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Abstract
Purpose A content-based image retrieval (CBIR) computer-aided diagnosis (CADx) system using breast masses in ultra-
sound images has been developed and evaluated to assist radiologists with characterization processes. The purpose of this 
study is to improve the accuracy of breast cancer diagnoses by analyzing images and providing quantitative information to 
radiologists through the CADx system.
Methods Two morphological features and six texture features of breast masses were extracted to design how the CADx 
system retrieves a mass similar to a query mass in a reference library. Based on extracted features from breast masses, the 
CADx system retrieves masses which are similar to the query mass from the reference library using a k-nearest neighbor 
(k-NN) method. To evaluate the CBIR CADx system, 39 similarity measures (nine similarity families, F0–F8) based on the 
distance similarity were used. A receiver operating characteristic (ROC) analysis was conducted to evaluate the performance 
of the distance similarity measures.
Conclusions The F0 family (Mahalanobis distance) measure used with the k-NN classifier provided slightly higher perfor-
mance for the classification of malignant and benign masses as compared to those with the F1–F8 family measures.

Keywords Breast cancer · CADx system · Medical image processing · Ultrasound images

1 Introduction

For females, breast cancer is one of the most prevalent 
causes of death worldwide. Figure 1 shows the estimated 
number of new cases in 2017 in both Korea and the United 
States [1, 2], confirming that the incidence breast cancer is 
higher than average for both countries. Early detection and 
treatment through accurate screening and diagnosis is the 
most effective way to reduce the occurrence of breast cancer 
and associated mortality rate.

Types of medical images have increased due to the devel-
opment of imaging technology, and diagnostic results can 
vary depending on the experience of the radiologist. Com-
puter-aided diagnosis (CADx) systems have been studied to 
provide quantitative information useful for the diagnosis of 
this disease and to prevent misdiagnoses caused by incorrect 
interpretations or subjective judgments [3]. A CADx system 
specialized for breast ultrasound images can assist in the 
diagnosis of the radiologist by analyzing numerous forms 
of data and providing quantitative information.

The importance of research using ultrasound imaging 
is increasing according to research findings which showed 
that x-rays used for breast cancer diagnoses affect the occur-
rence of breast cancer [4]. Ultrasound imaging is also a use-
ful diagnostic method with which to distinguish between 
malignant and benign masses [5]. Generally, the margin of 
the mass is not clear in ultrasound images of cases of malig-
nant breast cancer. On the other hand, the margin is smooth 
and clear in benign cases. Figures 2 and 3 correspondingly 
depict malignant and benign masses as imaged by a breast 
ultrasound system.
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Research on a CADx system for breast ultrasound 
images is underway to assist radiologists by providing 
quantitative information about breast masses. After mor-
phological and texture features are extracted from breast 
masses in ultrasound images, distance similarity measures 
are used to retrieve masses similar to a query mass in a ref-
erence library. Similarity distance measures are also very 
useful for solving many pattern-recognition issues, such as 
classification, clustering, and retrieval problems. Various 
similarity distance measures that are applicable to char-
acterize malignant and benign masses are reviewed and 
categorized in both syntactic and semantic relationships. 
The purpose of this study is to design a CADx system for 
breast ultrasound images that improves the accuracy of 
breast cancer diagnoses using various similarity distance 
measures.

2  Methods

2.1  Data Set

In this study, we used records of patients who underwent 
breast imaging in the Department of Radiology at the Uni-
versity of Michigan to design the CADx system for breast 
ultrasound images. The use of the breast ultrasound data 
was approved by the Institutional Review Board (IRB), 
and all data were pathologically verified by biopsies [6].

In total, data from 250 patients were used, with 96 
malignant and 154 benign masses included [6]. In this 
case, the radiologist selected two or more orthogonal ultra-
sound images that best represent each mass in the col-
lected data. However, only a single ultrasound image was 
selected for certain masses not visible in orthogonal ultra-
sound images. The collected data were randomly classified 
into two sets. Set 1 ( S1 ) includes a total of 230 ultrasound 
images with 41 malignant and 80 benign masses and Set 
2 ( S2 ) includes a total of 258 ultrasound images with 55 
malignant and 74 benign masses.

