chair with the hand in neutral position. The 
EMG data were collected as the subjects performed upper 
limb movement including thumb flexion (TF), thumb 
extension (TE), thumb-index (TI), thumb-middle (TM), 
thumb-ring (TR), thumb-little (TL), make fist (MF), wrist 
extension (WE), wrist flexion (WF) and relax (R) as shown 
in Fig. 2. The hand movement tasks were recommended by 
the previous works, and also FlintRehab exercise guideline 
[21]. The experiment was partitioned into ten trials and 
each trial consisted of ten different movements. Within 
each trial, the subjects were asked to maintain each move-
ment for 5 s, followed by a resting state of 4 s. In addition, 
1-min rest period was introduced at the end of each trial to 
prevent muscle fatigue. At the end of the experiment, 40 

ch1

ch4

ch2

ch3

Fig. 1  Electrodes configuration

Fig. 2  Hand movement tasks
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EMG signals (10 trials × 4 channels) were collected from 
each movement from each subject.

Previous studies reported the optimal window length 
for the EMG myoelectric prosthetic system was between 
150 and 250 ms in order to balance the classification accu-
racy and the controller delay [7, 22, 23]. In this research, 
the EMG data were segmented into 250 ms window (256 
samples) using non-overlapped windowing technique [24]. 
Hence, 20 segments were obtained from each EMG signal.

2.2  Data Resampling and Window Size Selection

All EMG data were processed under computer processing 
Intel core i5-3340 3.1G Hz and 8 GB Random Access Mem-
ory (RAM). In the first part of the experiments, spectrogram 
with Hanning window size of 16, 32, 64 and 128 are investi-
gated. The best window size, which gives the optimal classi-
fication performance in EMG pattern recognition is selected.

Next, the effect of sampling rate in EMG pattern recogni-
tion is examined. The original EMG signal is down-sampled 
into 256 Hz and 512 Hz sampling rate. For example, Matlab 
down-samples the EMG signal from 1024 Hz sampling rate 
to 512 Hz by decreasing the sampling rate with the sequence 
of 2.

2.3  Spectrogram

Spectrogram is implemented to the EMG data of 2000 × 4 
matrix (20 segments per movement × 10 movements × 10 
trials × 4 channels) for each subject. The application of 
time–frequency distribution such as spectrogram is not new 
to the EMG feature extraction [11]. However, spectrogram is 
the most fundamental of the signal processing tool in noise 
reduction. In addition, spectrogram is easily for implementa-
tion [25]. Spectrogram is evaluated by computing the square 
magnitude of the short time Fourier Transform (STFT) [26]. 
It represents the signal in energy distribution. Mathemati-
cally, spectrogram can be expressed as:

where x(τ) is the input signal and w(τ − t) is the Hanning 
window function.

2.4  Noise Evaluation

Previous study revealed the surface EMG was often corrupted 
by white Gaussian noise, baseline noise and movement arti-
fact [9, 13]. Note that noise source often contains frequency 
spectral information at the low frequency component from 

(1)S(t, f ) =

|||||||

∞

∫
−∞

x(�)w(� − t)e−j2�f �d�

|||||||

2

,

the EMG frequency spectrum [9]. In order to examine the 
robustness and performance of EMG signal, the additive white 
Gaussian noise (AWGN) is added into the signal (256, 512, 
and 1024 Hz) at 30, 25 and 20 dB SNR before data segmenta-
tion. The noise surface signal can be defined as:

where x(t) is the input signal and awgn(t) is referred to the 
additive white Gaussian noise segment.

Figure 3 shows the spectrogram of 1024 Hz sampling rate 
at 30, 25 and 20 dB SNR. As can be seen, the time–frequency 
information became unclear as the SNR decreased. It indi-
cates that the spectral information in the spectrogram has been 
limited.

2.5  Feature Extraction

The noise surface signal can be defined as: Spectrogram is a 
m × n matrix coefficient that presents the signal in two dimen-
sions. In order to reduce the dimensionality, the average instan-
taneous energy is extracted from spectrogram coefficients. 
According to literature, the instantaneous energy showed 
excellent results in investigating the characteristic of bio sig-
nals [27]. Average instantaneous energy can be represented as:

(2)s(t) = x(t) + awgn(t),

(3)Ei =
1

T

T

∫
0

fmax

∫
0

S
i
(t, f ) df dt,

Fig. 3  Spectrogram of 1024  Hz sampling rate at 30, 25 and 20  dB 
SNR
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where E is the average instantaneous energy, S is the spectro-
gram coefficient and i is the order of data segment.

2.6  Dimensionality Reduction

Commonly, TFD feature vector not only provides a high 
feature dimension but also increases the computation time 
in a classifier [22]. In such case, a dimensionality reduction 
technique is applied to reduce the feature vector into a lower 
dimensional space. Meanwhile, the decreasing in dimensional 
space also reduces the computation time. In recent days, prin-
cipal component analysis (PCA) was widely used in feature 
extraction and dimensionality reduction [28]. PCA is a tech-
nique transforms the feature matrix statistically and gets the 
correlation between variables in the data [17]. In addition, 
PCA is an unsupervised dimensionality reduction that projects 
the data using the eigenvectors of the covariance matrix [29]. 
In this analysis, the first three principal components (PCs) are 
used as the input to the classifier. The transformation can be 
represented as:

where TL is the output with first L components matrix and 
L is 3 in this study.

