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ABSTRACT

Lead (Pb) pollution is one of the most widespread and harmful environmental problems worldwide.
Determination of changes in soil properties and microbial functional diversity due to land use is
needed to establish a basis for remediation of soil pollution. This study aimed to investigate soils
contaminated by Pb from different sources and to analyze the functional diversity and metabolism of
soil microbial communities using Biolog technology. Pb pollution (> 300 mg kg™') significantly
influenced the diversity and metabolic functions of soil microbial communities. Specifically, Pb
contamination significantly reduced soil microbial biomass carbon (C) and nitrogen (N) levels and
catalase activity while increasing invertase activity. Furthermore, Biolog EcoPlate assays revealed
that Pb pollution reduced the general activities of soil microorganisms, suppressing their ability to
utilize C sources. In Pb-contaminated areas lacking vegetation cover, Shannon, Simpson, and
Mclintosh diversity indices of soil microorganisms were significantly reduced. The microbial diversity
and biomass C and N levels were affected by land use and soil properties, respectively, whereas
soil enzyme activity was primarily affected by the interaction between land use and soil properties.
Our results provide a reference and a theoretical basis for developing soil quality evaluation and
remediation strategies.
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1 Introduction

Lead (Pb) is one of the heavy metals widely found in nature,
with no known biological function. Further, as an important
industrial raw material, Pb is used extensively, leading to
high levels of accumulation of solid waste containing the
element, such as in slag from mining, so that it has become
a major threat to the environment (Cheng and Hu, 2010).
Solid waste is commonly stacked and informally managed,
whereby heavy-metal ions can easily leach out due to
weathering, snow, and rain, and cause severe soil pollution
(Zhang et al., 2012). Indeed, soil Pb pollution has become a
critical environmental problem worldwide (Tang et al., 2019).
Additionally, Pb smelters produce large amounts of dust
containing Pb2*, which eventually gets transferred to the soil
(Han et al., 2017). Besides Pb from mining and smelting
activities, Pb accumulation in the soil also results from
combustion of leaded gasoline, sewage-sludge dumping,
and disposal of batteries and other Pb-containing waste
products (Huang et al., 2006; Zhang et al., 2019; Bidar et
al., 2020). Thus, Pb can accumulate through the food chain
and affect humans as well, causing irreversible damage,
particularly in children (Liu et al., 2018; Kelepertzis et al.,
2021). Many remediation techniques, including chemical
precipitation, ion-exchange, evaporation, electrochemical
treatment, and filtration, have been applied to Pb-polluted
soil to reduce its negative effects on ecosystems and human
health (Malik 2004; Yang et al., 2021). Regardless of the
remediation methods used, investigation of Pb2* levels in
polluted soils and a thorough understanding of their
physical, chemical, and biological characteristics remain a
pending subject.

Soil heavy-metal pollution causes severe damage to micro-
organisms, reducing microbial activity, altering microbial
community structure, and leading to changes in soil enzyme
activity (Lietal., 2021). These changes may eventually
reduce soil quality. Previous studies showed that heavy
metals have adverse effects on soil microbial community
structure (Aponte et al., 2021). In general, heavy-metal
pollution reduces the efficiency of microbial transformation
of organic substances (Bardgett and Saggar, 1994). There-
fore, microbes need more energy to maintain their normal
metabolism under adverse conditions. Soil type, vegetation,
climate, and other factors are closely related to the content
of C sources in the soil, which also affects microbial
populations (Du et al., 2014). Previous studies have demo-
nstrated that excessive quantities of heavy metals in soils
cause a significant decrease in microbial community size (Li
et al., 2020), with adverse effects and degrees influenced by
heavy metal type, pollution level, and land use (Zhao et al.,
2012). Notably, microbial activity is a crucial factor for
maintaining the sustainability of soil productivity (Xu et al.,
2020; Wang et al., 2021). The turnover and mineralization of
soil organic matter, transformation of nutrients, and recycling