Fig. 1  Most common types of estimated new cancer cases, 2017: a in 
Korea, b in the United States

Fig. 2  Malignant masses in breast ultrasound images

Fig. 3  Benign masses in breast ultrasound images
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2.2  Feature Extraction and Selection

To design the CADx system for breast ultrasound images, 
we segmented the breast masses in ultrasound images with 
an automated method using a previously designed active 
contour model [7]. The contour of the mass is automatically 
estimated from its center using this model. Morphological 
and texture features of the segmented masses were extracted, 
after which the features were used for characterization of a 
query mass for the CADx system.

We extracted two morphological features and six texture 
features based on automated segmentation in the design of 
the CADx system [6]. The morphological features repre-
sent the shape of the mass, such as the size or appearance 
of the mass, and the texture features represent the texture 
shown in the ultrasound image. In breast ultrasound images, 
a taller-than-wide shape is a good indicator of malignancy. 
Thus, the width-to-height ratio of the mass was extracted as 
a morphological feature. Another useful feature to differen-
tiate between malignant and benign masses is the posterior 
shadowing feature, which is defined as the normalized aver-
age gray-level difference between the interior of the seg-
mented mass and the darkest posterior strip [6]. The texture 
features extracted from spatial gray-level dependence matri-
ces or co-occurrence matrices are information measures for 
correlations 1 and 2 and for the difference entropy, entropy, 
energy, and sum entropy [8]. Here, entropy is an indicator of 
uncertainty. A larger value indicates that the characteristics 
of the data are uncertain and a smaller value means that the 
characteristics of the data are biased toward one side. Con-
versely, energy is an indicator of uniformity.

To design the CADx system, the feature vectors of the 
selected masses were classified into training sets and test 
sets through a cross-validation method.

2.3  Distance Similarity Measures

To retrieve masses similar to the query mass, we extract 
feature vectors that are identical to the query mass in the 
reference library. After determining the measure similarity 
outcome between the feature vector of the query mass and 
the feature vector of the reference library, we retrieve masses 
similar to the query mass from the reference library. The 
performance of the CADx system was evaluated by a ROC 
(receiver operating characteristic) analysis.

In this study, 39 distance similarity measures were 
applied to retrieve masses similar to the query masses, and 
the performance of each similarity measure was evaluated. 
The 39 similarity measures were classified into nine cat-
egories according to the similarity of the notation. The nine 
families are Mahalanobis ( F0 , 1 measure), the Minkowski 
family ( F1 , three measures), the L1 family ( F2 , six measures), 

the Intersection family ( F3 , seven measures), the Inner Prod-
uct family ( F4 , four measures), the Fidelity family or the 
Squared-chord family ( F5 , three measures), the Squared 
L2 family or the �2 family ( F6 , eight measures), Shannon’s 
entropy family ( F7 , four measures), and Combinations fam-
ily ( F8 , three measures).

2.3.1  Mahalanobis Distance ( F
0
)

Mahalanobis distance refers to a method used to measure 
the degree of similarity considering the probability distribu-
tion of the data. It corresponds to the normalized Euclidean 
distance based on a covariance matrix [9]. Because it takes 
into account correlations between data instances, the perfor-
mance of the Mahalanobis distance approach is usually bet-
ter than that of the Euclidean distance [10]. The Mahalano-
bis distance can be calculated as follows,

where Q is the feature vector of the query mass, P(rj) is the 
feature vector of the j th reference mass, and 

∑
 is the covari-

ance matrix.

2.3.2  Minkowski Family ( F
1
)

The Minkowski family refers to a general metric distance 
[9], and it is a generalized measure of the Euclidean distance 
and the ‘City block’ distance. The Minkowski distance can 
be defined as shown below.

In this equation, qi is the i th feature vector of the query 
mass, pi

(
rj
)
 is the i th feature vector of rj , rj is the j th refer-

ence mass, and d represents the dimensions of the feature 
space.

