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Abstract
Gold nanoparticles (Au NPs) decorated carbon nanofibers (CNFs) have been prepared by an electrospinning approach and 
then carbonized. The prepared Au-CNFs were employed to modifying a screen printed electrode (SPE) for simultaneous 
determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Au NPs are uniformly dispersed on carbon nanofib-
ers were confirmed by the structure and morphological studies. The modified electrodes were tested in cyclic voltammetry 
(CV), differential pulse voltammetry (DPV) and chronoamperometry (CA) to characterize their electrochemical responses. 
Compared to bare SPE, the Au-CNFs/SPE had a better sensing response to AA, DA, and UA. The electrochemical oxidation 
signal of AA, DA and UA are well separated into three distinct peaks with peak potential separation of 280 mV, 159 mV and 
439 mV between AA-DA, DA-UA and AA-UA respectively in CV studies and the corresponding peak potential separation 
in DPV studies are 290 mV, 166 mV and 456 mV. The Au-CNFs/SPE has a wide linear response of AA, DA and UA in DPV 
analysis over the range of 5–40 µM  (R2 = 0.9984), 2–16 µM  (R2 = 0.9962) and 2–16 µM  (R2 = 0.9983) with corresponding 
detection limits of 0.9 µM, 0.4 µM and 0.3 µM at S/N = 3, respectively. The developed modified SPE based sensor exhibits 
excellent reproducibility, stability, and repeatability. The excellent sensing response of Au-CNFs could reveal to a promising 
approach in electrochemical sensor.
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1 Introduction

The current needs on healthcare necessitate rapid and pre-
cise biochemical substance screening or detection in order 
to manage long-lasting illnesses. The human body contains 
several biochemical compounds, it is essential to detect or 
analyse these molecules simultaneously in order to screen 
for diseases [1]. Ascorbic acid (AA), dopamine (DA) and 
uric acid (UA) were the three primary macromolecules 
of humans that are directly associated with the biological 
activity of organisms [2, 3]. AA is commonly used in large 
scale as an antioxidant in food, animal feed, pharmaceuti-
cal formulation and cosmetic applications [4]. DA is a neu-
rotransmitter and plays a very important role in the func-
tion of central nervous, renal, hormonal and cardiovascular 
systems [5]. UA is the major final product of urine catabo-
lism in human body. In a healthy human, the normal level 
of UA in urine is in milli molar range, whereas in serum, 
it is in micro-molar range [6]. Unexpected variations of 
AA, DA, and UA could bring substantial risks in human, 
like such as cancer, diabetes mellitus, hepatic disorders, 
Parkinson disease, hyperuricaemia, pneumonia and kidney 
stones [7–9]. Consequently, it is necessary for designing a 

quick and efficient sensing system that can simultaneous 
detect these three compounds with great sensitivity as well 
as high selectivity.

Over the last several years, various approaches were 
established for the examination of chemical and biological 
substances [10–14]. The electrochemical analysis is the most 
frequently employed to directly detect DA, AA, and UA due 
to their assistances of quick response, inexpensive, simple 
setup, and a broad spectrum of application [15]. But the 
similarity of DA, AA, and UA oxidation signal potentials 
makes it impossible to determine three substances simul-
taneous on bare electrodes [16]. To address this limitation, 
significant attempts have been undertaken to create modified 
electrodes containing a type of metal nanoparticle. The sev-
eral precious metallic nanoparticles, like platinum (Pt) silver 
(Ag) and gold (Au) are frequently employed as enhancing 
the electrochemical response of sensors because of their 
durability, electron transport and biocompatibility [17–19]. 
Au nanoparticles, a developing precious metal nanoparticle, 
have gained popularity among researchers in recent times 
due to their greater quantity and resistance to hazardous 
intermediary substances [20–22]. However, the agglomera-
tion of Au nanoparticles (Au NPs) must be fully controlled 
before large use in electrode construction. Plenty of focus 
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has been associated for the dispersion of nanoparticles to 
prevent agglomeration utilizing low-dimensional carbon 
materials, like reduced graphene oxide, carbon nanotubes 
and carbon nanofibers, because of their significant physical 
and chemical properties [23–25]. The CNFs possesses super 
high surface area, increased specific strength and structural 
adaptability, which could serve as perfect substrate or car-
rier for dispersing Au nanoparticles [26–28]. Because of 
their high mechanical strength, electrical conductivity, and 
chemical stability, carbon nanofibers (CNFs) have always 
been used as electrodes in supercapacitors, secondary bat-
teries, hydrogen evolution, and sensors [29, 30]. Also, the 
CNFs are able to promote the kinetics of electron transfer 
reaction, minimize electrode surface fouling and enhance 
electrocatalytic activity [31].

