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Abstract
Increasing demand for non-biodegradable plastics undesirably leads to their accumulation and calls for an appropriate solution
for this global crisis. Environmental impacts of PET waste have long been addressed; although some remedies have been
proposed, their extensive use in the modern world use demands new studies and recycling techniques. It shows the inadequacy
of previous solutions to eliminate this environmental problem. Therefore, researching this subject should not be considered an
insignificant issue. Distinctively, this review article has a specific reliance on the use of recycled PET fibers in the production of
high-consumption and value-added products that, in addition to considering environmental aspects, can also be attractive to the
market. This article deals with recent studies in three product categories (concrete, nonwoven fabrics, yarns) made from recycled
PET fibers and shows the high potential of PET fibers for the future industry.
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Introduction

The reduction of making waste in the world and the return of
recyclable materials is highly focused by researchers, and due
to the increasing need of the international community, atten-
tion to solving this crisis is more than before, such that the
proposed new methods pay more attention to the economic
aspect (AliAkbari et al. 2020). Today, plastics are an integral
part of our modern life and have been widely used due to their

low cost of production, ductility, molding in different sizes,
and some other unique properties (Barnes et al. 2009;
Jambeck et al. 2015; da Costa et al. 2016; De Sá et al.
2018). Their applications include packaging, agriculture, elec-
tronics, and construction (Idumah et al. 2019). Presumably,
the main reason for the plastic waste crisis is their very long
life cycle, which makes it necessary to recycle or reuse them
(Li et al. 2019a; Li et al. 2019b). The production of polymers
in 2018 is reported to be around 359 MTs, and it is predicted
that in the next 30 years, the production of these materials will
triple (Lebreton and Andrady 2019; Tournier et al. 2020). It is
estimated that PET accounts for 18% of the world production
(Leng et al. 2018) and 7.4% of European plastics production
(Europe 2018). A small amount of this PET waste is recycled,
and the rest is left without recycling, regardless of their de-
structive effects (Chinchillas-Chinchillas et al. 2020). Also,
about 1 million plastic bottles are wasted every minute and
are estimated to double in the next 20 years (Magnier et al.
2019), and that many of these bottles are made of PET. As the
high level of concern about PET waste becomes clear, it is
necessary to apply global laws and mechanisms to reduce the
pollution of these plastics. Maybe the most important concepts
in this regard to reduce plastic waste are the life cycle assess-
ment (LCA) and circular economy (CE) (Lonca et al. 2020),
which we will explain in the next paragraph about this
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concept. Figure 1 summarizes the applications of plastics,
production, general classification, and the concept of LCA.

Recycling non-degradable plastics significantly reduces
this waste environmental damage by reducing the accumula-
tion in the environment and reducing the need for oil mining
(Bataineh 2020a). Life cycle assessment (LCA) is an objective
process for assessing the environmental effects associated
with certain products, processes, or activities that are per-
formed in the process of recycling PET waste, and shows
the recycling results in a significant reduction in biological
impact, reducing greenhouse gas (GHG) emissions, and fossil
fuel consumption, and eventually, compared with other PET
disposal schemes (Saleh 2016; Zhang and Wen 2014;
Nakatani et al. 2010; Gomes et al. 2019). High recycling rates
lead to high net environmental benefits, so the use of PET
waste to product manufacture is increasing that social and
environmental values have led to this growth (Foolmaun and
Ramjeeawon 2013; Zhang et al. 2020). LCA is an effective
method for environmental and economic analysis and man-
agement if combined with life cycle costing (LCC) analysis.
By considering the systematic quantity of inputs and outputs
of targeted products and processes, LCA and LCC can signif-
icantly help improve decision-making, products, and policies
(Hong et al. 2018; Ye et al. 2018). About the concept of

circular economics of plastics and especially PET, this theory
should link dynamic research with the prediction of social,
environmental, and economic consequences. Also, this theory
should provide rational solutions to current misguided poli-
cies, and achieve a successful circular economy about to plas-
tics, and studied possible complementarities between chemi-
cal and mechanical recycling properties. Fortunately, in recent
years, many models have been proposed to achieve the stated
goals related to PET (Cámara-Creixell and Scheel-
Mayenberger 2019; Majumdar et al. 2020; Sardon and Li
2020; Shi et al. 2020; Velásquez et al. 2020; Bora 2020).

PET production reaction is carried out by ethylene glycol
and terephthalic acid or dimethyl terephthalate monomers
(Bai et al. 2020). During this reaction, poly-(ethylene tere-
phthalate) is produced as the main product and water/
methanol as the byproduct. The reaction is accelerated in the
presence of a suitable catalyst (metal oxide or acid). Because
the reaction is reciprocating, according to the Le Chatelier
principle, by removing the byproducts under vacuum and high
temperature, the reaction can be inclined towards polymer
production. The reaction steps are as follows: (1) Due to the
reaction of monomers, a low-viscosity pre-polymer is pro-
duced. (2) Polymer viscosity increases through a melt phase
of additional condensation-reaction (> 280 °C). (3) Under

Fig. 1 A summary of the
applications of plastics, their
production, general classification,
and the concept of LCA
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vacuum, the esterification reaction products such as H2O or
ROH and further monomers are removed. (4) The melt is
expelled into PET pellets (low viscosity). (5) Further conden-
sation is done during a solid-state post-condensation (SSP)
mechanism that makes crystalline pellets (Duh 2002;
Mendiburu et al. 2020; Wang et al. 2019; Welle 2011;
Ravindranath and Mashelkar 1984). PET is produced in 4
commercial grades, which are fiber (textile, and technical
and tire cord), film (biaxially oriented PET film, and sheet
grade for thermoforming), bottle (water bottles and carbonat-
ed soft drink), and monofilament (Gharde 2020; Naz et al.
2020; Bethke et al. 2020; Anjum et al. 2020). A schematic
of the PET production and the processes performed can be
seen in Fig. 2.