of organic waste are all dependent on the metabolism of soil
microorganisms (Yang et al., 2014). Therefore, microbial
activity is an essential element in the stability of soil
ecosystems (Liu et al., 2016). In recent years, technological
advances have provided new methods for precise
characterization of the diversity of microbial populations,
taking more features into consideration. For example,
biomarkers are essential tools for microbial classification in
the research on soil ecological toxicology (Lima et al., 2018;
de Oliveira et al., 2019). Biomarkers are organisms that are
exposed to a variety of environmental conditions, their
tissues, cells, and molecular structures responding to
specific biological signals (Kumpiene et al., 2008). In soil
ecosystems, biomarkers are used for the diagnosis of soil
pollution, providing a basis for quality evaluation, and for the
prevention and repair of damage caused by soil pollution (Ji
etal, 2021; Wangetal., 2021). Microbial community
structure in soils is an important parameter that needs to be
considered when characterizing soil ecosystem and
community structures and stability, as such a structure
serves as a predictor of changes in soil nutrients and
general environmental quality (Ma etal., 2016). For this
purpose, various methods based on biological biomarkers,
such as microbial quinones, fatty acids, and molecular
biological markers, have been applied in recent years
(Khalili et al., 2016). These methods do not involve the
isolation and culture of microbes to reflect the community
structure of microorganisms, nor can they yield information
regarding the overall activity and metabolic function of
microbial communities. However, quantitative analysis
based on the carbon (C) source of Biolog microporous
plates has provided a simple and rapid method for deter-
mining the functional diversity of microbial communities.
This analysis has been extensively used to evaluate the
functional diversity of soil microbial communities in different
soil types, in the same soil type under different vegetation, in
agricultural soils under different management strategies,
and in rhizosphere soil under diverse vegetation covers
(Garland, 1997).

Soil microbial activity is closely related to soil enzyme
activity (Tanetal., 2021), as many soil enzymes are
secreted by microbes and are involved in the recycling of
substances and energy in the soil (Wang et al., 2013). Soil
enzymes are bioactive substances secreted in the soil and
serve as an important index of soil biology (Siczek et al.,
2020). As bioactive molecules, enzymes can be affected by
heavy-metal contamination (Wu et al., 2017). Kandeler et al.
(1996) reported that heavy-metal stress affects soil enzyme
activity, eventually inhibiting enzymes related to soil C,
nitrogen (N), phosphorus (P), and sulfur cycles, and
reducing their activity.

This study aimed to evaluate the chemical and physical
characteristics of the soil, the Pb pollution level, microbial
diversity, and soil enzyme activity in Pb mines and Pb
smelters. Understanding the differences between the effects
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of these two different human activities on soil microorgan-
isms could provide a fundamental theoretical basis for the
remediation of Pb-polluted soils.

2 Materials and methods

2.1 Study site and sample collection

Two types of Pb-polluted areas (a Pb smelting factory and a
Pb mine) in Shandong Province, China were selected as
sampling sites. Three sampling areas (immediately outside
the factory perimeter, named factory wall-out area [F1];
inside the factory perimeter, named factory-in areas [F2];
and an area 10 km away from the factory, as the unpolluted
reference point [UF]) were selected for the Pb smelting
factory. Four sampling areas (mine opening [M1]; new
waste-residue stacking area [M2]; outdated waste-residue
stacking area [M3]; and an area 10 km away from the mine,
as the unpolluted reference point [UM]) were selected for
the Pb mine. Three sample replicates per site were collected
using sterile tools and secured in valve bags. Five samples
from within a distance of 50 m of each other were mixed to
form each replicate. All samples were transported to the
laboratory on ice and sieved through a stainless-steel mesh
(2 mm). The samples were stored in kraft paper bags after
removing impurities by air drying. Soil organic C (SOC) was
measured by the potassium dichromate external heating
method. Total N, available P, and available K contents of the
soil were measured using methods described by Lu (1999).
For Pb detection, the soil samples were digested using a
microwave digestion apparatus (Multiwave PRO, Anton
Paar, Graz, Austria), and Pb2* content was measured using
an atomic absorption spectrophotometer (AAS, AA-700,
Japan).

2.2 Functional diversity of microorganisms

Functional diversity of soil microorganisms was identified
using Biolog EcoPlates (Biolog Inc., Hayward, CA, USA),
with the collected samples utilizing 31 different C sources.
Approximately 10 g of fresh soil (dry weight equivalent) from
each sample was dispersed with 90 mL of 0.05 mol
sterilized phosphate buffer (pH = 7.0) in a pre-sterilized
Erlenmeyer flask, which was then sealed with a rubber
stopper and mixed at 200 r min~" for 60 min and at 25°C in
the dark. Subsequently, samples were centrifuged for 10
min at 3000 X g. The supernatant was collected and diluted,
and 150 L from the 103 dilution was inoculated into Biolog
EcoPlates. Each of the 96-well plates contained one of the
31 different C sources and a blank well, and each was
replicated thrice. All plates were maintained in an incubator
(25°C), and uutilization of each carbon source by soil
microorganisms was monitored by determining absorbances
at 590 nm after 4, 24, 48, 72, 96, 120, 144, and 168 h. In
addition, a 72-h microplate culture assay was performed to

measure the soil microbial activity index based on average
well-color development (AWCD), as described by Garland
(1997).

