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ABSTRACT
● Earthworm remove PAHs from soil by bioaccumulation
and stimulating microbial degradation.
● Biochar  can  adsorb  PAHs  and  promote  microbial
degradation in soil.
● Earthworm improve  the  adsorption  process  of  biochar
by bioturbation.
● Biochar reduce the vermiaccumulation and improve the
decomposition of PAHs by earthworm.
Polycyclic  aromatic  hydrocarbons  (PAHs)  in  soil  pose  a
threat to the health of humans and other organisms due to
their  persistence.  The  remediation  method  of  combined
application of biochar and earthworms has received grow-
ing attention owing to its effectiveness in PAHs removal. However, the earthworm–biochar interaction and its influence on PAHs in soil has not
been systematically reviewed. This review focuses on the effectiveness of combined application of earthworms and biochar in the remediation of
PAHs-contaminated soils and the underlying mechanisms, including adsorption, bioaccumulation, and biodegradation. Earthworm–biochar inter-
action activates the functional microorganisms in soil and the PAHs-degrading microorganisms in earthworm guts, promoting PAHs biodegrada-
tion. This review provides a theoretical support for the combined application of biochar and earthworms in the remediation of PAHs-contaminated
soils, points out the limitations of this remediation method, and finally shows the prospects for future research.
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1 Introduction

Soil  can  be  both  a  source  and  sink  for  organic  pollutants,
including  polycyclic  aromatic  hydrocarbons  (PAHs)  (Wild
and Jones, 1995; Wilcke, 2000). PAHs are mainly produced
by anthropogenic activities such as industrial production and
daily  life  (Menzie  et  al.,  1992; Edwards,  2004).  They  are
hydrophobic,  lipophilic,  and  of  low  volatility,  and  their
hydrophobicity  increases  while  volatility  decreases  with  the
increase  in  aromatic  rings  (Sims  and  Overcash,  1983).
Some  high  molecular  weight  PAHs  do  not  volatilize  or
photolyze  under  natural  conditions.  Therefore,  they  are
persistent  in  soils  (Sims  and  Overcash,  1983; Kuppusamy
et  al.,  2017).  Many  PAHs  are  toxic,  threatening  human
health  after  being  amplified  along  the  food  chain  (Diggs
et  al.,  2011; Abdel-Shafy  and  Monsour,  2016).  Sixteen

PAHs have been listed as priority pollutants by the US Envi-
ronmental Protection Agency (Hartmann, 1996).

Traditional strategies use physical or chemical methods to
remediate  organic  contaminated  soils  (Shi  et  al.,  2020),
including soil washing, steam extraction, electric remediation,
oxidation,  reduction,  and  dechlorination  (Scullion,  2006).
These  methods  are  both  costly  and  eco-unfriendly  due  to
their  complex  processes  and  possibility  of  causing
secondary  pollution  (Gan  et  al.,  2009; Xu  et  al.,  2018;
Dhaliwal  et  al.,  2020).  Therefore,  alternative  techniques  for
organic contaminated soil remediation are urgently needed.
Since the 1980s, eco-friendly remediation methods involving
soil  microbes,  animals,  and  plants  have  been  increasingly
used  (Vogel  and  Grbic-Galic,  1986; Wilson  and  Jones,
1993; Zou  et  al.,  2000; Juwarkar  et  al.,  2010; Ye  et  al.,
2017; Rodriguez-Campos  et  al.,  2019).  Of  these  methods,
vermiremediation has been shown to be an effective method
for  treating  wastewater  sludge  and  municipal  solid  wastes
and removing organic contaminants in soils (Eijsackers et al.,Cite this: Soil Ecol. Lett., 2023, 5(2): 220158
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2001; Tharakan  et  al.,  2006; Hickman  and  Reid,  2008;
Rodriguez-Campos et al., 2014; Rorat et al., 2017; Zeb et al.,
2020). In vermiremediation, earthworms change the physical
and chemical  properties of  soils via burrowing and feeding,
thereby  increasing  the  availability  of  pollutants  (Curry  and
Schmidt,  2007).  Earthworms  not  only  directly  remove
contaminants through absorbing and digesting but also indi-
rectly remove contaminants by stimulating their degradation
by  microbes  (Haimi,  2000; Sinha  et  al.,  2010; Shi  et  al.,
2014; Cao  et  al.,  2015).  The  remediation  method  using
biochar  is  also  effective  in  organic  pollutant  removal  from
soils (Beesley et al., 2010; Chen et al., 2011a; Marchal et al.,
2013).  Biochar  is  a  stable  carbon-rich  material  produced
through  pyrolysis/carbonization  of  plant  or  animal  biomass
(Lehmann  et  al.,  2011; Ahmad  et  al.,  2014; Amoah-Antwi
et al., 2020). Biochar application improves the soil biological
environment and influences the physical and chemical trans-
formation of soil pollutants (Lehmann et al., 2011; Chen and
Yuan,  2011; Ahmad  et  al.,  2014; Nsamba  et  al.,  2015;
Sadegh-Zadeh  et  al.,  2017; Sandhu  et  al.,  2017; Suliman
et al., 2017; Wang et al., 2017a; Bielská et al., 2018; Toková
et al., 2020; Siedt et al., 2021).

Although  earthworms  have  been  widely  used  to  remove
PAHs  from  soils,  their  ingestion  and  accumulation  of
contaminants can lead to the transfer of pollutants from soils
to the food chain as many small mammals and birds prey on
earthworms  (Bergknut  et  al.,  2007; Fagervold  et  al.,  2010;
Malev  et  al.,  2016).  In  addition,  the  ingested  PAHs  can  be
excreted back to the soil by earthworms during their activities
or  released  back  to  the  soil  when  earthworms  die  and
decompose (Coutiño-González et al., 2010). To find a more
effective remediation method, many researchers have used
earthworms and biochar  together  for  pollutant  removal  and
soil  quality  improvement  (Gomez-Eyles  et  al.,  2011; Wang
et al., 2014; Zhang et al., 2019). Biochar has a high adsorp-
tion  capacity  for  pollutants,  thereby  decreasing  pollutant
bioavailability in soil. It generally has a high pH and contains
some toxic substances (Godlewska et al., 2021), which may
have  an  adverse  effect  on  earthworms.  However,  when
applied in organic contaminated soils,  it  enhances pollutant
degradation by microorganisms and reduces pollutant bioac-
cumulation  by  earthworms  (Cao  et  al.,  2011; Gomez-Eyles
et  al.,  2011; Wang et  al.,  2012; Sanchez-Hernandez et  al.,
2019). Earthworms improve biochar migration in soil. There-
fore,  combined  application  of  biochar  and  earthworms  has
been recognized as an effective and eco-friendly remediation
method  for  organic  contaminated  soils  (Eckmeier  et  al.,
2007).