There are the Euclidean distance, City block distance, and 
Chebyshev distance in the Minkowski family. The Euclidean 
distance is the method most commonly used to find the dis-
tances between feature vectors in a multidimensional space 
[11]. It is a special case of the Minkowski distance where 
L = 2 , and it can be expressed as Eq. (3). The City block dis-
tance represents the sum of the absolute differences between 
feature vectors [9]. It is L = 1 in Eq. (2) and is calculated as 
shown in Eq. (4). The Chebyshev distance measures dis-
tances while assuming only the most relevant dimensions 
[9]. In the case of L = ∞ in Eq. (2), the Chebyshev distance 
can be expressed as Eq. (5).

(1)DMah =

√(
Q − P

(
rj
))∑−1 (

Q − P
(
rj
))T

,

(2)DMk =
L

√√√√ d∑
i=1

|||qi − pi
(
rj
)|||

L
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2.3.3  L
1
 Family ( F

2
)

The L1 family uses absolute differences in an extended 
method of the City block distance. It is defined as the sum 
of the absolute differences between two feature vectors. 
We apply six distance similarity measures—Sorensen, 
Gower, Soergel, Kulczynski, Canberra, and Lorentz-
ian—in this family. Each measure can be calculated from 
Eqs. (6)–(11).

The Gower distance in Eq. (7) scales the vector space into 
the normalized space and then uses the absolute difference 
[12]. The numerator signifies the difference and the denomi-
nator normalizes the difference in Canberra and Sorensen 
[9]. Canberra is obtained by dividing the absolute difference 

(3)DEu =

√√√√ d∑
i=1

(
qi − pi

(
rj
))2

(4)DCity =

d∑
i=1

|||qi − pi
(
rj
)|||

(5)DCheb = max
i

|||qi − pi
(
rj
)|||

(6)DSen =

∑d

i=1

���qi − pi
�
rj
����∑d

i=1

�
qi + pi

�
rj
��

(7)DGow =
1

d

d∑
i=1

|||qi − pi
(
rj
)|||

(8)DSgel =

∑d

i=1

���qi − pi
�
rj
����∑d

i=1
max

i

�
qi, pi

�
rj
��

(9)DKld =

∑d

i=1

���qi − pi
�
rj
����∑d

i=1
min
i

�
qi, pi

�
rj
��

(10)DCan =

d∑
i=1

|||qi − pi
(
rj
)|||

qi + pi
(
rj
)

(11)DLor =

d∑
i=1

ln

(
1 +

|||qi − pi
(
rj
)|||
)

between the feature vectors by the sum of the feature vec-
tors. The Lorentzian can be expressed as Eq. (11), which 
indicates the absolute difference between the feature vectors 
with a natural log function. At this time, 1 is added to ensure 
non-negative attributes and to avoid zero logs [12].

2.3.4  Intersection Family ( F
3
)

The intersection between feature vectors is a widely used 
form of similarity [12]. Intersection similarity measures can 
be transformed into L1-based distance measures using this 
technique, i.e., d(q, p) = 1 − s(q, p) or d(q, p) = 1∕s(q, p) . 
This family includes the Intersection, Wave Hedges, Cze-
kanowski, Motyka Kulczynski, Ruzicka, and Tanimoto 
measures, which correspondingly are expressed as 
Eqs. (12)–(18).

(12)

DIts = 1 − sIts = 1 −

d∑
i=1

min
i

(
qi, pi

(
rj
))