2.7  Machine Learning Method

Presently, k-nearest neighbor (k-NN) is a popular machine 
learning method due to its simplicity and speed [15, 17]. 
According to literature, the value of k of k-NN must be care-
fully selected according to the model specification [16, 17]. 
In this work, the weight is employed instead of choosing the 
k-value. The weight can be represented as:

The Euclidean distance as the distance metric and it can 
be defined as:

Support vector machines (SVM) is a supervised machine 
learning method using computer science in classification [17]. 
A technique which expands the concept of hyperplane separa-
tion to the data is introduced in SVM to discriminate the data 
sets that failed to separate linearly [5, 28]. In this study, SVM 
with the Gaussian kernel function is applied. The kernel func-
tion is implemented in hyperplane as the idea product of the 
nonlinear function. The Gaussian kernel can be expressed as:

where x − xi is the Euclidean distance between feature vec-
tors and σ is the kernel parameter.

(4)TL = XWL,

(5)weight = 1∕(dst)
2.

(6)dst =
√
(xs − yt)(xs − yt)

�.

(7)K(x, xi) = exp

(
−
||x − xi||2

2�2

)
,

3  Result and Discussion

The EMG data are collected from ten subjects and the fea-
ture extraction and dimensionality reduction techniques are 
applied after spectrogram to observe the relation between 
sampling rate and classification error. In this study, the 
tenfold cross validation method is used for performance 
evaluation. The data is randomly partitioned into 10 equal 
subsets. Each subset is used for testing in succession, while 
the remaining subsets are used for training session [5, 17]. 
The averaged results from tenfolds are calculated for perfor-
mance comparison.

In the first part of the experiments, four different Han-
ning window sizes are evaluated and compared. In Fig. 4, 
one can see that the window size of 32 achieves the highest 
mean classification accuracy. Thus, the window size of 32 
is selected and applied in the rest of the study.

For the second part of the experiments, the performances 
of three different sampling rates are evaluated. The results of 
mean classification accuracy of 256, 512 and 1024 Hz sam-
pling rates were shown in Fig. 5. From the results, it is clear 
that the 1024 Hz sampling rate illustrated the superior clas-
sification accuracy, followed by 512 Hz and 256 Hz. Obvi-
ously, whichever machine learning method is used, the clas-
sification accuracy reduced as the sampling rate decreased. 
By applying SVM, the corresponding classification accuracy 
decreased from 92.68% (1024 Hz) to 91.92% (512 Hz) to 
87.79% (256 Hz), respectively. In Fig. 5, it is evident that a 
higher sampling rate can produce better classification result. 
However, from Table 1, it showed that the computation time 
at higher sampling rate has been increased.

In the final part of the experiments, the robustness of the 
proposed sampling rates is tested by adding 30, 25 and 20 dB 
SNR to the EMG signals. The noise and artifact are often the 
main challenge due to the large number of recording elec-
trodes [13]. Thus, the selection of sampling rate under noisy 
condition is equally important, which shows great impact 

Fig. 4  Mean classification accuracy according to the change in win-
dow size (16, 32, 64 and 128) of ten subjects using SVM
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on classification performance. As can be seen in Tables 2 
and 3, the classification accuracy showed a decreasing trend 
along with SNR fall. As expected, the 1024 Hz sampling 
rate achieves the highest classification accuracy in both k-
NN and SVM. From Table 2, 512 Hz sampling rate showed 
a decrement of 0.76% classification accuracy compared to 
1024 Hz using SVM. This result indicated that lower than 
1024 Hz sampling rate is possible for accurate classification 

of ten different hand movements. However, when the AWGN 
is added to the signal, 256 and 512 Hz sampling rate are 
facing difficulties in pattern recognition, especially at lower 
SNR.

In the real system, the noise and artifact are usually 
involved and the analysis of EMG signal with noise is pre-
ferred. From the results, the reduction of classification accu-
racy at a different sampling rate is obviously presented when 
the AGWN is added. At 20 dB SNR, the mean classifica-
tion accuracy of 256 and 512 Hz sampling rate are falling 
below 50% in k-NN. In contrast, 1024 Hz sampling rate is 
possible to maintain high classification accuracy of above 
80% at 30 dB SNR in both SVM and k-NN. In comparison 
with 1024 Hz sampling rate, 512 Hz shows the reduction of 
4.88% (30 dB), 6.86% (25 dB) and 8.98% (20 dB) mean clas-
sification accuracy in SVM. The reduction in classification 
accuracy implies that 512 Hz sampling rate is not robust as 
compared to 1024 Hz. More importantly, it is seen that the 
classification accuracy at 20 dB SNR was relatively poor for 
both k-NN and SVM. This might because the AGWN has 
greatly corrupted the EMG signals in the process of noise 
addition.