This  review  is  based  on  a  search  of  the  literature
published between 1970 and 2022 using six keywords: soil,
earthworms,  biochar,  pollution,  organic  contaminants,  and
PAHs,  and  319  articles  were  cited.  The  following  three
aspects are focused on in this review to provide an overview
of recent developments in the combined application of earth-
worms and biochar in PAHs-contaminated soil remediation:

(1) The role earthworms play in the remediation of PAHs-

contaminated soils;
(2)  Influencing  factors  of  biochar  characteristics  during

biochar  production,  and  underlying  mechanisms  of  PAHs-
contaminated soil remediation using biochar;

(3)  Earthworm–biochar  interaction  in  PAHs-contaminated
soil remediation and advantages and limitations of combined
application of earthworms and biochar.

 2 The role earthworms play in the remediation
of PAHs-contaminated soils

Vermiremediation  of  organic  contaminated  soils  is  a
complex  process  involving  several  mechanisms  that  are
related  to  soil  physical,  chemical,  and  biological  properties
(Fig.  1)  (Michael  et  al.,  1997; Tiunov  and  Scheu,  1999;
Contreras-Ramos et al., 2008; Qi and Chen, 2010). Vermire-
mediation  has  been  proven  to  be  effective  in  removing
organic  pollutants  from  soils,  including  PAHs,  PCBs,  and
pesticides  (Singer  et  al.,  2001; Lin  et  al.,  2012; Rodriguez-
Campos et al., 2019).

 2.1 The tolerance of earthworms to PAHs

To  successfully  apply  vermiremediation  in  PAHs-contami-
nated soils, it is important to know the lethal dose values of
PAHs  for  earthworms  (Rodriguez-Campos  et  al.,  2014).  In
the  early  1980s,  some  researchers  found  that  earthworms
could  survive  and  grow in  soils  with  high  concentrations  of
PAHs (Simmers et al., 1986; Hund and Traunspurger, 1994).
Several studies have shown that earthworms could tolerate
up to 1000 mg kg−1 PAHs in soil or sediment with a survival
rate  over  80%  (Eijsackers  et  al.,  2001; Contreras-Ramos
et  al.,  2006; Natal-da-Luz  et  al.,  2012; Rodriguez-Campos
et al., 2014). Gomez-Eyles et al. (2011) discovered that after
56 days of exposure to 773 mg kg−1 PAHs in a soil, 97.5%
earthworms  survived.  Even  in  soils  with  total  petroleum
hydrocarbon concentrations close to 12 000 mg kg−1, earth-
worm  densities  as  high  as  512  individual  m−2 were  found
(Zavala-Cruz et al., 2014).

Although  earthworms  can  tolerate  high  concentrations  of
PAHs,  it  is  evident  that  their  growth  and  reproduction  are
negatively affected by PAHs in soils and sediments (Eijsack-
ers et al., 2001; Matscheko et al., 2002; Contreras-Ramos et
al.,  2006; Gomez-Eyles  et  al.,  2011; Natal-da-Luz  et  al.,
2012).  The  reduced  reproductivity  of  earthworms  in  PAHs-
contaminated  soils  could  be  a  result  of  decreased  protein
and enzyme contents (e.g., catalase, cellulase, glutathione-
S-transferase,  and  heat-shock  proteins)  (Tejada  and
Masciandaro,  2011; Xu et  al.,  2015).  More detailed studies
have  shown  that  high  levels  of  PAHs  could  damage  the
DNA  in  earthworms'  seminal  vesicles,  resulting  in  a  high
degree  of  reproductive  defect  and  a  reduction  in  cocoon
production  (Eom  et  al.,  2007; Tejada  and  Masciandaro,
2011; Gowri  and  Thangaraj,  2020; Li  et  al.,  2020a; Zhang
et al., 2020).
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Application of organic materials to soil has been shown to
mitigate  the  negative  effects  of  PAHs  on  earthworms
(Rodriguez-Campos  et  al.,  2014).  In  a  phenanthrene-  and
fluoranthene-contaminated  soil,  the  weight  loss  of  earth-
worms  was  27%  and  23.3%  in  treatments  with  low  (10%)
and high  levels  (40%)  of  organic  amendment,  respectively,
and 25 more earthworm cocoons were produced in the high
level  treatment  (Eijsackers  et  al.,  2001).  In  the  research  of
Contreras-Ramos et al. (2009), the weight of the earthworms
(Eisenia fetida) increased by 35% when sewage sludge was
added at 5% to the PAHs-contaminated soil, but decreased
by 77% after 70 days due to a lack of food.

 2.2 Vermiremediation mechanisms

 2.2.1 Improvement of soil conditions by earthworm activities

It is well known that earthworm activities improve soil physical
and  chemical  properties.  Compacted  clayey  soils  become
loose and porous with the burrowing activity of earthworms,
while  loose  sandy  soils  develop  water-stable  aggregates
with the feeding and casting activities of earthworms (Barré
et  al.,  2009),  Therefore,  earthworm  activities  improve  the
texture  of  loose  or  compacted  soils,  creating  a  better  soil
environment for soil microbes and plants (Barré et al., 2009).
In  addition,  the  earthworm  bioturbation  by  earthworms
enhances  pollutant  adsorption  by  soil  particles  (Hickman
and  Reid,  2008).  In  the  drilosphere  (i.e.,  burrow  walls,  gut
contents,  and  casts)  the  activities  of  organic  pollutant-
degrading microorganisms are higher due to the good aera-
tion, high moisture content, and rich nutrients (Michael et al.,
1997; Tiunov  and  Scheu,  1999; Brown  et  al.,  2000; Brown

and  Doube,  2004). Mary  et  al.  (2011) found  that  the  total
carbon content  was 23% higher  and the microbial  biomass
was  58% higher  in  the  drilosphere  than  in  the  nearby  bulk
soil. It has also been proven that available nitrogen (NH4

+-N
and NO3

−-N) is closely related to the metabolism of organic
pollutants  (Tran  et  al.,  2013).  The  drilosphere  indirectly
promotes the degradation of organic pollutants by providing
a  favorable  growth  environment  for  the  organic  pollutant-
degrading microbes (Tran et al., 2013).

 2.2.2 Vermiaccumulation of pollutants

Vermiaccumulation is the process of contaminant absorption
and  accumulation  by  earthworms  (Shi  et  al.,  2020).  There
are  two  ways  of  vermiaccumulation  of  PAHs,  passive
epidermal uptake and dietary uptake (Shi et al., 2014), The
first  is  related  to  PAHs  with  low  hydrophobicity,  including
some volatile PAHs in soil air, while the second is related to
highly  hydrophobic  PAHs  (Lu  et  al.,  2004; Qi  and  Chen,
2010). In other words, highly hydrophobic PAHs accumulate
in  earthworm guts,  while  PAHs with  low hydrophobicity  not
only accumulate in earthworm body walls but also in earth-
worm body fluid and guts as a result of passive diffusion and
partition (Shi et al., 2014). Earthworm gut fluid can markedly
enhance  the  release  of  PAHs  from  soil  particles  (Qi  and
Chen,  2010).  The  high  specific  surface  area  of  earthworm
gut  walls  (Qi  and  Chen,  2010)  and  the  strong  diffusion  of
PAHs in gut fluid (Mayer et al., 2007) reasonably explain the
high  absorption  of  PAHs  by  earthworms.  In  soils  contami-
nated  with  petroleum  hydrocarbons  (kerosene,  diesel,  and
bunker-C), earthworms (Eisenia fetida) were found to accu-
mulate the 16 priority PAHs (Moon et al., 2013). In ecological
risk  evaluation,  the  biota–sediment  accumulation  factor