Data obtained from the Biolog EcoPlates and the 72-h
microplate culture assays were statistically analyzed. Four
diversity indices, i.e., Substrate evenness (l), Shannon (H),
Simpson (Ds), and MclIntosh (U) indices were used to
calculate the diversity of C-source utilization by the microbial
community in the soil samples and to assess the heterog-
eneity of species richness and dominance of the most
common species in the soil microbial community. As the
best resolution occurred at the shortest incubation time of
72 h, statistical analyses were performed using the 72-h
microplate culture and Shannon diversity index values
(Lewis et al., 2010).

Principal component analysis (PCA) was used to
transform the multivariate vectors of the different processed
samples into uncorrelated principal component vectors (PC1
and PC2 as principal sub vectors). In PCA, the metabolic
characteristics of different microbial communities are intu-
itively reflected by their location in space. In this study, the
31 C sources in the plates were divided into six categories,
namely amino acids, sugars, carboxylic acids, amines,
alcohols, and esters.

2.3 Soil enzyme activity, and soil microbial biomass carbon
and nitrogen

Soil enzyme activity was determined from fresh soil samples
using the method described by Guan et al. (1986). Invertase,
urease, and dehydrogenase activities were determined by
the 3,5-dinitrosalicylic-acid colorimetric method, the sodium
phenolate method, and the Johnson-Temple method, respe-
ctively. Neutral phosphatase activity was measured by the
disodium phenyl phosphate colorimetric method, based on
the amount of phenol produced by hydrolysis of disodium
phenyl phosphate under the action of phosphatase. Soil
microbial biomasses of C and N were extracted using the
chloroform  fumigation-K,SO, extraction method (Vance
et al., 1987).

2.4 Statistical analysis

All data were subjected to one-way analysis of variance
(ANOVA) using SPSS software (version 22.0; IBM, Armonk,
NY, USA), and two-way ANOVA was used when consider-
ing the various sources and their interactive effects on soil
microbial diversity, biomass, and enzymes. Fisher’s least
significant difference test at p < 0.05 was used for multiple
comparisons of means.

3 Results

3.1 Soil Pb content and nutrient characteristics

Soil Pb contamination in the Pb-smelter area was more
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severe than that in the mining area; for example, the soil Pb
content was approximately 6.86-fold higher in F2 than in M1
(Table S1). In the Pb-smelter area, Pb contents in F2 and
F1 were 70.02- and 510.68-fold higher, respectively, than in
UF. Notably, soil total N, and available P and K contents
decreased with increasing Pb level.

3.2 Functional diversity of microbial communities

Higher AWCD was observed in both Pb-polluted and
unpolluted soils collected from the Pb smelter than in those
collected from the mining area (Fig. 1). Notably, the AWCD
values in contaminated soil from the mining areas (M1 and
M2) were significantly lower than those in the contaminated
soil of the Pb-smelter sampling areas (F1 and F2), after
72 h. Similarly, the AWCD value in the uncontaminated soil

——UF =+ F1 —+«F2 -+ UM <« M1 M2 —M3
1.25
1.00 -
0.75 -
o
O
= 050 -
0.25 -
0.00 -
0 20 40 60 80 100 120 140 160 180
Incubation time (h)
Fig.1 Changes in average well-color development (AWCD) with

soil incubation time. Error bars represent standard deviations of the
means (n = 3). UF, unpolluted reference point (10 km away from the
factory); F1, factory wall-out area (immediately outside the factory
perimeter); F2, factory-in area (inside the factory perimeter); UM,
unpolluted reference point (10 km away from the mine); M1, mine
opening; M2, new waste-residue stacking area; M3, outdated
waste-residue stacking area.
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from the mining area was lower than that from the Pb-
smelter area.