=
1

2

d∑
i=1

|||qi − pi
(
rj
)|||

(13)DWH =

d�
i=1

⎛⎜⎜⎝
1 −

min
i

�
qi, pi

�
rj
��

max
i

�
qi, pi

�
rj
��

⎞⎟⎟⎠

(14)sCze =

2
∑d

i=1
min
i

�
qi, pi

�
rj
��

∑d

i=1

�
qi + pi

�
rj
��

(15)DMot = 1 − sMot

∑d

i=1
max

i

�
qi, pi

�
rj
��

∑d

i=1

�
qi + pi

�
rj
��

(16)sKls =
1

Dkld

=

∑d

i=1
min
i

�
qi, pi

�
rj
��

∑d

i=1

���qi − pi
�
rj
����

(17)sRuz =

∑d

i=1
min
i

�
qi, pi

�
rj
��

∑d

i=1
max

i

�
qi, pi

�
rj
��

(18)DTa =

∑d

i=1
qi +

∑d

i=1
pi
�
rj
�
− 2

∑d

i=1
min
i

�
qi, pi

�
rj
��

∑d

i=1
qi +

∑d

i=1
pi
�
rj
�
−
∑d

i=1
min
i

�
qi, pi

�
rj
��
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2.3.5  Inner Product Family ( F
4
)

The Inner Product family is a method of using the inner 
product between feature vectors. There are similarity meas-
ures in this family that explicitly include the inner product 
form ‘ Q ⋅ P ’ in the definition [12]. We apply four measures—
Cosine, Kumar-Hassebrook (PCE), Jaccard, and Dice—for 
the Inner Product family, as expressed by Eqs. (19)–(22) 
below.

2.3.6  Fidelity Family or Squared‑Chord Family ( F
5
)

The Fidelity similarity is the sum of geometric means, 
and it is defined Eq. (23) [12]. It includes the Hellinger 
and Matusita. The squared-chord distance is referred to 
as Matusita without the square root. There are alternative 
representations using squared-chord distance for all Fidel-
ity based measures. Equations (24), (25), and (26) denote 
Hellinger, Matusita, and Squared-chord, respectively.

(19)sCos =

∑d

i=1
qipi

�
rj
�

�∑d

i=1
q2
i

�∑d

i=1
pi
�
rj
�2

(20)sPCE =

∑d

i=1
qipi

�
rj
�

∑d

i=1
q2
i
+
∑d

i=1
pi
�
rj
�2

−
∑d

i=1
qipi

�
rj
�

(21)DJac =

∑d

i=1

�
qi − pi

�
rj
��2

∑d

i=1
q2
i
+
∑d

i=1
pi
�
rj
�2

−
∑d

i=1
qipi

�
rj
�

(22)sDice =
2
∑d

i=1
qipi

�
rj
�

∑d

i=1
q2
i
+
∑d

i=1
pi
�
rj
�2

(23)sFid =

d∑
i=1

√
qipi

(
rj
)

(24)DHel = 2

√√√√
1 −

d∑
i=1

√
qipi

(
rj
)

(25)DMat =

���� d�
i=1

�√
qi −

�
pi
�
rj
��2

(26)DScho =

d�
i=1

�√
qi −

�
pi
�
rj
��2

2.3.7  Squared L
2
 Family or �2 Family ( F

6
)

There are eight similarity measures using the squared Euclid-
ean distance in this family, and the squared Euclidean dis-
tance is defined as Eq. (27) [12]. The eight similarity measures 
applied in this family are Squared Euclidean, Pearson �2 , Ney-
man �2 , Squared �2 , Probabilistic Symmetric �2 , Divergence, 
Clark, and Additive Symmetric �2 . These can be calculated by 
Eqs. (27)–(34), respectively.

2.3.8  Shannon’s Entropy Family ( F
7
)

In this family, we apply four similarity measures that are 
probabilistic uncertainty or entropy concepts [12]. The four 
similarity measures are the Jeffreys, Topsoe, Jensen-Shannon, 
and Jensen difference measures, as correspondingly expressed 
in terms of the entropy as Eqs. (35)–(38).

(27)DSEu =

d∑
i=1

(
qi − pi

(
rj
))2

(28)DPea =

d∑
i=1

(
qi − pi

(
rj
))2

pi
(
rj
)

(29)DNey =

d∑
i=1

(
qi − pi

(
rj
))2

qi

(30)DSqu =

d∑
i=1

(
qi − pi

(
rj
))2

qi + pi
(
rj
)

(31)DPSy = 2

d∑
i=1

(
qi − pi

(
rj
))2

qi + pi
(
rj
)