Commonly, the technology of recycling can be categorized
into 4 classes, namely primary, secondary, tertiary, and qua-
ternary approaches (Kumar 2020). Product recycling back in-
to the first state is primary recycling or closed-loop recycling.
When the recycled product has less physical, mechanical, and
chemical properties and even new applications, it is secondary
recycling or open-loop recycling. If the process of recycling is
done by pyrolysis, gasification, and hydrolysis and waste
change to simple chemicals or fuels, it is tertiary recycling.
When the heat energy from the incineration of solid waste
materials is used in the recycling process, it is quaternary
recycling (Esi and Baykal 2020). Recycling post-consumer

waste PET bottles and conversion to recycled PET (R-PET)
fibers are secondary recycling (Ronkay et al. 2020).

Generally, there are two methods for PET recycling: me-
chanical and chemical. In general, in the chemical method
(16% of recycling), the reverse of the polymerization reaction,
i.e., depolymerization, occurs and the primary monomers are
obtained (Al-Sabagh et al. 2016; Scremin et al. 2019;
Dębowski et al. 2019). Chemical recycling is less used be-
cause it causes destructive changes in properties such as me-
chanical, thermal, and electrical conductivity (El Essawy et al.
2017). The mechanical method, which accounts for 84% of
recycling, includes collection, sorting, washing, and shred-
ding (Ragaert et al. 2017; Maris et al. 2018), and due to the
disadvantages of chemical recycling, mechanical recycling
and products from mechanical recycling use are the best so-
lution for managing this waste (de Lima et al. 2020). Also,
incineration and landfill are also two unprincipled methods to
prevent the accumulation of PET in some areas, which im-
poses high environmental damages. Incineration of PET re-
leases large amounts of greenhouse gases and toxic substances
into the atmosphere, which is contrary to the goals of a low-
carbon economy (Zander et al. 2018; Zheng and Suh 2019;
Song and Hyun 1999).

Given the environmental hazards of PET waste and the
acceptable performance of mechanical recycling, we want to
study on PET mechanical recycling in recent years. The

Fig. 2 PET production
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difference between this review article and with most of the
studies in the use of recycled fibers is that this article is spe-
cifically dedicated to recycled PET fiber applications, and our
aim in this paper is to elucidate the high potential of recycled
PET fibers in various products.

Products Made from R-PET Fibers

The polyester used in bottles can also be applied to produce
fibers, especially filament yarn, although this is a new issue
and has become an interesting topic for environmentalists
(Abbasi et al. 2020). Bottles and containers of PET by a me-
chanical process change to fibers and other products which is
a simple, cost-effective, and environmentally friendly process
(Albini et al. 2018). Figure 3 shows the products that are
outcome by PET recycling.

In the recycling process, small flakes from the bottles go
into the dryer and after drying, they enter the extruder, then
after the extrusion process, they turn into yarn and fabric
(Montava-Jorda et al. 2020). Doan et al. (Doan et al. 2020)
prepared R-PET fibrous membrane by electrospinning and
applied them as an oil-water separator. Nonwoven fabrics,
air filters, and smoke filters are another product from different
applications of recycled PET fibers. Because of increasing
worries about environmental air pollution, filtration is one of
the best applications for ultra-thin R-PET fibers. R-PET non-
woven fabrics due to their porous structure, mechanical prop-
erties, and low cost of production are used in dust filtration
(Strain et al. 2015). Also, the flakes can be cut and used to
reinforce concrete. Recycled PET fibers have the potential to
replace virgin PET (V-PET) fibers, and further research can

uncover the potential of these fiber applications. For this pur-
pose, in the following, we reviewed three applications of
recycled PET fibers.

Concrete

The construction sector and cities in Europe are responsible
for 50% of greenhouse gas emissions, and the cement and
steel industries account for 10–12% of total greenhouse gas
emissions (Favier et al. 2018). In recent years, new approaches
to building materials have been developed to reduce green-
house gases (Zhao et al. 2020; Rasmussen et al. 2020). About
cement production, low-carbon approaches can reduce green-
house gas emissions by up to 80% (Giesekam et al. 2016). The
use of recycled materials in concrete production can greatly
contribute to the goals of low carbon and circular economics
(Nasr et al. 2020); it is also important to reduce the cost of
concrete production (Mariri et al. 2019). One of the techniques
to reduce the hazardous impact of PET waste on the environ-
ment and reduce the costs of building material is to recycle it
as a building material as an alternative to sand or fibers added
to concrete (Adnan and Dawood 2020). Recycled fibers used
in concrete can be prepared in two ways: (1) after collecting
used bottles, they are washed, dried, and cut to specific dimen-
sions (de Luna and Shaikh 2020). (2) Pellets R-PET bottles
are melted, 20–100 fibers are then extruded from the nozzle,
and are drawn into fibers (Ochi et al. 2007). Finally, the fibers
produced in both methods are used in the concrete production
stage.

The data in Table 1, which are collected in connection with
the use of recycled PET fibers in concrete, provide

Fig. 3 Recycled PET products
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Table 1 Addition of recycled PET fibers to cement and concrete

Type of fiber Methods and important findings Ref.

PET waste fiber The amount of PET fiber in concrete (short or mixture of short and long fibers)=0.75%: (Mohammed and
Rahim 2020)1 - Compressive strength range=70.15 to 89.82 MPa

2 - Maximum strength reduction=29.81%

3 - Elastic modulus enhancement=21.8%

4 - Tensile strength loss range=9.1–13.6%

5 - Tensile strength range=83.03–96.33%

6 - The presence of PET recycled fibers in concrete had a relatively good effect on crack
control.