To compare the classification accuracy obtained by differ-
ent classifiers, F-measure is used, and it can be calculated as:

where TN is the number of true negative, TP is the number 
of true positive, FP is the number of false positive and FN 
is the number of false negative.

In the previous research, most of the researchers made 
use of different classifiers for the classification of EMG 
signal [5, 18, 22, 30]. EMG data acquisition technique is 
important in achieving EMG classification results accu-
rately. Therefore, the F-measure is calculated to measure 
the performance of SVM and k-NN. Table 4 outlines the 
result of F-measure. When the AGWN is added into the 
signal, the performance of both SVM and k-NN classifiers 
are degraded. From Table 4, it is observed that SVM obtains 
higher F-measure value compared to k-NN. Evidently, SVM 
has proven to be a better classifier due to higher F-measure 
value achieved in the performance evaluation.

Previous studies suggested that the sampling rate between 
400–500 Hz to be optimal in EMG pattern recognition [4, 6]. 
However, the noise evaluation is not included in their study. 
Additionally, most of the experiments are done in labora-
tory to minimize the noise from the environment. The noise 
evaluation is always preferred in the sampling rate selection. 
Regarding with the presented results in Tables 2 and 3, it 
showed that lower than 1024 Hz sampling rate was not suit-
able for accurate classification of ten movement classes in a 
real system. The performance of 256 and 512 Hz sampling 
rate become unstable at lower SNR. In terms of computation 

(8)F−measure =
2TP

2TP + FP + FN
,

Fig. 5  Mean classification accuracy of three different sampling rates 
across ten subjects

Table 1  Signal processing 
computation time (per signal) at 
different sampling rate

Sampling rate (Hz) Computa-
tion time 
(s)

256 0.0019
512 0.0056
1024 0.0129

Table 2  Classification accuracy (mean ± SD) of 256, 512, and 
1024 Hz sampling rate at different SNR for SVM

Sampling 
rate (Hz)

Original SNR (dB)

30 25 20

256 87.79 ± 3.36 72.27 ± 6.57 58.30 ± 11.05 39.97 ± 11.21
512 91.92 ± 2.56 82.17 ± 4.20 69.85 ± 9.44 51.79 ± 12.96
1024 92.68 ± 2.50 87.05 ± 2.82 76.71 ± 7.79 60.77 ± 12.88

Table 3  Classification accuracy (mean ± SD) of 256, 512, and 
1024 Hz sampling rate at different SNR for k-NN

Sampling 
rate (Hz)

Original SNR (dB)

30 25 20

256 84.89 ± 3.76 67.03 ± 6.91 51.85 ± 10.18 34.41 ± 10.27
512 89.75 ± 3.25 77.61 ± 5.06 64.46 ± 10.26 46.04 ± 12.45
1024 91.15 ± 3.09 83.66 ± 3.40 71.54 ± 9.03 55.50 ± 13.07
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cost, 1024 Hz sampling rate enhances 0.0073 s compare to 
512 Hz. The major drawback of higher sampling rate is 
longer computation time. In sum, it can be inferred that 
1024 Hz sampling rate is more suitable for EMG pattern 
recognition. In a real system, down-samples the sampling 
rate lower than 1000 Hz is not recommended.

There are several limitations in the present study. First, 
only three sampling rates (256, 512 and 1024 Hz) are con-
sidered in this work. Through the observation from the 
results, it can be inferred that the sampling rates higher than 
1024 Hz, such as 2048 and 4096 Hz will guarantee bet-
ter classification performance in EMG pattern recognition. 
However, a higher sampling rate will further improve the 
computational complexity, which might be increasing the 
delay duration. Second, the wireless EMG shimmer sensor 
might not shield against power line interference, noise from 
environment and motion artifact. These artifacts can badly 
degrade the quality of EMG signals. To improve the quality 
of recorded signal, as well as classification performance, 
a better wire EMG device should be implemented. Third, 
we found that the classification performance of 1024 Hz at 
20 dB SNR is poor. The possible reason is that spectro-
gram based feature extraction does not work very well at 
lower SNR. As for future work, the other popular feature 
extraction such as Discrete Wavelet Transform (DWT) can 
be considered.

4  Conclusion

In this paper, the relation between EMG pattern recogni-
tion and sampling rate in the spectrogram is investigated. 
The optimal window size in the spectrogram is evaluated 
and selected before performance evaluation. The contribu-
tion of this study is to investigate the classification accuracy 
of EMG signal at different sampling rates when the noise 

is involved. The results revealed lower than 1024 Hz sam-
pling rate was possible to get high classification accuracy in 
spectrogram. However, when the noise is presented, lower 
sampling rates showed the significant difference in classi-
fication error rate compared to 1024 Hz. Considering the 
computation time, performance, efficiency and noise evalu-
ation, sampling rate higher than 1000 Hz may be a better 
choice for the EMG signal pattern recognition.
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