Overall, the ability for utilization of the six C sources by
soil microbes was lower in the soil from the mining area than
for utilization in the soil from the smelter area (Fig. 2).
Regarding ability to utilize sugars, carboxylic acids, esters,
and amino acids, the highest was observed in UF and F1,
whereas that of amines was observed in F1 and UM, and
that of alcohols was recorded in areas UF, F1, UM, and M1.
For the Pb-smelter area, the ability to utilize sugars,
carboxylic acids, and amino acids as C sources in F2 was
lower than in UF and F1, and no significant difference was
found between F1 and UF. Similarly, no difference in the
ability to use alcohols and esters as C sources was detected
across the UF, F1, and F2 areas. The ability for the
utilization of amine C sources decreased in the following
order: F1 > UF > F2, and no significant difference in the
ability to utilize esters was observed between F1 and F2
areas. However, the ability to use alcohol was higher in F1
than in F2. In the mining area, the abilities to use the six
types of C source were lower in M2 and M3 than in UM,
whereas ability to use carboxylic acids, amines, and amino
acids was significantly lower in M1 than in UM. Additionally,
the ability to utilize sugars, alcohols, esters, and amino acids
was lower in M2 and M3 than in M1, and no significant
difference was observed in the ability for use of carboxylic
acids and amines as C sources across the areas M1, M2,
and M3.

The Mclntosh index was higher in soil samples from the
smelting area than in samples from the mining area (Table 1).
For the smelting area, MclIntosh index in F2 was lower than
that in UF and F1, and no significant difference was found
between F1 and UF areas for this index. Similar values of
the Shannon richness index, Substrate evenness, and
Simpson index were observed across UF, F1, and F2 areas.
In the mining area, Shannon richness index, Substrate
evenness, and Simpson index were lower in areas M2 and
M3 than those in areas UM and M1, and no significant
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Fig. 2 Utilization of six types of carbon sources by soil microbial communities from different sampling areas. Error bars
represent standard deviations of the means (n = 3). Different letters on the error bars indicate significant differences among

treatments at p < 0.05.
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Table 1 Diversity index of soil microbial community and soil microbial biomass carbon and nitrogen in different sampling areas.
Sampling areas  Shannon richness Substrate Simpson Mcintosh SMBC SMBN SMBC/SMBN
index (H) eventness (/) index (Ds) index (U) (mg kg™ (mg kg™")

UF 3.25+0.02a 0.950+0.012a 0.959+0.001a 595+0.14a 179.63+571a 33.02+271b 552+052a
F1 3.32+0.01a 0.988+0.008a 0.962+0.001a 592+0.05a 95.02+4.22d 23.71+1.74d 4.03+0.13¢c
F2 2.95+0.03 a 0.892+0.021a 0.942+0.003a 4.44+025b 4291+483e 952+122e 4.62+0.54bc
UM 3.16 £0.04 a 0.929+0.009a 0.953+0.002a 529+0.24a 173.12+4.32a 38.63+2.13a 4.52+0.13bc
M1 3.01+0.23a 0.913+0.115a 0.934+0.004a 4.06+046bc 49.83+4.53e 1183+142e 4.24+022c
M2 2.26+0.29b 0.792+0.049b 0.861+0.037b 352+0.11c 122.34+6.22c 2234+153d 554+0.13a
M3 1.95+040b 0.624+0.078 ¢ 0.782+0.073c 2.01+0.84d 13551+6.23b 27.62+271c 4.92+0.32b

UF, unpolluted reference point (10 km away from the factory); F1, factory wall-out area (immediately outside the factory perimeter); F2, factory-
in area (inside the factory perimeter); UM, unpolluted reference point (10 km away from the mine); M1, mine opening; M2, new waste-residue
stacking area; M3, outdated waste-residue stacking area. Data are presented as the mean + SD. No significant difference was found between

means with the same lowercase letter (p < 0.05).

difference between the Simpson index was verified between
areas UM and M1. U values in Pb-polluted soils (M1, M2,
and M3) were lower than in UM.

3.3 PCA of the utilization of soil microbial carbon sources in
different Pb-polluted areas

AWCD data measured at 72 h were used for PCA (Fig. 3),
and seven principal components were extracted whose
corresponding cumulative contribution rate reached 86.3%.
The microbial community patterns in the UF, F1, and UM
samples were significantly distinct from those in the F2, M1,
M2, and M3 samples (Fig. 3A). Fifteen C sources influenced
PC1, among which correlation between 2-hydroxy benzoic
acid and PC1 was the highest (Fig. 3B). All C sources were
correlated with PC2, although the impact of 2-hydroxy
benzoic acid was the weakest.