7 - Recycled PET fiber–reinforced concrete had a relatively small effect on the final load
capacity.

Recycled PET Fiber 1 - Residual strength measured of 7% (JSCE standard) (de Luna and
Shaikh 2020)2 - Tensile strength=104

3 - Pullout stress=63

4 - Demonstrated anisotropy in the tensile capacity and theory of failure (Mohr criterion)

5 - Negligible PET anisotropy

6 - Superior interfacial bond performance

7 - Similar flexural strength (regardless of fiber lengths)

8 - The number of bridging PET fibers diminished flexural load capacity.

PET waste PET volume 0 to 15%: (Nikbin and
Ahmadi 2020)1 - Increased Fracture energy (0% to 15% PET)

2 - Fracture energy:

2.1 - Normal concrete up to 41.3 N/m (initial value=31.3 N/m)

2.2 - Rubberized concrete up to 55 N/m (initial value=42.8 N/m)

3 - Lowered brittleness number

3.1 - Normal concrete: 35.2%

3.2 - Rubberized concrete: 22.5%

4 - Increased Cf, in size effect method (SEM) and a*∞ in boundary effect method (BEM)

5 - Decreasing tensile strength with PET increasing

6 - Increasing surface coarseness

7 - Observing bridging of flaky shape PET particles between two cracked surfaces in a tensile
fracture

8 - Growing concrete ductility

9 - Lower PET value leads to linear elastic fracture mechanic

Waste PET bottle The percentages of fiber used were 0.5, 1.0, 1.5, and 2: (Manaf et al. n.d.)
1 - Best results in 1% of PET: 36.3 MPa for compressive strength of concrete mix at 7 days

and 43.5 MPa for 28 days observed

2 - Fine aggregates (FA): 0.075–5 mm/coarse aggregates (CA): 5–20 mm/the dimensions of
PET fibers: 25×5 mm

3 - Ultrasonic pulse velocity (UPV) method was used to measure strength in situ of concrete

4 - Ordinary Portland Cement (OPC) was used

5 - As the volume of PET increased, the plasticity of fresh cement decreased.

6 - Due to the negative effect of increasing the water ratio, plasticizer or water reducing
admixtures are used.

7 - Microcracks and macrocracks due to compressive loading were observed in the space
between the fibers.

PET waste fibers (PETWF) In this study, hand fibers are regular-shaped fibers, and machine fibers are irregular-shaped
fibers.

(Adnan and
Dawood 2020)

1 - The optimum percentage of PET is 1.5%, and themaximum fiber limit for the production of
homogeneous concrete is 3%.

2 - Compressive strength:

2.1 - Machine fiber:

2.1.1 - 3% PET: +1.5%
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Table 1 (continued)

Type of fiber Methods and important findings Ref.

2.1.2 - 1.5% PET: +2.11%

2.2 - Hand fiber:

2.2.1 - 3% PET: −17.75%
2.2.2 - 1.5% PET: +42.08%

3 - Flexural strength (10×10×50 cm3):

3.1 - Machine and hand fibers had little effect on flexural strength

4 - Load deflection:

4-1 A slight reduction in the ultimate load. However, it showed a positive effect on the
ductility of concrete (2 to 5 times the reference beam).

5 - NC was used

6 - As the amount of PET in fresh concrete increases, its workability decreases.

7 - In general, the presence of PET in cement reduced the flexural strength and improved the
compressive strength (as an exception, the 1.5% PET mixture increased the flexural
strength).

8 - Prevents concrete from breaking

9 - In the presence of PET, initial stiffness increases and secant stiffness decreases.

PET waste fibers (PETWF) 1 - Improved the flexural strength (Ali et al. 2020)
1.1 - With optimum PET fibers: 1%

1.2 - Decreased compressive strength >2% PET

2 - 33% lower dry density

3 - Increase in permeability coefficients (improving water permeability)

4 - Adding expanded polystyrene (EPS) and PET: better porosity ratio

5 - Adding PET fibers: improve abrasion resistance

Recycled waste PET bottle Fiber
(RWPBF)

1 - The percentages of fiber used were 0.2, 0.4, 0.6, and 0.8, which showed the best results in
0.4% in the second mix, which contained 10% metakaolin (MK).

(Thomas and
Moosvi 2020a)

2 - The dimensions of PET fibers: 50×2–2.3 mm/tensile strength of RWPBF: 989 MPa/elastic
modulus of RWPBF: 0.705 × 104 MPa

3 - The percentage combination was used to prepare M50 grade concrete.

4 - In the first mix, all Ordinary Portland Cement (OPC) was used and in the second mix, 90%
of OPC and 10% of metakaolin (MK) were used.

5 - In this study, waste-recycled PET bottles were cut non-instrumentally.

6 - Formaldehyde sulfonate was used to increase the flowability.

7 - RWPBFwas added after mixing dry cementitious materials and water in the final stage and
then molded.

8 - There was a decrease in the slump in all percentages of fiber.

9 - For a mixture containing 10%MK and 4% RWPBF, a 10.67% and 84.6% improvement in
compressive and tensile strength was observed, respectively.

Waste PET bottle 1 - Dimensions of PET fibers: (40 × 3.5 × 0.3) mm and added at 1% vol% (Alani et al. 2020)
2 - The reduced flowability of the mixture with PET fibers because of cross-crossing and

cluster formation and high specific surface area of them.

3 - Compressive strength of mixtures containing PET fibers decreased.

4 - The presence of PET fibers improves the final flexural strength at the ages of 28 and
90 days because of the capability to absorb a portion of the load applied by them.