(32)DDiv = 2

d∑
i=1

(
qi − pi

(
rj
))2

(
qi + pi

(
rj
))2

(33)DClk =

������
d�
i=1

⎛⎜⎜⎝

���qi − pi
�
rj
����

qi + pi
�
rj
�
⎞⎟⎟⎠

2

(34)DAdd =

d∑
i=1

(
qi − pi

(
rj
))2(

qi + pi
(
rj
))

qipi
(
rj
)
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2.3.9  Combinations ( F
8
)

There are three similarity measures in this family, refer-
ring to methods which utilize multiple measures [12]. First, 
Taneja utilizes arithmetic and geometric means, which can 
be expressed as Eq. (39). Second, Kumar-Johnson, which 
utilizes the arithmetic and geometric mean divergence, 
can be expressed as Eq. (40). Finally, we applied the aver-
age of City block distance and Chebyshev distance in the 
Minkowski family ( F1 ). This can be calculated by Eq. (41).

(35)DJef =

d∑
i=1

(
qi − pi

(
rj
))

ln
qi

pi
(
ri
)

(36)

DTsoe =

d∑
i=1

qi ln
2qi

qi + pi
(
rj
)

+

d∑
i=1

pi
(
rj
)
ln

2pi
(
rj
)

qi + pi
(
rj
)

(37)

DJSh =
1

2

[
d∑
i=1

qi ln
2qi

qi + pi
(
rj
)

+

d∑
i=1

pi
(
rj
)
ln

2pi
(
rj
)

qi + pi
(
rj
)
]

(38)

DJdiff =

d∑
i=1

(
qi ln qi + pi

(
rj
)
ln pi

(
rj
)

2

)

−

d∑
i=1

(
qi + pi

(
rj
)

2
ln

qi + pi
(
rj
)

2

)

(39)DTaj =

d�
i=1

qi + pi
�
rj
�

2
ln

⎛⎜⎜⎜⎝

qi + pi
�
rj
�

2

�
qipi

�
rj
�
⎞⎟⎟⎟⎠

(40)DKuJ =

d�
i=1

⎛⎜⎜⎜⎝

�
q2
i
− pi

�
rj
�2�2

2
�
qipi

�
rj
��3∕2

⎞⎟⎟⎟⎠

(41)DAvg =

∑d

i=1

���qi − pi
�
rj
���� +max

i

���qi − pi
�
rj
����

2

In this study, we applied 39 distance similarity measures 
to retrieve masses similar to query masses in the CADx sys-
tem. According to the notation similarity of each measure, 
the 39 similarity measures were classified into nine catego-
ries. The F0 family measures the similarity considering the 
probability distribution of the data, the F1 family is a general 
metric distance, and the F2 family uses absolute differences. 
The similarity measures in the F3 family are a widely used 
form in which the intersection between feature vectors is 
used. The F4 family uses the inner product between the fea-
ture vectors and the F5 family is a method that uses the sum 
of the geometric means. Finally, there is the F6 family, which 
uses the squared Euclidean distance, the F7 family which 
uses the probabilistic uncertainty or entropy, and the F8 fam-
ily which uses multiple measures. Each has been described 
in depth [12].

3  Results and Discussion

To assist radiologists with breast cancer diagnoses, a CADx 
system was studied for breast ultrasound images. We applied 
39 distance similarity measures based on a distance metric. 
The performance capabilities of the CADx system when 
applying each similarity measure were then analyzed and 
evaluated.

To design the CADx system for breast ultrasound images, 
breast masses in ultrasound images were classified into a 
training set and a test set through a cross-validation method. 
The 39 similarity measures were categorized into nine fami-
lies based on the notation similarity in each case.

When S1 is used as the training data and S2 is used as the 
test data, the performance of the CADx system applying 
each similarity measure is presented in Table 1 and Fig. 4. 
Table 2 and Fig. 5 show the performance when S2 is used 
as the training data and S1 is used as the test data, where the 
value of k is the number of retrieved masses, referring to the 
number of breast ultrasound images shown in references to 
assist radiologists with their diagnoses. Tables 1 and 2 pre-
sent numerical representations of the performance outcomes 
for the 39 distance similarity measures, and Figs. 4 and 5 are 
graphs of the performances for the nine families.   