 

 
Fig. 1    Graphical representation of vermiremediation of PAHs-contaminated soil.
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(BSAF)  is  usually  used  to  estimate  contaminant  loads  in
biota.  In  their  study  with  a  soil  contaminated  with  PAHs
(0.25–25  mg  kgdwt

−1), Jager  et  al.  (2003) found  a  mean
BSAF value of 0.23 (kgOC kglip

−1) for the PAHs in the earth-
worms Eiseinia  andrei. Cachada  et  al.  (2018) reported
BSAF  values  of  0.41–2.5  and  0.026–0.16  (kgOC kglip

−1)  for
PAHs in artificially and naturally contaminated soils, respec-
tively.  Compared  with  other  PAHs,  4-ring  PAHs  display  a
higher  accumulation  in  earthworms,  which  may  be  due  to
the fact that they do not volatilize or degrade, and they are
not  as  persistent  as  5–6-ring  PAHs  (Northcott  and  Jones,
2001).

 2.2.3 Microbial and enzymatic PAHs degradation enhanced
by earthworms

Earthworm  bioturbation  can  effectively  enhance  PAH
biodegradation  by  soil  microorganisms  which  have  limited
access to PAHs due to their poor mobility (Dendooven et al.,
2011).  As  mentioned  above,  earthworm  bioturbation
improves  soil  aeration  and  nutrient  accessibility,  which  is
favorable for aerobic PAH-degrading microbes (Binet et al.,
1998; Marinari  et  al.,  2000; Hickman  and  Reid,  2008;
Pagenkemper et al., 2015). It is worth noting that earthworm
gut is a favorable environment for anaerobic PAHs-degrading
microorganisms  due  to  the  rich  organic  substrates  (Drake
and  Horn,  2007),  and  efficient  degradation  of  PAHs  and
other organic pollutants by earthworm intestinal bacteria has
been reported (Contreras-Ramos et al., 2008; Verma et al.,
2011).

Produced  by  plants,  animals,  and  microorganisms,  soil
enzymes  play  an  important  role  in  the  degradation  of
organic  pollutants  (Alkorta  et  al.,  2003).  Generally,  soil
enzyme activity is highly correlated with soil organic carbon
content and microbial biomass (Martens et al., 1992; Fraser
et al., 1994; Parthasarathi and Ranganathan, 2000). Studies
showed  that  earthworms  could  increase  the  activities  of
organic pollutant-degrading enzymes, such as phosphatase,
cellulase, amylase, sucrase, urease, catalase, and dehydro-
genase  (Zhang  et  al.,  2000; Alkorta  et  al.,  2003; Adetunji
et al., 2017). In addition, the enzymes in earthworms gener-
ally  have  a  high  tolerance  against  organic  contaminants,
which  is  of  significance  for  the  biodegradation  of  organic
pollutants (Schreck et  al.,  2008; Liu et  al.,  2011; Wu et  al.,
2011).

 2.3 Vermiremediation of PAHs-contaminated soils

Many studies have shown that adding earthworms to PAHs-
contaminated soils or PAHs-containing sewage sludge could
accelerate the removal of PAHs while the earthworms main-
tain  a  high  survival  rate  (Contreras-Ramos  et  al.,  2008;
Poluszyńska et al., 2017; Rorat et al., 2017). Ma et al. (1995)
demonstrated  that  the  degradation  of  anthracene  and
phenanthrene in 650 g soil  was enhanced by the presence
of  five  earthworms  (Lumbricus  rubellus),  and  the  removal

rate  of  phenanthrene  was  increased  from  11%  to  25%.  In
the study of Contreras-Ramos et al. (2008), more than 90%
of  the  anthracene  (1000 mg  kg−1)  and  phenanthrene  (150
mg  kg−1)  and  16%  of  the  benzo(a)pyrene  (150  mg  kg−1)
were  removed  from the  50  g  soil  11  weeks  after  10  earth-
worms (Eisenia  fetida)  were added,  and more than 80% of
the  earthworms  survived.  According  to  Coutiño-González
and  his  colleagues  (2010),  earthworms  (Eisenia  fetida)  not
only  enhanced  the  degradation  of  anthracene  but  also
enhanced  that  of  9,10-anthraquinone,  the  most  abundant
degradation product of anthracene.

Earthworms  application  can  effectively  improve  microbial
degradation activity (Sun et al., 2011; Hernández-Castellanos
et  al.,  2013). Sun  et  al.  (2011) reported  1.2  to  1.6  times
increases  in  the  microbial  degradation  rate  of  pyrene  with
the addition of  earthworms (Eisenia  fetida)  to  the artificially
contaminated  soils. Hernández-Castellano  et  al.  (2013)
observed  that  the  addition  of  earthworms  (Pontoscolex
corethrurus)  accelerated  the  removal  of  benzo(a)pyrene by
four  times.  They  also  demonstrated  that  feeding  the  earth-
worms  with M.  pruriens or B.  humidicola leaves  further
increased  the  benzopyrene  removal  rate  by  28.6%  and
34.2%, respectively. Vermiremediation has been extensively
applied  in  various  soils  (Parrish  et  al.,  2006; Rodriguez-
Campos  et  al.,  2014; Rorat  et  al.,  2017).  It  is  worth  noting
that the growth and activity of earthworms are influenced by
many  factors,  such  as  environmental  pH,  temperature,
humidity,  food,  and  toxic  substances  (Eom  et  al.,  2007;
Eijsackers  et  al.,  2001; Owojori  and  Reinecke,  2010;
Dendooven et al., 2011; Tejada and Masciandaro, 2011; Shi
et al., 2020). Therefore, the effectiveness of vermiremediation
is influenced by many factors, which warrants more studies.
In addition, the fate of the PAHs accumulated by earthworms
and  the  fate  of  toxic  degradation  by-products  warrants
further investigation as well  (Coutiño-González et al.,  2010;
Schmidt et al., 2017 ).

 3 The application of biochar in the remediation
of PAHs-contaminated soils

Having a porous structure and a large specific surface area,
biochar is increasingly used as an adsorbent in soil remedia-
tion  (Alexander,  2000; Cornelissen  et  al.,  2005; Zhu  et  al.,
2017; Wang et al., 2020). In addition, biochar is carbon-rich
and thereby a good habitat for soil microbes, which indirectly
promotes  the  transformation  and  degradation  of  contami-
nants in soil (Fig. 2).