5 - The presence of PET fibers in cement mixture resulted in ductile behavior, improving the
splitting tensile strengths and enhancing tensile strain capacity, and decreasing elasticity
modulus.

6 - Increasing in flexural characteristics and energy absorption capacity of concrete slabs is a
result of addition of PET fibers.

7 - A mixture of 50% Ultrafine Palm Oil Fuel Ash (UPOFA) and 20% Silica Fume (SF) as a
binder with cement, and 1 vol% PET fiber was prepared.

8 - Stabilize the generation of cracks and with increasing stress under a compression load
absorbed a part of the deformation.
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information about the physical and mechanical properties of
concretes containing these fibers.

Concrete has relatively low tensile strength, low ductility,
and is prone to cracking (De Silva and Prasanthan 2019). The
information in Table 1, in addition to confirming the improve-
ment of the mechanical and physical properties of concrete, in
the presence of PET fibers, clarifies the fact that the fibers

prevent cracking or expansion of cracks. It has also been
proven that the presence of fibers prevents corrosion processes
in reinforced concrete structures. It can be said that the main
function of fibers is to improve the strength and durability of
the structure by preventing the formation of microcracks that
occur naturally in the early stages of the life of the structure,
which is known as the “sewing effect” (Foti 2019). In general,

Table 1 (continued)

Type of fiber Methods and important findings Ref.

9 - The bridging effects of PET fibers inhibit the development of cracks and with increasing
stress under a compression load absorbed a part of the deformation.

Recycled Waste PET bottle fiber 1 - Recycled PET fibers were cut to a length of 20 mm. (Mariri et al. 2019)
2 - Samples with PET fibers result in increasing ductile failure.

3 - PET fiber remarkably enhanced the unconfined compressive strength (UCS) of the stabi-
lized soil.

4 - With the addition of PET fiber up to 0.5%, UCS and residual stress enhanced.

5 - For 4% cement, UCSmax is created in 0.5% PET fiber.

6 - The addition of PET fibers into the zeolite-cement-loess mixture cause to prevent cracks
and increase cohesion and tensile strength due to friction between PET and soil particles.

7 - For treated loess with cement and 10% zeolite, the secant elasticity moduli (E50) with a
different content of PET fiber reduced.

8 - Bond strength and friction between the fiber and the soil matrix improve due to attaches
their surface into soil particles.

9 - Improving soil strength is arising from graining interlock soil into a unitary coherent matrix
because a lot of the fibers function as a spatial three-dimensional mesh.

10 - After tension cracks formation, PET fibers as bridges stopped crack expansion.

Recycled PET fibers The percentages of fiber used were 0,0.5, 1.0, and 1.5: (De Silva and
Prasanthan
2019)

1 - Best results in 1% of fiber; 15.3%, 22.4%, and 18.7% increase in compressive strength,
flexural strength, and tensile strength were observed, respectively.

2 - 0.7 mm and 50 ±mm are the length and diameter of PET fiber respectively

3 - 20% cement was used in the mix used and also optima-100 used as an admixture.

4 - In this experimental study, the application of PET fiber in floor concrete has been studied
and analyzed.

5 - Compressive strength of concrete in combination with low percentages of PET fiber
increased and then with increasing PET fiber, compressive strength decreased.

6 - Flexural strength and energy absorption increased by 0 to 1.5% of PET fiber.

7 - With an increasing percentage of PET fiber, the parameter slump showed a downward
trend.

8 - In the test of impact resistance of concrete with 1% PET fiber, it showed about twice the
superiority of concrete with 0% PET fiber.

Recycled PET fiber from the
chopping of PET bottles

1 - Compressive strength of mixture reduced with enhance in fiber content. (Shaikh 2020)
2 - ACG mixture shows a higher compressive strength than two another.

3 - The compressive strength of geopolymer mixture with PP fibers is higher than the same
mixture with PET fibers.

4 - Flexural strength of ACG composite contains PET fiber is enhanced with the amount of
fibers from 1 to 1.5 vol% but no remarkable increase in CC and CFA.

5 - All of the mixtures with PET fiber have higher tensile strength than the same ones with PP
fiber.

6 - Tensile strength of ACG with 1.5 vol% PET fiber is the lowest one.

7 - Extension capacity at peak load of mixtures with PP fiber is higher than PET fiber.

8 - Three mixes with 1 and 1.5 vol% PET and PP fibers: (a) ambient cure geopolymer (ACG),
(b) cement composites (CC), and (c) cement-fly ash (CFA) composites

9 - Interface bond of PET with ACG is the lowest one.
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concerning the studied parameters, PET fibers increased flex-
ural strength, ductility, and unconfined compressive strength
(UCS) and decreased drying shrinkage of mortar, total poros-
ity, and compressive strength. This technique is attractive,
both economically and environmentally. Also, the informa-
tion presented in Table 1, that was collected from recent stud-
ies, confirms the improvement of the physical and mechanical
properties of the resulting concrete. The important effects of
PET fibers on concrete can be seen in Fig. 4 comparatively.
Given the attractive advantages mentioned, it can be hoped
that recycled PET fibers will be widely used in concrete. Of

course, to achieve this goal, in the future, efforts must be made
concerning the following: esthetic improvement of these
building materials, better physical and mechanical perfor-
mance, reduction of production costs, more attention to re-
search and development units, and so on.

Nonwoven

Various definitions have been given for nonwoven fabrics
(Karthik and Rathinamoorthy 2017a). Nonwoven fabrics, un-
like woven fabrics, are made directly from short or long fibers

Loss Improve

crack control and final load capacity

Elastic modulus and comressive strength

Fracture energy and brittleness

Prevent of breaking

Tensile strength

Workability

Fig. 4 Comparison of increasing
and decreasing properties of
recycled PET fibers on concrete

Fig. 5 The structural differences between nonwoven and woven fabrics
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Table 2 Use of recycled PET fibers to produce nonwoven fabrics

Type of fiber Methods and important findings Product Ref.