When using S1 as the training data and S2 as the test data, 
the performances of all similarity measures are similar. 
However, the performance of the F0 family (the Mahalano-
bis distance) is slightly better than those of the others when 
the number of retrieved masses is increased (i.e., k = 25–50). 
In addition, the average performance (i.e., k = 1–50) of the 
F0 family is better than those of the other similarity fami-
lies (Table 1). The performance of each family is shown 
in Fig. 4, which indicates that the F0 family is superior to 
the other families in large number of top retrieval masses 
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(k > 25). When using S2 as the training data and S1 as the test 
data, the results are similar to the previous results, as shown 
in Table 2 and Fig. 5.

In this study, we compared the performances of the CADx 
system when applying the 39 similarity measures. It was 
found that the performance of the F0 family exceeded those 
of the other similarity families in both experiments for large 
number of top retrieval masses. The F0 family computes the 
covariance distance taking into account the distribution of 
the given data. However, the other similarity families only 
consider the distance between two feature vectors. There-
fore, the F0 family (Mahalanobis distance) that calculates 
the covariance distance outperforms the other similarity 
measures on average.

Table 1  The performances of the 39 similarity measures (training set 
S1, Test set S2)

Avg (1–50) Avg (25–50)

Family 0
1 Mahalanobis 0.8767 0.8912

0.8767 0.8912
Family 1
2 Euclidean 0.8724 0.8882
3 City block 0.8733 0.8820
4 Chebyshev 0.8732 0.8862

0.8730 0.8855
Family 2
5 Sorensen 0.8748 0.8844
6 Gower 0.8733 0.8820
7 Soergel 0.8748 0.8844
8 Kulczynski d 0.8748 0.8844
9 Canberra 0.8727 0.8831
10 Lorentzian 0.8718 0.8789

0.8737 0.8829
Family 3
11 Intersection 0.8451 0.8670
12 Wave Hedges 0.8706 0.8790
13 Czekanowski 0.8748 0.8844
14 Motyka 0.8748 0.8844
15 Kulczynski s 0.8748 0.8844
16 Ruzicka 0.8748 0.8844
17 Tanimoto 0.8794 0.8901

0.8706 0.8819
Family 4
18 Cosine 0.8739 0.8872
19 Kumar–Hasse-

brook (PCE)
0.8737 0.8897

20 Jaccard 0.8737 0.8897
21 Dice 0.8737 0.8897

0.8738 0.8891
Family 5
22 Hellinger 0.8727 0.8882
23 Matusita 0.8727 0.8882
24 Squared-chord 0.8727 0.8882

0.8727 0.8882
Family 6
25 Squared Euclid-

ean
0.8724 0.8882

26 Pearson 0.8736 0.8873
27 Neyman 0.8714 0.8877
28 Squa red 0.8729 0.8885
29 Probabil istic 

symmetric
0.8729 0.8885

30 Di vergence 0.8712 0.8835
31 Clark 0.8712 0.8835
32 Additive sym-

metric
0.8724 0.8883

Average values are shown in bold

Table 1  (continued)

Avg (1–50) Avg (25–50)

0.8723 0.8869
Family 7
33 Jeffreys 0.8727 0.8882

34 Topsoe 0.8728 0.8884
35 Jensen–Shannon 0.8728 0.8884
36 Jensen d iffer-

ence
0.8728 0.8884

0.8727 0.8883
Family 8
37 Taneja 0.8726 0.8880
38 Kumar–Johnson 0.8726 0.8884
39 Avg (L1, L_inf) 0.8725 0.8868

0.8726 0.8877

Fig. 4  The performances of the nine similarity families (Training set 
S1, Test set S2)
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4  Conclusion

In this paper, a CADx system for breast ultrasound images 
was devised to assist radiologists in differentiating benign 
and malignant masses on ultrasound breast images. To 
design the CADx system, morphological and texture fea-
tures were extracted from a database. The feature vectors of 
breast masses were then classified into a training set and a 
test set through a cross-validation method. Using a k-nearest 
neighbor (k-NN) method, we applied 39 distance similarity 
measures (nine similarity families, F0–F8) based on distance 
and compared the performance of the CADx system through 
an ROC analysis. The 39 distance similarity measures were 
classified in nine similarity families based on the notation 
similarity of each measure, as noted above. The 39 distance 
similarity measures were applied to retrieve masses similar 
to a query mass in a reference library.