 3.1 Influencing factors of biochar production and biochar
characteristics

Feedstock for biochar production can be industrial and agri-
cultural  wastes,  such  as  animal  wastes,  wood  chips,  crop
residues, ash from power stations, and sewage sludge from
wastewater  treatment  plants  (Chen  et  al.,  2011a; Cantrell
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et al., 2012; Beesley et al., 2014; Rey-Salgueiro et al., 2016;
Peng  et  al.,  2018).  Feedstock  greatly  influences  biochar
characteristics, including porosity, specific surface area, pH,
electrical conductivity, cation exchange capacity (CEC), and
elemental  content  (Gonzaga  et  al.,  2017; Li  et  al.,  2017a;
Sandhu et al., 2017; Sun et al., 2018). In the study of Bianco
et  al.  (2021),  the  total  carbon  content  of  biochar  derived
from different feedstocks varied widely from 22% to 83%. In
the study of Gomez-Eyles et al. (2013), acai pit biochar had
the  highest  carbon content  and the  largest  specific  surface
area,  while  pine  dust  biochar  had the  lowest,  with  those of
peanut hull biochar and barley straw biochar in between.

Based  on  production  conditions,  there  are  four  biochar
production technologies: slow pyrolysis, fast pyrolysis, gasi-
fication,  and torrefaction (Wang et  al.,  2020).  Biochar  char-
acteristics,  such  as  porosity,  surface  area,  carbon  content,
and stability, are greatly influenced by production conditions,
such  as  pyrolysis  temperature,  heating  rate,  and  pyrolysis
atmosphere (Gonzaga et al., 2017; Kalinke et al., 2017; Sun
et  al.,  2018; Wang  et  al.,  2020a, 2021).  Generally,  biochar
with  a  higher  carbon  content  and  a  larger  specific  surface
area  can  be  obtained  at  a  higher  pyrolysis  temperature
(Chen et  al.,  2008; Li  et  al.,  2013).  This  can be due to  the
release  of  volatiles  and  the  generation  of  vascular  bundle
structures  at  high  pyrolysis  temperatures,  which  lead  to  a
larger specific  surface area and a pore structure of  biochar
(Fu  et  al.,  2011; Li  et  al.,  2013; Wang  et  al.,  2020a).
However,  too  high  a  pyrolysis  temperature  would  destroy
both  the  acidic  and  basic  groups,  leading  to  an  ultimate
decrease of the adsorbability of biochar (Chun et al.,  2004;
James  et  al.,  2005).  Slow  heating  rate  and  long  residence
time  in  slow  pyrolysis  achieve  a  high  production  yield  of
biochar, while the fast heating rate (10–200 K s−1) and short
residence  time  (0.5−10 s)  in  fast  pyrolysis  favors  the

production  of  bio-oil  (Perego  and  Bosetti,  2011; Oni  et  al.,
2019; Lee  et  al.,  2020).  Long  vapor  residence  time  allows
the  biomass  components  to  repolymerize,  increasing  the
porosity  and  production  yield  of  biochar  (Tripathi  et  al.,
2016; Tsai et al., 1997).

 3.2 Remediation mechanisms of biochar

 3.2.1 Physicochemical adsorption

π π π
π

The  physical  and  chemical  properties  of  biochar  are  the
main  factors  affecting  its  adsorption  of  organic  pollutants
(Zhu and Pignatello, 2005). The interaction between biochar
and  organic  pollutants  is  also  influenced  by  the  structure
and  chemical  properties  of  the  organic  pollutants  (Inyang
and  Dickenson,  2015).  The  interactions  between  biochar
and  PAHs  (Fig.  3)  mainly  include  hydrophobic  interaction
(e.g.,  Van  der  Waals  forces),  donor-acceptor  interaction
(e.g., - ), and other specific interactions (e.g., hydrogen- ,
cation- ) (Anyika et al.,  2014; Fu et al.,  2018; Zhang et al.,
2018b; Bianco  et  al.,  2021).  The  adsorption  dominated  by
hydrophobic interaction can occur in two main phases. One
is  the  partition  of  PAHs  in  the  hydrophobic  domain  of
biochar,  and  the  other  is  the  weak  adsorption  of  PAHs  on
the surface of biochar via van der Waals force (Bianco et al.,
2021). It has been revealed that the PAHs-adsorption mech-
anisms  differ  for  biochar  prepared  at  different  pyrolysis
temperatures.  The  adsorption  of  PAHs  on  low-temperature
pyrolyzed biochar is primarily determined by the distribution
of  non-carbonized  biopolymers  and  van  der  Waals  force
(Chen  et  al.,  2012b; Zhu  et  al.,  2018).  High-temperature
pyrolyzed biochar shows a greater sorption efficiency due to
a  lower  H/C  ratio  and  more  unsaturated  functional  groups,

 

 
Fig. 2    The role of biochar in the remediation of PAHs-contaminated soil.
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π π

π

and  it  can  interact  with  PAHs  through -  type  interaction
(Chen  et  al.,  2008; de  Jesus  et  al.,  2017).  Certain  cations
(e.g.,  Na+ and  K+)  and  functional  groups  (e.g.,  −COOH,
−OH,  and  −NH2)  in  biochar  undergo  specific  interactions
with  PAHs  (Yang  et  al.,  2016).  The  hydrophobic  functional
groups on biochar surface create a hydrophobic microenvi-
ronment,  promoting  the  formation  of  cationic -complexes,
increasing  the  aqueous  solubility  of  PAHs  (Chen  et  al.,
2007; Jin et al., 2014), and ultimately reducing the adsorption
of PAHs by biochar. However, the formation of cation-PAHs
bond  increases  the  adsorption  of  PAHs on  biochar.  There-
fore, PAHs adsorption or dissolution is a result of the relative
strength  of  the  PAHs-biochar  interactions  (Zhang  et  al.,
2011; Jin et al., 2014).

 3.2.2 Improving the soil environment by biochar

Biochar application alters soil physical and chemical proper-
ties, such as pH, porosity, and water holding capacity, creat-
ing  hotspots  of  microbial  growth.  When  applied  to  acidic
soils, alkaline biochar improved the habitats of soil microor-
ganisms (Birk et al., 2008; Van Zwieten et al., 2010). More-
over, owing to its porous structure, high porosity,  and large
specific  surface area,  biochar increases soil  porosity,  CEC,
and  water  holding  capacity  when  applied  to  soil  (Glaser
et  al.,  2002; Karhu  et  al.,  2011; Ameloot  et  al.,  2013; Zhu
et  al.,  2017).  Biochar  also  enhances  microbial  degradation
of organic pollutants by supplying simple organic substrates
like  sugars  and  amino  acids  (Cox  et  al.,  2001; Sadegh-
Zadeh  et  al.,  2017).  In  addition,  the  black  color  of  biochar
helps to raise soil temperature by efficiently absorbing solar
radiation,  speeding  up  organic  matter  decomposition  and
nutrient transformation (Maroušek et al., 2018; Amoah-Antwi
et al., 2020).