Recycled PET bottle flakes 1 - Air permeability in R-PET filters was 7–15% higher than V-PET and so filtration
efficiency can be better.

Filter fabric medium (Debnath et al.
2020)

2 - Enhancing fabric weight (GSM) caused decrease air permeability of nonwoven
fabrics with both of R-PET and V-PET.

3 - GSM optimum for R-PET filter fabrics is 504 g/m2.
4 - Fiber fineness is 1.66 decitex, staple length is 42 mm, and crimp density is 10

crimps/cm.
5 - Higher inter-fiber cohesion and better interlocking of fibers during needling in

V-PET was caused by higher surface roughness than R-PET.
Recycled PET bottle flakes 1 - Enhancing GSM caused higher filtration efficiency of nonwoven fabrics

manufactured with R-PET and V-PET such that V-PET filter fabric (VPFF) always
2.11–3.54% higher than R-PET samples.

Dust filter (Chauhan et al.
2020)

2 - Dust-holding capacity in R-PET filter fabrics is better than V-PET samples.
3 - R-PET fibers compared with V-PET fibers have a lower surface roughness causing

less cohesion of inter-fiber in them.
4 - GSM optimum for R-PET filter fabrics is 597 g/m2.
5 - Denier, staple length, and staple length of V-PET fibers and R-PET fibers are 1.5,

42 mm, and 10 crimps/cm, respectively.
Recycled high-strength PET 1 - The tensile strength of thermal bonding points is lower than high-strength PET

fibers.
Flexible stab-resistant

hybrid fabric
(Chuang et al.

2019)
2 - Increasing the amount of recycled high-strength PET fibers resulted in higher

tensile and tear strengths.
3 - PET matrices nonwoven fabrics have low porosity and compact structure.
4 - PET fibers reduce the synergistic effect with LMPET fibers.
5 - The sample contains a lower amount of LMPET fibers which has the highest tensile

strength.
6 - The sample contains 10 wt% of LMPET fibers, and 90 wt% of recycled

high-strength PET fibers showed the maximum tearing strength.
7 - The sample with a lower amount of LMPET fibers has the highest bursting

strength.
8 - Fiber fineness is 1000D/192f, fiber length is 40–65 mm, and single fiber strength is

8 g/d.
9 - Wavy or crimp staple fibers enhance the friction.
10 - The ratio of PET staple fibers to low-melting-point PET (LMPET) fibers was 9:1,

7:3, and 5:5.
(1) V-PET, (2) R-PETPC, and

(3) R-PETPC/PI
1 - All fabrics have enough tensile and tear strength for vehicle needs. Vehicle seat cover (Albini et al.

2018)2 - R-PETPC/PI surface after the esthetic wear resistance test has not a good answer.
3 - V-PET and R-PETPC fabrics have well wear resistance and high mechanical

properties.
4 - R-PETPC can be a good alternative to V-PET textiles in the automotive.
5 - V-PET is virgin PET fibers; R-PETPC is post-consumer recycled PET fibers; and

R-PETPC/PI is a blend of post-consumer and post-industrial PET
Recycled Kevlar fibers and

recycled high-strength PET
fibers from wasted selvage
of Kevlar and PET woven
fabric.

1 - Air permeability reduced with the enhancing of PET fibers. Sandwich-structured
nonwoven fabric

(Lin et al.
2020)2 - P300 with a depth of needle 15 (P300–15), indicated the lowest air permeability.

3 - Tensile strength, tear strength, and burst strength enhanced as gaining of the
number of staple fibers such that P300-15 has the highest one such that tensile
strength, tear strength, and burst strength is 400 N, 397 N, and 1957 N, respec-
tively.

4 - Percent ratio of 50/20/30, nylon fibers, recycled Kevlar® fibers make N/K/L-PET
high-strength surface layer.

5 - For low-melting polyester fiber (L-PET) in the surface layer, fiber fineness is 4 D
and fiber length is 51 mm; for recycled high-strength polyester fiber (R-HPET) in
the core layer, fiber fineness is 1000 D, and fiber length is 66 mm.

6 - P100, P200, and P300 have 100, 200, and 300 g/m2 recycled PET wasted selvage,
respectively.

Recycled rapid-melting PET
fiber (R-RM fiber)

1 - Dyeability of R-RM nonwovens > virgin (V-PET) yarn > V-PET fabrics. Automotive interiors (Lee et al.
2020)2 - Dyeability was enhanced by enhancing temperature, time, and liquor concentration.

3 - Sweat fastness shows in grades 4–5 in both acid and alkaline environments.
4 - The rubbing and sweat fastness properties were great.
5 - R-RM nonwoven was dyed uniformly and has a high thermal stability.
6 - Terminalia chebula (T. chebula) is an economical natural brown dye and was

applied for dyeing recycled rapid-melting PET fiber (R-RM) nonwovens.
7 - Because of bulky aromatic rings in PET fibers, they are hydrophobic and so dyeing

them is more difficult.
Rapid-melting PET (RMPET)
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by various methods; for example, one of the general and tradi-
tional nonwoven fabrics is felt (Müller and Saathoff 2015;
Jhang et al. 2020). The structural differences between nonwo-
vens and woven fabrics are shown in Fig. 5 (Karthik and
Rathinamoorthy 2017a). Nonwovens can be produced with 3
processes: dry-laying, wet-laying, and extruded polymer-laying
(Pourmohammadi 2013). The raw materials for the dry-laying
method are textiles; for the wet-laying method they are paper
materials; and finally, in the extruded polymer-laying method,
melted plastics are used (Durga and Kalra 2020). Spunbonded
nonwovens are mainly produced in 3 steps: (1) filament spin-
ning, (2) web formation, and (3) web bonding (Ding et al.
2020). To use recycled PET bottles in the extruded polymer-
laying method of nonwoven production, first, the used bottles
are cut into flakes, and after washing and drying, they are

transferred to the extruder, and the melted PET is used to pro-
duce nonwoven fabric in this method. In Fig. 5, you can see the
differences between knitted, nonwoven, and woven fabrics.