To integrate sensing tools into the electrochemical point-
of-care system, some criteria must be fulfilled, such as elec-
trochemical cell integration and scaling down, minimum 
sample usage, and reusable operation [32]. Screen printed 
carbon electrode (SPE) provide significant advantages in 
terms of flexibility, surface area, durability and volume of 
electrolyte during the process. Furthermore, compared to 
three separate electrodes, they provide a favourable approach 
for easily operations of electrochemical analysis with com-
prise of a working, counter, and reference electrode coated 
using screen printing methodology [33, 34]. The potential 
window, low background current and simplicity of this sur-
face modification electrode system makes it a perfect sen-
sor for the electrochemical investigation of many substances 
[35]. Biosensors, such as those for glucose, uric acid, and 
dopamine have been designed for clinical biomarker detec-
tion using SPE which acting as base transducers in the sens-
ing process [36–39]. The combination of Au NPs and CNFs 
not only overcomes the aggregation of Au NPs, but also 
improves electrocatalytic activity of SPE modified with Au-
CNFs complex. However, the electrocatalytic activities of 
Au NPs with carbon nanomaterials have been rarely stud-
ied. Recently, Cheng et al. prepared a novel electrochemical 
sensing platform for detection of dopamine based on gold 
nanobipyramid/multi-walled carbon nanotube hybrids [21]. 
Kavya et al. developed a voltammetric sensor for determina-
tion of acetaminophen using glassy carbon electrode modi-
fied by gold nanofibers decorated iron metal–organic frame-
work nanocomposite [40]. However, as far as we know, there 
are no reports on highly selective, sensitive and simultane-
ous detection of AA, DA and UA in their ternary mixture 
by Au-CNFs/SPE.

In this work, Au NPs decorated CNFs (Au-CNFs) were 
prepared using an electrospinning approach and then car-
bonized. The high sensitivity and selectivity were achieved 
in simultaneous detection of AA, DA, and UA using the 
Au-CNFs modified SPE. The electrochemical activity of 
Au-CNFs/SPE was examined by using CV, DPV and CA 

technique. The constructed simple and adaptable sensor 
offers a promising solution for simultaneous detection of 
biomolecules in the human body.

2  Experimental section

2.1  Materials

Polyacrylonitrile (PAN, Mw = 150 000  g   mol−1), N,N-
dimethylformamide (DMF 99%), Gold (III) chloride tri-
hydrate  (HAuCl4·3H2O 99%), AA 99%, DA 98% and UA 
99% were purchased from Sigma-Aldrich. The commercial 
zensor screen printed electrode was purchased from CH 
Instruments (ALS electrode accessories). Sodium dihydro-
gen phosphate  (NaH2PO4, 99.0%), and disodium hydrogen 
phosphate  (Na2HPO4, 99.0%) were obtained from Hime-
dia Laboratory. All the analytical-reagent grade chemicals 
were used without further purification. Phosphate buffer 
solution (PBS 0.1 M) with pH value 7.2 was prepared with 
the mixed solution of  NaH2PO4 and  Na2HPO4. The de-ion-
ized water was utilized to make aqueous medium for entire 
experiments.

