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ABSTRACT
●   Disease-suppressive  soils  exhibit  enhanced  soil  nutrient
status.

●   Soil  available  phosphorus  is  a  distinct  feature  of  disease-
suppressive soil.

●   Rhizosphere  hosts  heightened  microbial  function  for  disease
suppression.

●   The  soil  microbial  role  in  disease  suppression  is  linked  to
nutrient cycling.

The  role  of  soil  nutrient  status  in  disease  suppression  is  of
increasing interest for the control of soil-borne diseases. Here, we
explored the soil chemical properties, composition, and functional
traits  of  soil  microbiomes  in  pair-located  orchards  that  appeared
suppressive or conducive to the occurrence of  banana Fusarium
wilt  using  mainly  amplicon  sequencing  and  metagenomic
approaches.  The  enhancement  of  soil  available  phosphorus,
succeeded  by  increments  in  soil  nitrogen  and  carbon,  played  a
pivotal role in the suppression of the disease. Additionally, in the
rhizosphere of suppressive sites, there was an observed increase in the disease-suppressing function of the soil microbiome, which was found to
be correlated with specific nutrient-related functions. Notably, this enhancement involved the presence of key microbes such as Blastocatella and
Bacillus. Our results highlight the significant roles of soil nutrient status and soil microbiome in supporting the soil-related disease suppressive-
ness.
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Fusarium wilt,  caused  by Fusarium oxysporum,  presents  a
major  threat  to  global  agriculture,  notably  affecting  the
banana  industry  (banana  Panama  disease)  by  threatening
widely cultivated varieties (Michielse and Rep, 2009; Butler,
2013). F.  oxysporum induces  rapid  wilting  by  invading  the
plantʼs vascular system and impeding the transport of water
and  nutrients  (Li  et  al.,  2019).  To  counter  this,  enhancing
soil-related  resistance  against  pathogen  invasion,  including
the  promotion  of  beneficial  microbial  communities,  has

emerged  as  an  essential,  eco-friendly  strategy  for  disease
management due to a reduced application of chemical inter-
ventions  (Expósito  et  al.,  2017).  The  efficacy  of  disease-
suppressive  soil  stems  from the  dynamic  interplay  of  biotic
and  abiotic  factors,  with  soil  microorganisms  and  chemical
properties being crucial (Berg and Koskella, 2018).

In our study, we analyzed soil chemistry and microbiomes
in banana orchards having undergone long-term monocrop-
ping  to  determine  the  differences  between  soils  that
appeared either suppressive or conducive to the occurrence
of Fusarium wilt  (Fig.  1A,  Fig.  S1,  Table  S1).  A  total  of

 

Cite this: Soil Ecol. Lett., 2024, 6(4): 240247

RAPID REPORT
Volume 6 /  Issue 4 /  240247 /  2024

https://doi.org/10.1007/s42832-024-0247-1



twenty  soil  samples,  encompassing  both  bulk  and  rhizo-
sphere  soils  from  suppressive  or  conducive  sites,  were
collected  for  further  analysis  in  2016.  The  detailed  experi-
mental  design  is  described  in  the  Method  section  in  the
Supplementary Materials. Our aims were to: 1) pinpoint key
soil  chemical  properties  that  differentiate  suppressive  from
conducive  soils;  2)  explore  the  variations  in  soil  microbial
functions related to disease suppression and nutrient cycling,
as well as their interrelationships; and 3) identify the specific
microbial  groups  involved  in  these  processes.  This  under-
standing  is  vital  for  managing  soil-borne  diseases  through
nutrient and microbiome manipulation.

An elevated soil available phosphorus (AP) content was a
prominent  characteristic  of  disease-suppressive  soils  (p <
0.01) (Fig. 1B and 1C), and the total phosphorus (p < 0.001),
total nitrogen (p < 0.001), total carbon (p < 0.001), and soil
pH levels (p < 0.001) were also higher, to lesser extents. All
the  detailed  information  is  listed  in  Tables  S2  and  S3.
Consistent with our findings, existing literature suggests that
increased soil AP levels enhance Fusarium wilt suppression
in  bananas  (Shen  et  al.,  2015)  and  strawberries  (Li  et  al.,