Fusible nonwoven fabric has been so popular since the mid-
twentieth century that it accounted for 80% of the market in the
early twenty-first century. At first, these products were connect-
ed with the help of binders, and then in the 1960s, the first
binder-free nonwoven was produced. In the 1970s, the produc-
tion of nonwoven began in Kaiserslautern and the industry
gradually expanded around the world (Karthik and
Rathinamoorthy 2017b). One of the attractions of producing
nonwoven fabrics versus woven fabric is its low production
cost (Jeon 2016). The other is the ability of nonwoven fabrics
to be expanded, followed by the expansion of the market for
nonwoven fabrics (). The applications of nonwoven fabrics are

Table 2 (continued)

Type of fiber Methods and important findings Product Ref.

1 - The chemically recycled bicomponent polyester fibers could substituted for virgin
bicomponent polyester fibers very well.

Nonwoven fabrics for
automotive interiors

(Choi et al.
2018)

2 - Thermal bonding between the fibers and thermal shrinkage in R-RM than the virgin
was produced faster.

3 - Sample weight enhanced with higher temperature and time.
4 - The thickness of R-RM nonwoven fabrics reduced with temperature and time.
5 - Thermal shrinkage of the nonwoven fabrics enhanced by going up the temperature.
6 - R-RM nonwoven fabrics have better thermal shrinkage than the virgin.
7 - In higher temperatures, the strength of the R-RM enhanced, but wickability and air

permeability of them reduced.
8 - Tensile stress andmodulus of the recycled PET nonwoven fabrics enhanced slowly

by going up the temperature.
9 - Chemically recycled bicomponent PET fibers were compared with virgin bicom-

ponent PET fibers and because of similar properties, they can substitute for them.
Recycled PET Fiber-driving

bottle
1 - In this study, 7 samples were tested, one sample of virgin fiber PET was used, six

samples of recycled fiber PET taken from bottles were used and one sample of
bicomponent PET was used.

Nonwoven fabrics (Atakan et al.
2018)

2 - The optimal composition selected contained 85% recycled PET and 15% bicom-
ponent PET, which suggested that it could be used instead of 80% virgin PET and
20% bicomponent PET.

2 - In general, fibers with longer lengths showed better abrasion resistance in the final
product.

3 - The virgin PET had more tenacity and less elongation than the other samples.
4 - In this article, recycled PET fibers are used in the made of nonwoven automotive

carpets with high abrasion resistance by the needle-punching process.
5 - In order to achieve economic and environmental goals, recycled PET fiber along

with virgin PET fiber was used to make the product with acceptable quality.
6 - Replacement of recycled PET in the percentage used in the final product can bring

significant economic benefits to the manufacturer, which was investigated in this
study.

micro R-PET fibers and PLA 1 - R/Z-PET/nano-PLAmat has a high filtration efficiency of 99.992%, a low-pressure
drop of 201.11 Pa, and the quality factor value of 0.047 Pa−1.

Air filtration (Deng et al.
2019)

2 - Nano-PLA membrane helped with the filtration yield of mats.
3 - Fluffy zigzag-curved R-PET fibers provide a greater chance for particles to move

within the filtration material.
4 - The fluffy structures remarkably reduce the rate of pressure drop and increase the

dust-holding capacity of mat.
5 - Micro R-PET fibers are the matrix fiber web; the nano-scale electrospun PLA

membrane is the fluffy functional filtration layer.
6 - The fiber fineness: R1.5/N-PET of 1.5 denier (linear shape), R2.5/N-PET of 2.5

denier (linear shape), R/S-PET of 7 denier (S-shaped), and R/Z-PET of 7 denier
(zigzag-shaped).

4   Page 10 of 18 Materials Circular Economy (2021) 3: 4



very wide, such as sound absorber (Özkal and Cengiz Çallıoğlu
2020), apparel (Anderson 2005), medical textiles (Mothilal
et al. 2019), automotive textiles (Atakan et al. 2018), filters
(Chauhan et al. 2019), sanitary masks (Opálková Šišková
et al. 2020), and packaging (Lin et al. 2018).

The main chemical fibers used in the production of nonwo-
ven fabrics are rayon viscose, polyester, polyamide, and poly-
propylene. PET is the main raw material of fiber polymers and
recently microfiber nonwoven added to the applications of PET
(Albrecht et al. 2006). Today, it can be said that all PETwaste is
recycled. Three quarters of the total production costs of PET
fibers are related to its rawmaterials; so one of the main ways to
reduce the production costs of these fibers is to use recycled
PET materials (Altun and Ulcay 2004). The same is true of the
fibers used in nonwoven fabrics. Hence, from an economic and
environmental point of view, the use of recycled PET in the
production of nonwoven fabrics has attracted a lot of attention.
In Table 2, we summarized the recent researches on the pro-
ducing nonwoven fabrics from recycled PET fibers.