3.4 Soil enzyme activity

Invertase activity was higher in Pb-polluted soils than in
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unpolluted soils, both in smelting and mining areas.
However, higher invertase activity was observed in soil
samples from mining areas than in those from smelting
areas, both in unpolluted and Pb-polluted soils (Fig. 4A).
Invertase activity in F2 was 62.44% lower than that in F1.
Interestingly, no significant differences were observed in
invertase activity among M1, M2, and M3.

Urease activity was 2.05-fold higher in F1 than in UF and
48.67% lower in F2 than in F1. Meanwhile, lower urease
activity was detected in M2 and M3 compared to that in UM
and M1, and no significant difference was found in this
regard between UM and M1.

Phosphatase activity was 2.61-fold and 1.75-fold higher in
F1 than in UF and F2, respectively, whereas no difference
was observed between UF and F2. In the mining area, lower
levels of phosphatase activity were recorded in M1 and M2
than in UM and M3, and no significant difference was found
between UM and M3 or between M1 and M2.

Dehydrogenase activities in F1 and F2 were 82.49% and
94.00% lower than in UF, respectively, and 65.71% lower in F2
than in F1. In the mining area, dehydrogenase activity was
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Fig. 3 Principal component analysis of soil microbial communities for carbon substrate utilization (A) and the eigen vector of
each carbon substrate for PC1 and PC2 (B) in different sampling areas. Error bars represent standard deviations of the means

(n=3).
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Fig. 4 Enzyme activity in soils from different Pb-polluted sites. Error bars represent standard deviations of the means (n = 3).
Different letters on the error bars indicate significant differences among treatments at p < 0.05.

3.85-fold higher in M1 than in UM and 86.00% and 70.34%
higher in UM than in M2 and M3, respectively (Fig. 4D).
Similarly, dehydrogenase activity was 96.36% and 92.29%
lower in M2 and M3 than in M1, respectively. In this regard,
there was a positive relationship between dehydrogenase
activity and Pb concentration in the mining area and
between soil total N and available K (Fig. 5).

3.5 Soil microbial-biomass carbon (SMBC) and soil
microbial-biomass nitrogen (SMBN)

In Pb-polluted soils, SMBC and SMBN were lower than in
unpolluted soils (UF and UM) in both smelting and mining
areas, and the difference ranged from 21.72% to 76.11%
(Table 1). For the smelting area, SMBC and SMBN were
54.84% and 59.85% lower, respectively, in F2 than in F1,
and no significant difference was found in SMBC/SMBN
ratio between F1 and F2. For the Pb-polluted mining area,
the highest SMBC was observed in M3, and the lowest
SMBN in M1. The highest SMBC/SMBN ratio was detected
in M2, whereas the lowest was detected in M1.

3.6 Effects of land use and lead pollution level on microbial
biomass and enzyme responses

Significant effects of land use (smelting factory area as
opposed to mining area) on the four microbial diversity
indices were detected (Table 2). However, only Shannon
richness and Mclntosh indices were significantly affected by

Pb pollution level. The interaction between land use and Pb
pollution level had no significant effect on soil microbial
diversity.

Urease activity was significantly affected by land use and
Pb pollution level; furthermore, phosphatase activity was
significantly affected by Pb pollution level. Interestingly, all
four soil enzyme activities were significantly affected by the
interaction between land use and Pb pollution level. Lastly,
SMBC and SMBN were significantly affected only by Pb
pollution level.

4 Discussion

In our study, AWCD in Biolog EcoPlates was correlated with
Pb concentration, thereby indicating that the richness and
diversity of microorganisms decreased as Pb concentration
increased owing to the sensitivity of the different microor-
ganisms to Pb toxicity. Unexpectedly, microbial communities
from the Pb-polluted smelter area showed higher C utiliz-
ation rates than those from the Pb-polluted mining area. The
former contained the highest concentrations of heavy
metals. Based on these results, we hypothesized that the
Pb-polluted smelter area contained metal-resistant microbial
communities that could use various C sources, such as
sugar, alcohols, esters, and amino acids.

Our study indicated that Pb pollution reduced the
functional diversity of microbial communities and the number
of microorganisms that could utilize C-source substrates and
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Table 2 Statistical analysis of various sources and their interactive effects on soil microbial diversity, biomass, and enzymes (p values).