2019).  This  phenomenon  may  be  ascribed  to  a  trade-off
between  phosphorus  acquisition  and  defense  mechanisms
in  plants,  wherein  the  response  to  phosphorus  deficiency
may  compromise  the  overall  defense  response.  For  exam-
ple,  the  master  transcriptional  regulators  of  phosphate
stress  responses  in Arabidopsis  thaliana have  been
reported to directly inhibit plant defense responses (Castrillo
et al., 2017). Our stoichiometric analysis revealed that lower
carbon/phosphorus and nitrogen/phosphorus ratios, coupled
with a higher phosphorus/potassium ratio, favor wilt disease
suppression  (Fig.  1C),  highlighting  the  importance of  phos-
phorus  adequacy  and  balanced  nutrient  availability  in
disease  control.  Soil  nitrogen  content  was  another  crucial
factor for disease suppression. Appropriate nitrogen fertiliza-
tion rates (N: 90 kg ha−1) are effective against Fusarium wilt
(Lv  et  al.,  2021),  whereas  excessive  nitrogen  usage
increases  disease  incidence  (N:  0.25  g  plant−1)  (Segura-
Mena  et  al.,  2021).  Intriguingly,  the  form  of  nitrogen  was
also associated with Fusarium wilt dynamics. Nitrate nitrogen
(NO3

−-N)  but  not  the  ammonium  nitrogen  (NH4
+-N),  was

characteristic  of  disease-suppressive  soils  (Fig.  1C).  This

 

 
Fig. 1    Chemical properties of soils suppressive or conducive to Fusarium wilt. (A) A map of the location of soils suppressive
or conducive to Fusarium wilt in a Hainan orchard. (B) Forest plots illustrating the response ratios (RR) of soil chemical proper-
ties,  displayed  with  95%  confidence  intervals  (CI).  The  RRs  marked  in  green  and  red  represent  factors  that  are  significantly
lower  and  higher,  respectively,  in  the  suppressive  soil.  The  heatmap  presents  the  coefficients  from  the  hierarchical  multiple
regression analysis that correlate soil chemical properties with disease incidence. (C) A histogram depicting the disease incidence
and  soil  available  phosphorus  content  with  standard  deviations  in  both  suppressive  and  conducive  soils.  AP,  available
phosphorus;  Ca,  calcium; TP,  total  phosphorus;  NO3

−-N,  nitrate;  Cu,  copper;  Zn,  zinc;  Si,  silicon;  TN,  total  nitrogen;  TC,  total
carbon;  TK,  total  potassium;  EC,  electrical  conductivity;  NH4

+-N,  ammonium;  AK,  available  potassium;  Fe,  iron;  Mo,  molyb-
denum;  Mg,  magnesium;  Mn,  manganese;  P/K,  ratio  of  total  phosphorus  and total  potassium;  N/K,  ratio  of  total  nitrogen and
total  potassium;  C/K,  ratio  of  total  carbon and total  potassium;  C/N,  ratio  of  total  carbon and total  nitrogen;  N/P,  ratio  of  total
nitrogen and total  phosphorus; C/P, ratio of total  carbon and total  phosphorus. The significance levels were determined using
the Wilcoxon rank sum test. One and two asterisks indicate p < 0.05 and p < 0.01, respectively.
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supports  previous  findings  that  NO3
− suppresses  pathogen

colonization,  reduces  fusaric  acid  production,  and  boosts
plant resilience to pathogens. In contrast, NH4

+ and organic
nitrogen  sources  may  heighten  disease  susceptibility  by
promoting pathogen growth and spore germination (Zhou et
al., 2017; He et al., 2023). Therefore, it is crucial to manage
soil  nitrogen  levels  appropriately,  prioritizing  NO3

−-N  to
combat Fusarium wilt.

Enhanced  soil  nutrient  status  not  only  strengthens  plant
defense mechanisms but  also fosters  a  resilient  soil  micro-
biome  (Adiobo  et  al.,  2007; Cao  et  al.,  2022),  which  is
another  key  driver  in  maintaining  soil  disease  suppression.
Our study found that the number of microbial genes associ-
ated  with  disease  suppression,  such  as  nonribosomal
peptide  synthetase  NRPS,  polyketide  synthase  PKS  and
bacteriocin, were more abundant in suppressive rhizosphere
soils than in conducive ones, as evidenced by our metage-
nomic  analysis  (Fig.  2A).  In  soil,  NRPS and  PKS enzymes
produce  bioactive  compounds  that  suppress  soil-borne
diseases  by  inhibiting  the  growth  of  pathogens  like  fungi,
bacteria,  and  nematodes.  These  compounds  contribute  to
plant  defense.  Bacteriocins,  small  antimicrobial  peptides
from  bacteria,  also  target  and  inhibit  pathogenic  bacteria,
aiding disease control.  Together,  NRPS, PKS, and Bacteri-
ocins play crucial roles in promoting soil health (Raaijmakers
et al., 2010; Le et al., 2014; Prieto, 2016). This highlights the
vital  roles  of  microbes  in  the  rhizosphere.  Furthermore,
these  genes  were  positively  influenced  by  the  soil  AP
content,  as  determined  using  the  Boruta  method  (Fig.  2B).
This emphasized the potential role of AP in maintaining soil
microbiome  properties  linked  to  disease  suppression.  We
also  observed  variations  in  nutrient  cycling  genes  between
suppressive  and  conducive  soils  (Fig.  2C),  some  of  which
paralleled  the  patterns  of  disease  suppressive  genes.  This
suggests  a  potential  mechanism  by  which  soil  nutrient
content  impacts  microbes  related  to  disease  suppression.
Root exudates act as a selective mechanism to attract bene-
ficial microbes to the rhizosphere (Vives-Peris et al.,  2020),
which  are  nutrient  sources  for  microbes  and  can  directly
activate genes associated with nutrient responses and motil-
ity  (Rolfe  et  al.,  2019),  thus shaping microbial  communities
with  diverse  nutrient  cycling  genes  (Zhao  et  al.,  2021).
Specific  microbes  carrying  genes  associated  with  disease
suppression could be selectively recruited through the medi-
ation of the nutrient-related genes they concurrently possess.
Microbial  genes phnK, nasA, amyA, xylA, abfA, accA,  and
cdaR,  identified in our study, are likely participants in these
interactions. phnK is  associated  with  organic  phosphorus
mineralization; nasA is  involved  in  assimilatory  nitrogen
reduction; amyA, xylA,  and abfA are  implicated  in  carbon
hydrolysis; accA and cdaR are  linked  to  carbon  fixation
(Zheng  et  al.,  2018).  We  also  identified  some  important