Table 2  The performances of the 39 similarity measures (training set 
S2, Test set S1)

Avg (1–50) Avg (25–50)

Family 0
1 Mahalanobis 0.8938 0.9092

0.8939 0.9092
Family 1
2 Euclidean 0.8893 0.9028
3 City block 0.8877 0.9047
4 Chebyshev 0.8835 0.8913

0.8868 0.8996
Family 2
5 Sorensen 0.8892 0.9034
6 Gower 0.8877 0.9047
7 Soergel 0.8892 0.9034
8 Kulczynski d 0.8892 0.9034
9 Canberra 0.8827 0.9016
10 Lorentzian 0.8834 0.9012

0.8869 0.9029
Family 3
11 Intersection 0.8637 0.8797
12 Wave Hedges 0.8851 0.9017
13 Czekanowski 0.8892 0.9034
14 Motyka 0.8892 0.9034
15 Kulczynski s 0.8892 0.9034
16 Ruzicka 0.8892 0.9034
17 Tanimoto 0.8701 0.8883

0.8823 0.8976
Family 4
18 Cosine 0.8970 0.9087
19 Kumar–Hasse-

brook (PCE)
0.8920 0.9035

20 Jaccard 0.8920 0.9035
21 Dice 0.8920 0.9035

0.8932 0.9048
Family 5
22 Hellinger 0.8895 0.9031
23 Matusita 0.8895 0.9031
24 Squared-chord 0.8895 0.9031

0.8895 0.9031
Family 6
25 Squared Euclid-

ean
0.8893 0.9028

26 Pearson 0.8818 0.8977
27 Neyman 0.8788 0.8919
28 Squared 0.8845 0.9004
29 Probabilistic 

symmetric
0.8845 0.9004

30 Divergence 0.8880 0.9023
31 Clark 0.8880 0.9023
32 Additive sym-

metric
0.8793 0.8934

Average values are shown in bold

Table 2  (continued)

Avg (1–50) Avg (25–50)

0.884 0.8989
Family 7
33 Jeffreys 0.8791 0.8932

34 Topsoe 0.8796 0.8942
35 Jensen–Shannon 0.8875 0.9015
36 Jensen differ-

ence
0.8875 0.9015

0.8834 0.8976
Family 8
37 Taneja 0.8874 0.9013
38 Kumar–Johnson 0.8792 0.8934
39 Avg (L1, L_inf) 0.8905 0.9054

0.8857 0.9000

Fig. 5  The performances of the nine similarity families (Training set 
S2, Test set S1)
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It was found that the performances of each of the simi-
larity measures did not show any significant differences. 
However, the performance of the F0 family was greater than 
those of the other families when the number of retrieved 
masses is increased (k ≥ 25). When the number of retrieved 
masses is low, the probability distribution cannot be con-
firmed because there are too few data instances to be con-
sidered. When the number of retrieved masses is increased, 
the probability distribution of the data can be fully taken 
into account. Therefore, the performance of the CADx sys-
tem using the Mahalanobis distance (the F0 family), which 
considers the probability distribution of the data, is superior 
to those of other families.

For larger number (k > 10) of top retrieval masses, the 
classification performance of all similarity measures contin-
uously leveled off. The relationship between the usefulness 
of the retrieved masses as references for radiologists and the 
accuracy of estimating the likelihood of malignancy of the 
query mass warrants further investigations.

Future work includes applying the CBIR CADx system 
to a larger and independent dataset, expanding the feature 
space, and combining the developed ultrasound image char-
acterization method with mammographic characterization 
method. The effects of the different CBIR CADx systems 
on the characterization of breast masses by support vector 
machine (SVM) will also be evaluated.
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