2.2  Preparation of Au NPs decorated CNFs

The uniform and bead-free electrospun Au NPs adorned 
CNFs were made using a conventional method, which were 
then carbonized [41]. The PAN (13 wt%) was dissolved in 
DMF and stirring at room temperature until it formed a clear 
solution. Then, 0.130 g  HAuCl4·3H2O was put into the above 
solution and agitated for 12 h. The obtained to a homogene-
ous solution was then filled in dispenser and connected to 
a dispenser pumping machine (KDS 101). The metal ion 
solution flows was adjusted to 0.5 mL/hour using a dispenser 
system. The conductive metal collector have been placed 
15 cm from the dispenser needle tip and covered with alu-
minum foil. A high-voltage power source was used to apply 
an electric field of 10 kV. The entire electrospinning proce-
dure was done at room temperature with in a polycarbonate 
chamber. The prepared  Au3+ ions loaded PAN nanofibers 
was collected and placed in a fume hood for 12 h to remove 
any residual solvent. Subsequently, the above nanofiber mat 
has been pre-treated in the tubular furnace for 2 h at 250 °C 
with heating flow rate of 2 °C  min−1 under environment 
condition. Afterwards, the pre-treated nanofibrous mat was 
carbonized in  N2 atmosphere for 3 h at 900 °C with a heating 
flow rate of 5 °C  min−1. PAN nanofibers were converted to 
CNFs through the carbonizing process. Concurrently,  Au2+ 
ions turned into Au NPs, which were subsequently mostly 
inserted into the CNFs. The resulting nanofiber mats were 
called CNFs and Au-CNFs. Scheme 1 depicts the complete 
preparation procedure for Au NPs decorated CNFs.
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2.3  Characterizations of Au NPs decorated CNFs

The morphological features of the Au-CNFs have been 
investigated using Carl Zeiss FE-SEM in conjunction with 
Energy Dispersive X-ray spectroscopy (XPS, Thermo Scien-
tific, ESCALAB 250). The dimensions and diameters of the 
Au NPs on CNFs were explored by Transmission Electron 
Microscopy (TEM-JEOL, JEM 2010). Further, the forma-
tions along with characteristic binding energy of Au-CNFs 
were examined through X-ray photoelectron spectroscopy 
(XPS) techniques. The CV experiments and EIS were per-
formed using a three-electrode setup BioLogic (SP-300) 
electrostatic system. The electrochemical behaviour of Au-
CNFs/SPE studied using CV at a scan rate of 20 mV  s−1 
within the potential range from − 0.2 to + 0.8 V vs. Ag/AgCl 
in the aqueous solution of 0.5 M  H2SO4 electrolyte.

2.4  Preparation of Au‑CNFs modified SPE electrode

The precise amount of Au-CNFs has been suspended 
in ethanol to produce modifier slurry of 1 mg/ml. The 
prepared slurry solution was subjected to ultra-sonicated 
for 15 min at room temperature. Au-CNFs/SPE was con-
structed by drop casting 5 µL of dispersed Au-CNFs 
solution on the working area of SPE along with Nafion 
solution and dried at ambient temperature as shown in 
Scheme 2. Also, the CNFs/SPE was prepared for com-
parison using a similar process. The 0.1 M PBS (pH 7.2) 
was used to perform all electrochemical measurements. 
The parameters of CV and DPV experiment were set as 
following for detection of AA, DA and UA. CV settings: 

potential range: − 0.2 to + 0.8 V; scan rate: 50 mV  s−1 and 
DPV settings: step potential: 5 mV; amplitude: 60 mV; 
pulse width: 0.05  s; sample width: 0.01  s and pulse 
period: 0.2 s.