 3.3 Positive roles of biochar in PAHs-contaminated soil
remediation

 3.3.1 Adsorption removal of PAHs from soils using biochar

The  strong  adsorption  capacity  of  biochar  leads  to  the
immobilization  of  PAHs  and  thus  reduces  the  extractability

and  bioavailability  of  PAHs  in  the  environment,  thereby
reducing the potential health risk of PAHs (Alexander, 2000;
Cornelissen et al.,  2005; de Resende et al.,  2018). Biochar
can  decrease  the  bioavailability  of  PAHs  and  thereby  has
been  widely  applied  to  PAHs-contaminated  soils  and  sedi-
ments (Cornelissen et al., 2005; Beesley et al., 2010; Yang
et  al.,  2018). Zhu  et  al.  (2018) demonstrated  that  biochar
reduced the concentrations of extractable PAHs. In the field
experiment conducted by Beesley et al. (2010), the concen-
trations  of  the  heavier,  more  toxic  4-  and  5-ring  PAHs
decreased by more than 50% and those of the lighter 2- and
3-ring  PAHs  decreased  by  more  than  40%  60  days  after
biochar  application. Khan  et  al.  (2013) added  sewage
sludge  biochar  (10%)  to  a  PAHs-contaminated  soil  and
found that the total concentration of PAHs in soil decreased
by  10%,  and  the  average  concentration  of  PAHs  in  lettuce
plants  decreased  from  1.72  mg  kg−1 to  0.68  mg  kg−1.  It  is
worth  mentioning  that  soil-PAHs  interaction  is  generally
weaker  than  biochar-PAHs  interaction.  Therefore,  soil-
bound PAHs are at  a  higher  risk  of  being redistributed into
soil solution (Zhu et al., 2018). Biochar application increases
the  adsorption  of  pollutants  to  the  soil  matrix  and  thereby
reduces  their  presence  in  soil  solution.  The  adsorption-
desorption  experiment  conducted  by Zhang  et  al.  (2010)
showed  that  biochar  addition  enhanced  the  apparent
adsorption  affinity  of  soil  to  phenanthrene,  which  became
more  obvious  at  higher  application  rates,  and  biochar
pyrolyzed at a higher temperature was more able to promote
the adsorption of phenanthrene in soil.

 3.3.2 PAHs biodegradation enhanced by biochar

Biochar  cannot  only  effectively  reduce  the  extractable  and
bioavailable  PAHs  concentration  in  soil  by  adsorption  but
also  promote  the  biodegradation  of  PAHs  by  stimulating
microorganisms, thereby reducing the environmental risks of
PAHs  (Beesley  et  al.,  2010; Zhang  et  al.,  2018a).  This
seems to  contradict  the  fact  that  reduced extractability  and
bioavailability  would  lead  to  reduced  biodegradation  effi-
ciency,  and  consequently,  more  pollutant  would  remain  in
the soil  (Arp et  al.,  2014; Xiong et  al.,  2017).  For  example,
the  addition  of  black  carbon  significantly  reduced  the
extractability  and  microbial  mineralization  of  hydroxypropyl-

 

 
Fig. 3    Interactions between biochar and PAHs.
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cyclodextrin and phenanthrene in soil  (Rhodes et al.,  2008;
Rhodes et al., 2010). Some studies argue that biochar, with
a high porosity, a large specific surface area, and rich nutri-
ents,  provides  a  suitable  shelter  for  microorganisms  and
increases  the  abundances  of  pollutant-degrading  bacteria
(Anyika et al., 2014; Kong et al., 2018; Ye et al., 2019). It is
generally  believed  that  contaminant-degrading  bacteria
degrade the organic contaminants dissolved in soil  solution
or desorbed from adsorption sites. However, biodegradation
of  contaminants  adsorbed  on  biochar  has  also  been
observed by some researchers (Park et al., 2003; Cornelis-
sen et  al.,  2005; Chi  and Liu,  2016; Ding et  al.,  2021).  For
example, Ding et al. (2021) observed that there were pollu-
tant-degrading  bacterial  assemblages  on  the  biochar
retrieved  from  the  contaminated  soil  in  their  experiment,
indicating  the  possibility  that  contaminants  adsorbed  by
biochar  undergo  biodegradation  as  well.  Moreover,  several
studies have shown that the degradation of PAHs is affected
by molecular weight. Biochar addition reduces the biodegra-
dation  of  light  PAHs  while  increasing  that  of  heavy  PAHs.
This  is  because  light  PAHs  are  small  and  thereby  can  be
easily adsorbed in the pores of biochar (Wang et al.,  2006;
García-Delgado et al., 2015; Zhang et al., 2018a).

In conclusion, the use of biochar is a reliable and sustain-
able method for  soil  organic pollution remediation.  PAHs in
contaminated soils  can attach  to  the  surface  of  biochar  via
specific adsorption, resulting in significantly lower concentra-
tion in soil solution. Biochar can also alter soil characteristics,

improving  the  soil  environment  for  more  efficiently  PAHs
removal by functional microbes. According to previous stud-
ies,  the  degradation  rate  of  PAHs  in  soil  increases  with
biochar  application  time  (Table  1).  However,  much  work  is
still needed to make it clear how to efficiently remove PAHs
from soil,  because  removal  efficiency  varies  with  the  appli-
cation  rate  of  biochar  produced  under  different  pyrolysis
conditions  and  from  different  raw  materials  (Table  1).  It  is
worth  mentioning  that  biochar  may  contain  some  toxic  by-
products,  which  may  have  negative  impacts  on  soil  organ-
isms.  In  some  cases,  the  high  pH  and  salinity  of  biochar
may cause some undesirable results, and its high application
rate  is  a  disadvantage  as  well.  Fortunately,  these  can  be
avoided by choosing a desirable feedstock and the optimal
pyrolysis  conditions  (Lehmann  et  al.,  2011; Quilliam  et  al.,
2013; Luo et al., 2014; Godlewska et al., 2021).

 4 Combined effects of biochar and earth-
worms on PAHs-contaminated soil remedia-
tion

Both earthworms and biochar can be used for soil remedia-
tion. However, both have their own shortcomings when they
are  used  alone.  Recently,  some  researchers  have  applied
biochar and earthworms together in organic polluted soils to
optimize remediation methods (Table 2). As reviewed in the
previous  sections,  the  mechanisms  of  PAHs  removal  by

   
Table 1    The effects of biochar type, application rate, and application time on the removal efficiency of Σ16 PAHs
Feedstock Pyrolytic

temperature (°C)
Addition
ratio

Time (d) Σ16 PAHs removal efficiency Reference

Agricultural wastes

  Walnut shells, 250, 400, 600 2% 75 73.69%−77.01% Zhang et al., 2021

  corn cobs

  Rice husk 350 4% 90 7.69%−36.23%
(The removal efficiencies of different PAHs)

Liu et al., 2015

500 −32.67%−86.67%
(The removal efficiencies of different PAHs)

  Dairy manure 350 −8.42%−71.74%
(The removal efficiencies of different PAHs)

500 −4.21%−66.67%
(The removal efficiencies of different PAHs)

  Wheat straw 700 5% 30 15.85% Oleszczuk et al., 2017

Wood materials

  Poplar woodchips 500 1% 105 20.53% Ren et al., 2021

  Various types of conifers >630 5% 270 41% Ukalska-Jaruga et al., 2019

  Hardwood 600 10% 56 31.84% Gomez-Eyles et al., 2011

  Hardwood − 30% 60 About 50% Beesley et al., 2010

Solid wastes

  Sewage sludge 500 1% 180 18%−56% Tomczyk et al., 2020

  Sewage sludge 500, 600, 700 2% 180 27%−4% Godlewska et al., 2022

  Sewage sludge 500 10% 56 10% Khan et al., 2013
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earthworms  and  biochar  include  biochar  adsorption,
earthworm  accumulation,  enhanced  biodegradation  by  soil
microorganisms  and  enzymes,  and  metabolic  degradation
by  the  bacteria  in  earthworm  gut.  Biochar  and  earthworms
are inevitably  affected by each other  in  soil  (Fig.  4).  In  this
section,  the  potential  of  combined  usage  of  biochar  and
earthworms  in  PAHs  removal  and  the  possible  negative
effects are discussed.