Source of Shannon Substrate  Simpson Mclntosh Invertase Urease Phosphatase Dehydrogenase SMBC SMBN
variation™ richness (H) eventness (/) (Ds) V)

Land use <0.01 <0.05 <0.01 <0.001 <0.001 0.189 0.146 0.107 0.320 0.318
Pb pollution level <0.05 0.109 0.055 <0.01 <0.001  0.754 0.703 <0.01 <0.001 <0.001
Land use x Pb 0.114 0.179 0114 0087 <005 <005  <0.01 <0.001 0213 0.802

pollution level

* Land use refers to Pb smelters and Pb mines. Pb pollution level refers to unpolluted and Pb-contaminated soils.

the ability of microorganisms to utilize single C-source
substrates. Similar to the results obtained by Kelly and Tate
(1998), the functional diversity of microbial communities was
reduced by Pb. In this study, we detected differences in the
utilization intensities of different C sources across the
sample sites, indicating that metabolism of the soil microbial
communities was influenced by Pb pollution. C use by soil
microbes reflects differences in the choice of C source by
soil microorganisms in a polluted environment (Siczek et al.,
2020). The function of soil microbial community diversity
changed when the soil ecosystem lost the required microbial
community functional normalization characteristics.

Many studies have demonstrated the decrease of micro-
bial diversity with increasing heavy-metal toxicity (Yang
etal, 2015; Montiel-Rozas et al., 2016). Unpolluted soils
with low heavy-metal concentrations have higher microbial
diversity than polluted soils (Alguacil et al., 2011; Ahmad
et al., 2018). Tu et al. (2020) also reported that heavy-metal
pollution might account for the decreased microbial diversity
observed in severely polluted areas. Studies have also
indicated that microbial diversity is positively influenced by
soil nutrients, such as P and N (Ohtomo and Saito 2005;
Zarei et al., 2010). Therefore, the negative effects of Pb on
soil microbial diversity may result from decreased nutrient
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content. SMBC and SMBN are important microbiological
indicators reflecting soil quality and degradation. Corres-
ponding changes in these indicators can directly reflect
changes in the soil environment, thus they are recognized
as sensitive indicators of soil contamination due to exoge-
nous heavy metals.

Therefore, the activities of invertases, ureases, phosph-
atases, and dehydrogenases can reflect the soil microbial
activity under different pollution levels. Low concentrations
of heavy metals stimulate soil enzymatic activities, whereas
high concentrations reduce them. The inflection points of
enzymatic activities vary with the type of soil enzyme. A
previous study indicated that an increase in soil heavy-metal
content resulted in a decrease in urease activity, as heavy
metals inhibit soil microbial activity (Huang et al., 2017).
Interestingly, we observed a positive correlation between Pb
content and dehydrogenase enzyme activity. However,
invertase activity increased with soil Pb accumulation.

N, P, and K are the main elements required for microbial
metabolism (Zhang et al., 2020). In this study, dehydroge-
nase activity was positively correlated with soil N and K
contents. Further, a previous study showed that soil
nutrients interact with soil enzymes; for example, increased
N availability correlates with increasing activity of C meta-
bolism enzymes in the field (Bowles et al., 2014). Similarly,
Xie et al. (2016) suggested that there may be a positive
correlation between soil nutrients and soil enzyme activity in
coastal saline soils as well.

Based on our results, we concluded that the soil enzyme
activity in Pb-polluted environments increased, whereas the
microbial biomass content decreased significantly. The
results of the Biolog EcoPlates showed that changes in
microbial community structure in Pb-polluted soils reduced
the amount of microbial C substrate utilized and the micro-
bial utilization of a single C substrate. Moreover, the driving
factors of microbial diversity and biomass were different; the
former was primarily affected by land use, whereas the latter
was affected by Pb pollution level. Additionally, soil enzyme
activity was primarily driven by the interaction between land
use and Pb pollution level.

5 Conclusions

Pb pollution significantly affected the diversity of the soil
microbial community structure and soil microbial metabo-
lism. Moreover, Pb pollution reduced the content of
microbial biomass-C and N in the soil, whereas it increased
invertase activity and reduced catalase activity. The main
types of C sources used by soil microorganisms changed as
the ability for the utilization of all C sources by microorga-
nisms changed under Pb stress. The overall activity and
diversity indices of soil microorganisms decreased in Pb-
polluted soils. Microbial diversity was primarily affected by
land use, whereas microbial biomass-C and N contents

were primarily affected by soil properties; in turn, soil
enzyme activity was primarily affected by the interaction
between land use and Pb pollution level. Although we only
evaluated two types of human activity, namely, Pb mining
and smelting, the production, use, and disposal of a large
number of Pb-containing industrial products can also cause
severe soil Pb pollution. Therefore, the impact of different
Pb sources on the environment warrants further research.
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