Based on the results in Table 2, nonwoven fabrics prepared
from recycled PET can be applied to filter fabrics, automotive
interiors, vehicle seat cover, flexible stab-resistant hybrid fab-
ric, etc., and lead to reduce environmental pollution. Also, due

to reducing the cost of rawmaterials in the production of these
products, the production cost is reduced. As can be seen from
the comparison chart in Fig. 6, the use of PET recycled fibers
can bring attractive benefits to manufacturers.

Yarn

From 1998 to 2013, the consumption of textile fibers per
person enhanced by approximately 1.5 times, and by 2050
will be twice. Nearly 63% of the textile fibers are made from
petrochemical materials, and polyester is the most popular
fiber in the textile industry (Majumdar et al. 2020).
Recycling reduces the storage and transportation of wastes
and makes new economic and environmental trends
(Sarioğlu et al. 2020). In the last years, R-PET production
has enhanced dramatically, but just 30% of PET bottles were
recycled. R-PET fibers are 20% cheaper than other ones with
similar physical properties (Abbasi et al. 2020). Therefore,
their use in the textile industry, that has a major role in the
trade of any country, has been considered. Recent studies on
the use of recycled PET in yarn production are shown in
Table 3. The recycling process of polyester staple fibers from
the post-consumer PET bottle was indicated in Fig. 7.

Disadvantages Advantages

Improve mechanical properties

 Well wear resistance

Higher tensile and tear strengths

Better filtration efficiency and Higher dyeability

Lower interlocking of fibers

Lower inter-fiber cohesion

Fig. 6 Comparison of increasing
and decreasing properties of
recycled PET fibers on nonwoven
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Table 3 Use of recycled PET fibers to produce yarn

Type of fiber Methods and important findings Product Ref.

R-PET from irregular
garbage bottles

1 - Density, thermal properties, X-ray diffraction, and tensile and crimp properties
of FG-, BG-, and R-PET changed with enhancing the total draw ratio.

Filament yarns (Abbasi et al.
2020)

2 - No enhancement in the elongation at break was observed.
3 - R-PET crystals’ lateral dimension is developed satisfactorily.
4 - V-PET yarns than R-PET have a higher crystallinity of drawn so heat stabili-

zation of them is harder.
5 - The crimp properties of R-PET than BG and FG-PET were better.
6 - In this study, the production of filament yarns is compared with the recycled pet

and virgin pet (fiber grade (FG-) and bottle grade (BG-)).
7 - R-PET has an intrinsic viscosity of 0.75 and a density of 1.383 g/cm3.

Cotton (Co) and viscose
(Cv) blend with R-PET
fiber

1- Ring-spun yarns than vortex-spun yarns have better strength. Vortex-spun yarn and
ring-spun yarns

(Sarioğlu et al.
2020)2 - Cv/R-PET ring-spun yarns had the best elongation.

3 – Vortex-spun than ring-spun yarns have higher unevenness.
4 - Co/R-PET vortex-spun yarns have the highest imperfection index.
5 - Enhancing the amount of r-PET in ring-spun yarns from in both blends, the

hairiness of the ring-spun yarn a little reduces.
6 - Yarns were produced by a ring spinning system and a vortex spinning system
7 - Yarns have 19.7 tex linear density with various blend ratios of Co/r-PET and

Cv/r-PET.
Recycled PET staple fiber 1 - The higher level of crystallinity in V-PET than R-PET resulted in the lower Tm

of it.
Fiber, yarn and fabric (Majumdar et al.

2020)
2 - In R-PET was observed the double melting peaks.
3 - V-PET than R-PET absorbs more energy during melting.
4 - The degree of crystallinity was 51% for V-PET and 48% for R-PET.
5 - Tenacity of R-PET fiber is 15% lower than that of V-PET fiber.
5 - Enhancing the content of R-PET has resulted in decreasing thermal resistance

and raising bending and shear rigidity of the woven fabric.
6 - Mechanical properties of R-PET fiber blended with cotton and V-PET were

analyzed.
7 - R-PET had linear density of 1.4 denier and staple length of 32 mm.
8 - The performance of V-PET and R-PET fibers is not similar.

R-PET flakes 1 - Smoothness, tensile strength, and thermal shrinkage of the fibers and air per-
meability of the fabrics were affected by the kind of clay.

Multifilament fiber and
fabrics

(Kiliç and
Yilmaz 2020)

2 - Heat resistance and limit oxygen index of R-PET fibers were enhanced with the
presence of clay.

3 - Dispersion of clay has a remarkable effect in the properties of R-PET fibers.
4 - 30B had the highest uniformity, thermal stability for boiling, and air perme-

ability of the fabric.
5 - 15A had the highest strength and elongation at break.
6 - R-PET had IV of 0.62 dl/g.
7 - Four types of organically modified montmorillonite clay (Cloisite 10A, 15A,

20A, and 30B) used for R-PET/nanoclay nanocomposites.
Waste PET bottles and

virgin PES yarns
1 - Fabrics including both R-PET and V-PES yarns have enough strength as up-

holsteries.
Binder, pile and chenille

yarns and upholstery
fabrics

(Esi and Baykal
2020)

2 - The weft-breaking strength of fabrics containing 100% r-PET did not change
significantly.

3 - The strength and elongation of fabrics did not change with changing raw
materials of chenille yarns.

4 - Strength and elongation of fabrics were affected by Binder yarn count.
5 - Binder and pile yarns were made from Nm 68/2, Nm 47/1, and Nm 68/1 yarns.
6 - Nm 68/2 yarn was made from folded Nm 68/1.
7 - Chenille yarns of r-PET yarn were applied as weft.

R-PET from bottles,
FG-PET, and BG-PET

1 - The structure was affected by the draw ratio. Bicomponent fibers (Abbasi and
Kotek 2019)2 - Enhancing the draw ratio resulted in going up the tenacity and initial modulus.