 4.1 The effects of biochar on vermiremediation of PAHs-
contaminated soils

 4.1.1 Biochar addition improves the soil environment for
vermiremediation

Owing  to  the  porous  structure  of  biochar  (Downie  et  al.,
2009), its tensile strength permits changes in soil mechanical
impedance  (Goss,  1977; Goss  and  Russell,  1980).  There-
fore,  biochar  application  improves  the  soil  environment  for
easier elongation and proliferation of plant roots (Bengough
and Mullins,  1990; Blanco-Canqui,  2017).  In  addition,
biochar  application  improves  soil  water  and  nutrient  condi-
tions,  leading  to  better  growth  and  development  of  plants,
soil  microorganisms,  and  animals  (Warnock  et  al.,  2007;
Major  et  al.,  2010; Noguera  et  al.,  2010; Ren  et  al.,  2018;
Palansooriya et al., 2019). Biochar generally has a high pH

due to  the presence of  such salts  as  calcite  (CaCO3)  (Cao
et al.,  2011).  Therefore,  biochar application is beneficial  for
earthworms  in  acidic  soils  with  its  acid-neutralizing  effect,
because earthworms prefer a neutral environment (Edwards
and  Bohlen,  1996;  Tripathi  and  Bhardwaj,  2004; Van
Zwieten  et  al.,  2010).  It  is  important  to  note  that  biochar
could  have  the  opposite  effect  when  applied  to  neutral  or
alkaline soils (Van Zwieten et al., 2010), especially when it is
overused (Weyers and Spokas, 2011). Biochar, with a large
specific surface area and a porous structure, functions simi-
larly to soil aggregates in terms of retaining water and nutri-
ents and providing a good habitat for soil organisms (Tisdall
and  Oades,  1982; Lehmann  et  al.,  2011).  Compared  to
many organic substances, biochar can remain stable in soil
for a long time (Skjemstad et al., 1996; Lehmann et al., 2005,
2008),  even  though  it  may  become  smaller  on  a  decadal
time  scale  (Nguyen  et  al.,  2008).  However,  some
researchers have pointed out that the strong adsorbability of
biochar  may  reduce  the  availability  of  food  and  water  for
earthworms in  soil  (Jonker  et  al.,  2004; Jakob et  al.,  2012;
Zhang et al., 2019). Earthworms usually ingest both carbon
and soil particles instead of soil particles only, which may be
due to the detoxification and alkalinisation effects of biochar,
as  well  as  its  stimulating  effect  on  microbial  communities
(Topoliantz and Ponge, 2003). Therefore, overuse of carbon
may lead to less food available to earthworms (Wang et al.,
2012),  eventually  leading  to  weight  loss  of  earthworms

 

 
Fig. 4    Graphical representation of how earthworm and biochar work.
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(Gomez-Eyles et al., 2011; Zhang, et al., 2019). In addition,
earthworms  may  be  subjected  to  drought  stress  caused
by  the  application  of  biochar,  which  has  a  strong  water-
adsorption capacity (Li et al., 2011). To avoid this, irrigation
may  be  needed  immediately  after  biochar  application
(Domínguezl  and  Edwards,  1997).  For  example, Li  et  al.
(2011) observed the avoidance behavior and weight loss of
earthworms  in  soils  amended  with  100  and  200  mg  kg−1

biochar, and no avoidance behavior was observed after the
soil was irrigated to field capacity.

 4.1.2 Biochar affects PAHs accumulation and degradation in
earthworms

The  hypoxic,  humid,  and  pH-neutral  environment  of  earth-
worm  gut  makes  it  an  ideal  habitat  for  pollutant-degrading
microorganisms (Drake and Hrn, 2007; Van Groenigen et al.,
2019).  Microbes  in  earthworm gut  have  been  proven  to  be
able  to  effectively  degrade  PAHs.  These  microbes  include
bacteria (e.g., Pseudomonas and Acidobacterium) and fungi
(e.g., Penicillium, Mucor,  and Aspergillus)  (Pižl  and
Nováková,  2003; Singleton  et  al.,  2003; Contreras-Ramos
et  al.,  2008).  As  mentioned  above,  earthworms  prefer  to
feed on both soil particles and biochar rather than soil parti-
cles  only  (Topoliantz  and  Ponge,  2003).  The  surface  of
biochar is rich in water-soluble organic substances such as
alcohols,  aldehydes,  ketones,  and  sugars,  which  are  good
substrates  for  the  intestinal  bacteria  in  earthworms  (Thies
and Rillig,  2009). Ding et al.  (2019) reported that 0.5% rice
biochar  significantly  increased  the  gut  bacterial  community
in earthworms but had no effect on the soil bacterial commu-
nity. Wang et al. (2020) also showed that biochar application
significantly  increased  the  bacterial  diversity  in  earthworm
gut, which was favorable for pollutant biodegradation.

The  strong  adsorption  of  pollutants  on  biochar  not  only
reduces pollutant concentration in soil solution (Wang et al.,
2012), but also effectively reduces pollutant accumulation by
soil  organisms  (Alexander,  2000; Cornelissen  et  al.,  2005;
Langlois  et  al.,  2011; de  Resende  et  al.,  2018),  thereby
lowering  the  risk  of  organic  pollutants  entering  the  food
chain. This explains why earthworms prefer biochar-treated
soil  where  the  concentration  of  bioavailable  contaminant  is
lower  (Gomez-Eyles  et  al.,  2011; Wang  et  al.,  2014).
Besides biochar, some other carbonaceous materials,  such
as  black  carbon  and  activated  carbon,  can  also  effectively
reduce  the  accumulation  of  PAHs  by  earthworms  (Brändli
et  al.,  2008; Jakob et  al.,  2012).  However,  the reduction of
bioavailable pollutants by biochar is influenced by soil prop-
erties. Earthworms absorb lower amounts of PAHs from clay
loam than from sandy soil  because the interaction between
PAHs  and  clay  loam  is  stronger  than  that  between  PAHs
and  sandy  soil  (Malev  et  al.,  2016). Wang  et  al.  (2012)
pointed  out  that  soils  of  different  properties  have  different
adsorption capacities for pollutants. Therefore, the effective-
ness of biochar in decreasing pollutant bioavailability varies
in  different  soils.  Furthermore,  the  effects  of  biochar  on

PAHs  bioaccumulation  vary  with  the  molecular  weight  of
PAHs  as  well.  In  the  study  of Gomez-Eyles  et  al.  (2011),
biochar application reduced the total and bioavailable PAHs
in soil and the accumulation of total PAHs in earthworms (up
to  45%).  However,  the  earthworm  accumulation  of  lighter
PAHs  (2-  and  4-ring)  increased,  while  that  of  heavier  and
more  toxic  PAHs  decreased  (more  than  20%  by  day  28),
which may be attributed to the high affinity of heavier PAHs
to biochar (Northcott and Jones, 2001).