microbial groups involved in this process (Fig. 2D, details in
Fig.  S2).  For  example,  the Blastocatella,  known  to  thrive
under  NO3

−-N  or  organic  carbon  conditions,  is  associated
with the suppression of apple replant disease (Peruzzi et al.,
2017; Chen  et  al.,  2022; Yu  et  al.,  2023). Bacillus spp.,
renowned for their roles in combating Fusarium wilt (Yan et
al., 2024), are also active participants in phosphorus, nitrogen
and carbon cycling (Zeng et al.,  2023; Salazar et al.,  2023;
Minnikova et al., 2023) through nutrient cycling genes, such
as nasA, xylA and CdaR (Nakano et al., 1995; Cho and Choi,
1998; Gundlach  et  al.,  2015).  Consequently,  they  may  be
the  disease-suppressive  microbes  influenced  by  nutrient
levels,  a  characteristic  shared  with  other  microbial  groups
presented  in Fig.  2D.  However,  further  deep  research  on
plant-microbiome interactions is  needed to  fully  understand
these relationships.

Our  investigation  into  the  soil’s  pivotal  role  in  naturally
suppressing  banana Fusarium wilt  has  unveiled  significant
findings. Soils enriched in phosphorus, nitrogen and carbon
are  less  susceptible  to  banana Fusarium wilt  disease.  In
addition, an increased abundance of microbial  genes asso-
ciated with disease suppression was observed in the rhizo-
sphere soil of the disease-suppressive site, a trend that was
also  promoted  by  the  soil  phosphorus  levels.  We identified
key  nutrient  cycling  genes  (accA, abfA, xylA, amyA, nasA
and phnK)  and  microbes  (Blastocatella, Bacillus etc.)  as
integral components in the mechanism by which soil nutrient
status  influences  disease  suppression.  These  findings
emphasize  the  critical  role  of  soil  nutrient  status  in  the
formation of disease-suppressive soils, which provides valu-
able  insights  for  future  research  on  the  interactions  among
plants, soil nutrients and microbiomes.
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Fig. 2    Soil microbial functions and community dynamics in soils suppressive and conducive to Fusarium wilt. (A) A violin plot
illustrates  the  abundance  levels  of  microbial  functional  genes  related  to  disease  suppression  complemented  by  a  stacked
histogram detailing their composition. (B) A boxplot showing the importance of soil properties as influencing factors on disease
suppressive genes using the Boruta algorithm based on the Random Forest method. (C) A heatmap presenting the abundance
levels  of  microbial  functional  genes  related  to  soil  nutrient  cycling.  The  significance  levels  were  established  using  the
Kruskal–Wallis test. (D) A phylogenetic tree representing the microbial operational taxonomic unit (OTUs)s that were enriched in
suppressive soil compared with conducive soil (p < 0.1) and showed significant negative correlations with disease incidence (p <
0.05) in rhizosphere soil. OTUs in the same genus were pooled and presented together. Accompanying this is a heatmap delin-
eating the Spearman correlations between these microbial groups and disease incidence, soil chemical properties and key soil
microbial functional genes. NRPS, nonribosomal peptide synthetase; PKS, polyketide synthase. A dot and one, two and three
asterisks indicate p < 0.1, p < 0.05, p < 0.01 and p < 0.001, respectively.
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