3 - BG- and R-PET than FG-PET have better tensile properties.
4 - No obvious boundary between FG-PET and R-PET was seen, so it had good

adhesion.
5 - Shrinkage difference in FG/R-PET was better than FG/BG-PET, so it indicated

higher crimp properties.
6 - Virgin FG-PET has IV of 0.6 and a density of 1.38 g/cm3; R-PET has IV of 0.75

and a density of 7.383 g/cm3; and BG-PET has IV of 0.82 and a density of
1.40 g/cm3.

8 - Bicomponent fiber was made from FG/BG, R/BG, and FG/RPET.
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There is little literature on the properties of R-PET spinning
and yarn production (Abbasi et al. 2020). In Table 3, we
summarized the research conducted to produce yarn and fab-
ric from recycled PET.

According to the results in Table 3 and by comparing me-
chanical and thermal properties of R-PET and V-PET for
yarns, it can be concluded that the use of recycled PET yarns
in the production of more stable and environmentally friendly
fabrics will be useful. Due to the cost-effectiveness of these
materials, studies conducted in this path can be attractive for
the textile industry with different applications. If necessary,
these fibers can be blended with other polymers and create the
required properties of each application. Figure 8 shows a com-
parison of the advantages and disadvantages of using recycled
PET in yarn production.

Summary and Outlook

Integrated recycling systems for plastics are essential, es-
pecially in situations where export and landfilling are not
available (Sheldon and Norton 2020). In Fig. 9, you can

see the price differential in the form of virgin PET minus
recycled PET flakes based on S&P Global Platts’ reports
(Platts, and P. Global, S&P Global Platts 2018). This chart
shows the approximate price difference between virgin and
recycled PET from 2008 to 2019, and surprisingly in 2019,
the price of recycled PET is higher than the virgin one.
This is because of the easier access to virgin PET. The high
volume of extraction of gas and light petroleum liquids, as
well as greater access to new ethylene crackers, has led to a
drop in the price of virgin PET, but on the other hand, the
ban on imports of Chinese mixed waste in 2018 has caused
a relative shortage of recycled PET (Lee 2019; Sears n.d.).
Assuming the price of virgin PET is lower, using recycled
PET is recommended because, despite the lower cost of
materials used, the use of virgin PET brings more environ-
mental and health costs (Engel and Scott 2020; Dubé et al.
2020; Lourenço et al. 2020).

PET has the ability to be recycled over and over again by
washing, drying, and melting and using it in the production of
new products (Gu et al. 2020). Simon et al. (Simon et al. 2016)
examined the life cycle impact of beverage packaging systems
and, after reviewing 20 times PET recycling, concluded that

Fig. 7 Process of producing recycled polyester fibers from R-PET
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the first seven cycles caused a considerable decrease in GHG
emission, but the further enhancement in the number of

recycling does not yield considerable environmental
advantages.

Disadvantages Advantages

Good adhesion

Raising bending and shear rigidity

Better crimp and tensile properties

Easier heat 
stabilization

Lower tenacity and interlocking of 
fibers

Lower hairiness of the ring-spun yarn

Decreasing thermal resistance

Fig. 8 Comparison of advantages
and disadvantage of recycled PET
fibers on yarn
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Fig. 9 Approximate price difference in the form of virgin PET minus recycled PET flakes
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The life cycle assessment (LCA), by evaluation of en-
ergy and material consumptions, emissions in the environ-
ment, and disposal of wastes, can be a helpful way to the
determination of the potential advantages of recycling
works (Martin et al. 2020). Many studies have been pub-
lished on the LCA of recycling post-consumer PET and
have reported that better environmental gains can be
achieved from mechanical recycling compared to landfill
and incineration with energy recovery (Wäger and Hischier
2015; Wäger et al. 2011; Al-Maaded et al. 2012). Bataineh
(Bataineh 2020b) studied the LCA of recycling post-
consumer PET and showed that the total energy require-
ments for the recycled PET flake are 14–17% of the virgin
PET flake. The life cycle impact difference between resin
made of recycled PET and virgin PET mainly is the result
of reducing virgin PET production (Ren et al. 2020).
Finally, it can be concluded that PET recycling presents
more considerable environmental benefits than single-use
virgin PET and can improve eco-efficiency (Mahmud and
Farjana 2020).

In this review article, the goal is to summarize recent stud-
ies on the practical results of returning post-consumer PET to
the production cycle. To implement the macroenvironmental
goals, it is very important to pay attention to economic issues.
In this review, both aspects, economic and environmental, are
discussed, because as mentioned in the previous sections of
this review, relatively high value-added products were obtain-
ed from a wide range of applications of recycled PET fibers,
which in most of the work done did not show a decrease in the
quality of the product or even improved the quality with spe-
cial techniques used.

In three separate sections, the use of recycled PET fibers in
the production of concrete, nonwoven fabrics, and the yarn is
discussed. In the concrete sector, PET recycled fibers are used
without heat treatment and special process, but in the manu-
facture of nonwoven fabrics and yarn, recycled fibers need to
be heat-treated in a special process of production of these two
categories of products.

To improve the properties of products or to obtain new
properties in recycled PET fibers, additives must be used or
blended with another polymer (Chinchillas-Chinchillas et al.
2020; Deng et al. 2019; Sarioğlu et al. 2020; Thomas and
Moosvi 2020b). Therefore, in the future, it may be possible
to get better properties from products made from recycled
PET fibers with new and better auxiliary compounds or to
increase the amount of use of recycled PET fiber without
lowering the quality, which is in line with economic and en-
vironmental goals. Also, the use of modern and innovative
process techniques can further expand the industrialization
of these products.

Funding This study was supported by Amirkabir University of
Technology.
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