 4.1.3 Potential of biochar in removing toxic metabolites
released by earthworms

The phenomenon that earthworms release toxic metabolites
after metabolic conversion of low molecular weight PAHs in
their bodies has been reported in previous studies, implying
secondary  pollution  caused  by  PAHs  metabolism  in  earth-
worms. Schmdit  et  al.  (2017) found  that  earthworms
released  phase  II  conjugates,  the  metabolic  products  of
phenanthrene and pyrene, into the soil  environment. These
persistence toxic metabolites are highly soluble in water and
will  pose a threat to environmental  and human health once
leached  into  groundwater  (Schmdit  et  al.,  2017).  Another
earlier study reported that anthracene was transformed into
the  more  toxic  9,10-anthraquinone  through  earthworm
metabolism  (Coutiño-González  et  al.,  2010).  Different  from
anthracene,  whose  carcinogenicity  is  not  yet  known,
anthraquinone  has  been  found  to  induce  liver  tumors  and
kidney diseases in  mice  and classified  as  a  2B carcinogen
by the International Agency for Research on Cancer (IARC)
of the World Health Organization.  Therefore,  the release of
toxic  metabolites  by  earthworms  after  absorption  of  low
molecular  weight  PAHs  deserves  more  attention,  even
though Coutiño-González  et  al.  (2010) found  that  the
concentration  of  toxic  metabolites  decreased  at  the  later
stage  of  the  experiment.  PAH-degrading  microbes  (e.g.,
Sphingomonas.g  and  Alphaproteobacteria.c)  (Li  et  al.,
2020b)  enriched  and  sheltered  by  biochar  can  use  the
adsorbed PAHs as a sole carbon source for growth, thereby
degrading the PAHs (Widada et al.,  2002; Li et al.,  2020b).
Adsorption and degradation of  toxic  earthworm metabolites
on biochar is a safe and effective way to remove them from
soil.  However,  there is  limited information on other  ways to
eliminate  toxic  earthworm  metabolites  and  the  effects  of
biochar  application  on  such  metabolites,  especially  the
metabolic  transformation  of  the  more  toxic  high  molecular
weight PAHs. More attention and research should be given
to this scientific area in the future in order to comprehensively
evaluate the combined effects of biochar and earthworms on
soils contaminated with PAHs and the potential environmen-
tal risks.

 4.1.4 Negative effects of biochar on earthworms and corre-
sponding measures

The positive effects of  biochar  on the soil  environment  and
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PAHs  biodegradation  have  been  widely  reported.  Negative
effects of biochar application are usually related to feedstock
property, biochar application rate, and soil properties (Chan
et al., 2008; Liesch et al., 2010; Weyers and Spokas, 2011;
Malev  et  al.,  2016; Gong  et  al.,  2018).  The  earthworms
Metaphire guillelmi and Amynthas corrugatus have recently
been  proven  to  be  capable  of  mineralizing  bacterial  and
fungal cells for carbon and energy (Shan et al., 2010), which
has positive effects on the redistribution and stabilization of
soil  organic  matter  (Haynes  et  al.,  2003; Simpson  et  al.,
2007; Miltner et al., 2012). But simultaneously, as accompa-
nied  effects,  the  PAHs  adsorbed  on  biochar  could  have
negative effects on earthworms through the microorganisms
participating  in  the  biodegradation  of  PAHs  (Shan  et  al.,
2013).  The  toxic  effects  of  biochar  on  earthworms  can  be
attributed  to  the  following  three  aspects:  (1)  the  toxins
present  in  biochar,  (2)  the  high  pH  of  biochar,  and  (3)  the
reduction  in  water  and  nutrients  available  to  earthworms
(Van Zwieten et al., 2010; Jakob et al., 2012; Godlewska et
al., 2021).

It  is  worth  noting  that  the  negative  influences  are  mainly
attributed  to  the  bioavailable  contaminants,  which  are  not
stably  bound by biochar  and thereby can be absorbed and
metabolized  by  microorganisms,  animals  (Kelsey  et  al.,
1997; Tang et al., 1998), and plants (Alexander, 1995; 2000).
This  is  why  the  bioavailability  of  pollutants  adsorbed  on
biochar and their toxic effects have attracted more and more
scientific interest in recent years (Spokas et al.,  2011; Hale
et al., 2012; Hilber et al., 2017). If we pay some more attention
to  harmful  substances  which  would  potentially  pollute  the
soil  and  its  bio-system  with  biochar  input,  such  as  volatile
organic compounds, perfluorochemicals, polycyclic aromatic
hydrocarbons,  polychlorinated  biphenyls,  and  other  persis-
tent organic pollutants,  even certain heavy metals could be
brought from the raw material  of  biochar and could also be
produced  in  the  pyrolytic  process  (Buss  and  Mašek,  2014;
Kim et al., 2015; Weidemann et al., 2018; Antoniadis et al.,
2019). PAHs have been commonly found in various biochar
(Buss et  al.,  2016; Weidemann et  al.,  2018).  Their  concen-
trations in biochar, ranging from 0.08 mg kg−1 (Freddo et al.,
2012)  to  172  mg  kg−1 (Khalid  and  Klarup,  2015),  are
affected considerably by feedstock type and pyrolysis condi-
tions.  In  general,  medium  temperature  (400–600°C),  slow
pyrolysis,  and  long  residence  time,  as  well  as  the  use  of
plant material containing few PAHs precursors as feedstock
can  help  to  minimize  PAHs  in  biochar  (Hale  et  al.,  2012;
Wang et al., 2017b; Kończak et al., 2019; Godlewska et al.,
2021).  In  more  than  50  biochars  produced  under  different
pyrolysis conditions, Hale et al. (2012) found lower levels of
dioxin  and  PAHs  in  the  slow  pyrolysis  biochars,  with  the
concentrations  of  bioavailable  dioxin  below  the  detection
limit  and  those  of  bioavailable  PAHs  ranging  from
0.17 ng L−1 to 10.0 ng L−1. Zielińska and Oleszczuk (2016)
reported low concentrations of free PAHs in sewage sludge
biochar produced at various pyrolysis temperatures. Pollutant
content in biochar varies greatly and the amount of pollutants

adsorbed on biochar depends on interaction time (Qian and
Chen, 2013; Ghaffar et al., 2015). With the aging of biochar,
hydrophilic  functional  groups  on  its  surface  increase
(Moreno-Castilla  et  al.,  1995; Ghaffar  et  al.,  2015),  leading
to  the  release  of  pollutants  into  the  environment  and  the
increase of toxic effects on soil  organisms (Anyanwu et al.,
2018; Kavitha et al., 2018).

Biochar  may  have  negative  effects  on  the  growth  and
reproduction  of  earthworms  and  may  even  cause  DNA
damage,  which  may  be  attributed  to  the  increased  pH and
decreased available water and nutrients with the addition of
biochar  (Cui  et  al.,  2009; Zhang  et  al.,  2019).  Specific
effects depend on the biochar properties, biochar application
rate, and time. Biochar applied at an appropriate rate and for
a suitable period has positive effects on the survival, growth,
and  reproduction  of  earthworms  (Cui  et  al.,  2009; Denyes
et al., 2012; Malińska et al., 2016; Gong et al., 2018). In the
study of Li and Alvarez (2011), earthworm cocoon production
was not affected when biochar was applied at 0.5% but was
significantly reduced when biochar was applied at 5%. Simi-
larly, Zhang  et  al.  (2019) found  that  the  average  weight  of
Eisenia fetida increased significantly at low biochar rate (1%
–3%) but decreased significantly at high biochar rate (10%).
Therefore, the negative effects of biochar addition on earth-
worms  can  be  avoided  or  minimized  by  applying  the  right
biochar at an appropriate rate.

 4.2 Earthworm-assisted PAHs-contaminated soil remediation
using biochar and its limitations

 4.2.1 Potential of earthworms in promoting the adsorption
and degradation of PAHs on biochar

The  deep  soil  layers,  which  are  important  for  soil  texture,
aeration,  and  microbial  activity,  could  be  influenced  by
biochar  incorporation  and  its  mobility  in  soil  (Leifeld  et  al.,
2007). Earthworm activities create biopores in the soil profile,
and  these  pores  may  be  interconnected  laterally  with  each
other  in  the  drilosphere  (Pagenkemper  et  al.,  2015).  The
large  ingestion  capacity  of  geophagous  earthworms
(Lavelle, 1988; Brown et al.,  2000) play a significant role in
the  migration  and  redistribution  of  the  ingested  matters,
which is a bioturbation process (Hindell et al., 1997; Garcia
and  Fragoso,  2002).  Under  the  bioturbation  of  earthworm
Pontoscolex  corethrurus,  charcoal  was  found  to  be  well
mixed  with  soil  (Topoliantz  et  al.,  2002; Topoliantz  and
Ponge,  2003).  According to  the research of Bergknut  et  al.
(2007), the bioturbation of earthworm Pontoscolex corethru-
rus resulted in the mobilization and incorporation of biochar
in the forest soils (Alfisols and Mollisols) of Central Europe.
Earthworm bioturbation enhances the mobility  of  biochar  in
soil  and  leads  to  closer  contact  between  biochar  and
contaminated soils, which ultimately increases the adsorption
of pollutants on biochar.

Furthermore,  bioturbation  also  significantly  influences  the
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activities  of  microorganisms  and  extracellular  enzymes
(Sanchez-Hernandez  et  al.,  2019).  The  adsorption  of
enzyme  molecules  on  the  hydrophobic  surface  (low  C/N
ratio) and in the pores of biochar may lead to enzyme activity
decrease (Chintala et al., 2014). The functional groups such
as  hydroxyl  and  carboxyl  on  biochar  surface  may  interact
with the amino group of  enzyme molecule and thus reduce
enzyme  affinity  to  substrates  (Khadem  and  Raiesi,  2019).
Recent studies have shown that earthworms could improve
the  activities  of  biochar-adsorbing  enzymes,  which  may  be
related  to  the  gastrointestinal  and  external  mucus  secreted
by  earthworms  (Sanchez-Hernandez,  2018).  The  activities
of  carboxylesterase,  β-glucosidase,  alkaline  phosphatase,
and arylsulfatase of  biochar  particles  increased after  earth-
worm introduction (Sanchez-Hernandez, 2018). Interestingly,
carboxylesterase-coated  biochar  was  found  to  have  a  high
affinity to some highly toxic pesticide metabolites (Wheelock
et  al.,  2008).  However,  more  research  is  needed  on  earth-
worm-assisted  remediation  of  PAHs-contaminated  soils
using  biochar  to  answer  such  questions  as  whether  the
activities  of  PAHs-degrading  enzymes  on  biochar  surface
are  stimulated  by  earthworm introduction  and  what  are  the
related mechanisms.

 4.2.2 Negative effects of earthworms on biochar

The  biodegradation  of  PAHs  is  strongly  influenced  by  soil
properties  such  as  soil  pH  and  organic  matter  content,
specially  the  former.  Generally,  slightly  acidic  and  alkaline
soil  conditions  are  favorable  for  microbial  degradation  of
PAHs (Emoyan et  al.,  2018).  Earthworms have been found
to lower soil pH by releasing organic acids, while biochar is
more likely to increase soil pH, which should be paid attention
to when soil pH is an important influencing factor of pollutant
transformation (Huang et al., 2020). Sorption to soil particles
and  dissolved  organic  matter  (DOM)  greatly  affects  the
migration  and  degradation  of  PAHs  (Weber  et  al.,  1992;
Pignatello  and  Xing,  1995). Garau  et  al.  (2022) found  that
earthworms accelerated the degradation of  biochar  organic
matter  and  increased  DOM  content  in  soil.  DOM  may
compete with soil matrix for PAHs and increase the bioavail-
able  PAHs  in  soil,  weakening  the  remediation  effect  of
biochar  (Ling  et  al.,  2005).  In  a  word,  much  remains  to  be
explored about the effects of earthworms on PAHs-contami-
nated soil remediation using biochar, and relevant research
is warranted in the future.

 5 Conclusion

It  is  urgent  to  solve the problem of  PAHs pollution of  soils.
Both  earthworm  introduction  and  biochar  application  have
been  proved  to  be  effective  in  PAHs-contaminated  soil
remediation. Earthworms activities (e.g., feeding, burrowing,
and  casting)  improve  soil  texture,  structure,  and  nutrient

status,  creating  a  better  soil  environment  for  soil  microbes
and  consequently  accelerating  PAHs  biodegradation.  The
high  porosity  and  large  specific  surface  area  of  biochar
endow  it  a  strong  ability  to  adsorb  and  immobilize  PAHs.
Furthermore,  it  was  shown  that  biochar  addition  in  PAHs-
contaminated soils reduced PAHs in soil solution and PAHs
accumulation in earthworms. In addition, the PAHs-degrading
bacteria in earthworm gut are stimulated, reducing pollutant
transfer along the food chain. Meanwhile, earthworm biotur-
bation  enhances  biochar  migration  in  soil  and  the  activities
of  enzymes  on  biochar  surfaces.  Although  the  growth  and
reproduction  of  earthworms  may  be  negatively  affected  by
biochar, these negative effects can be eliminated, or at least
diminished to a negligible level, by choosing the right pyroly-
sis conditions for biochar production and applying biochar at
an  appropriate  rate.  Considering  the  lack  of  studies  on
PAHs  removal  effects  of  biochar-vermiremediation  and  the
underlying mechanisms, future studies are needed to better
evaluate  the  physicochemical  and  biological  interactions
among biochar, earthworms, and PAHs in soil.
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