3  Results and discussion

X-ray photoelectron spectroscopy (XPS) measurement is 
performed to investigate the chemical composition and sur-
face atomic states of the as-prepared CNF and Au-CNFs. 
Generally, the XPS spectra further analysed the presence 
of Au element in the sample. Figure 1a displays the sur-
vey spectrum of CNFs and Au-CNFs from 0 to 1000 eV 
together with the four unique peaks of Au, C, N, and O ele-
ments of the prepared sample. As seen in Fig. 1b, the C 
1 s peaks of Au-CNFs were de-convoluted into four distinct 
peaks, including the prominent peak found at 284.7 eV, sug-
gesting that the primary sp2 carbon bonds of CNFs [42]. 
Also found were the following: sp3 carbon bonds (C–H) 
at 285.5 eV, C–O bonds at 286.3 eV, and C = O bonds at 
287.7 eV [43, 44]. The de-convoluted N 1 s spectra reveals 
three distinct peaks at 398.1 (pyridinic N), 400.9 (pyrrolic 
N), and 402.5 eV (graphitic N) as demonstrated in Fig. 1c 
[45]. As seen in Fig. 1d, the Au 4f signal of Au-CNFs shows 
two significant signals at 84.0 and 87.7 eV, resultant to the 
spin–orbit splitting doublets Au  4f7/2 and Au  4f5/2, respec-
tively. Moreover, the de-convoluted spectra revealed the 
presence of two chemically distinct Au elements with metal-
lic  Au0 (84.1 and 87.2 eV) and  Au+ oxide (84.9 and 88.6 eV) 
[46]. No obvious separate satellite peaks were observed in 

Scheme 1  A schematic illustration for the preparation of Au NPs decorated CNFs by electrospinning technique
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all of the XPS spectra, demonstrating that several carbon 
layers on the surface of the Au NPs are effective in pro-
tecting the Au from electro-oxidation. Based on the XPS 
results, we concluded that the Au NP-decorated CNFs were 
predominantly metallic.

FE-SEM was used to examine the morphologies of 
electrospun bare CNFs and Au NPs decorated CNFs. Fig-
ure 2 shows the FE-SEM images of CNFs, and Au-CNFs. 
It clearly shows that the smooth surface nanofibers were 
observed without beads and damages, demonstrating the 
very good spinning conditions of the precursor mixture. 
The average diameter of bare and as-prepared Au-CNFs is 
around 100–200 nm. In general, the diameter of nanofibers 
is directly related to the surface tension of electrospinning 
precursor. In this case, a higher voltage is needed to balance 
or control the surface tension due to the presence of metal 
chloride in the electrospinning solution [47]. However, the 
higher voltage could result in a smaller diameter during the 
electrospinning process. For that reason, the suitable solid 
weight of  Au3+ salt in our work has been adjusted to 1% 
Au for PAN weight. Typically, PAN nanofibers were trans-
formed into carbon nanofibers under the condition of  N2 
atmosphere, and  Au3+ ions were reduced simultaneously and 
formed into Au NPs. The Au NPs were directly produced 

and densely grown on the whole surface of CNFs without 
aggregation, as seen in Fig. 2c and d. The size of the Au NPs 
ranges from 10 to 20 nm. Further, the Au-CNFs exhibit dis-
tinct nanofiber morphology and integrated networks, form-
ing the 3D architectures. The close proximity promotes 
effective electron transfer between nanoparticles and CNFs, 
which is crucial to the higher electrocatalytic performance 
of Au-CNFs. Moreover, the existence elements of C, O, and 
Au were confirmed by the energy dispersive X-ray spectrum 
(EDX) analysis as shown in Fig. 2e. The specific peaks of 
Au element also show the presence of Au NPs on the surface 
CNFs. The Au-CNFs exhibited more surface roughness than 
bare CNFs due to the direct formation of Au NPs on CNFs. 
It could increase the surface area and active sites of Au-
CNFs, which would enhance their electrochemical activity 
for analyte oxidation [48].

To further investigate the size and shapes of Au NP dec-
orated CNFs using TEM analysis. Figure 3a and b shows 
TEM images of bare CNFs following the carbonization 
procedure. The bare CNFs exhibited a smooth, transparent 
surface and a diameter around 200 nm. Further, Fig. 3c and 
d illustrates the Au NPs decorated CNFs and it is clearly 
observed that similar size (~ 10 nm) of sphere Au NPs 
are evenly distributed on the CNFs. In addition, HR-TEM 

Scheme 2  Schematic illustration for the construction of Au-CNFs modified SPE by direct drop casting method
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images were further analysed to confirm the crystallinity of 
Au NPs on the CNFs surface. Inset Fig. 3d shows clear lat-
tice fringes indicating the high crystallinity of Au NPs. The 
measured d space value for 0.22 nm matches with the 111 
planer in the FCC structure of Au [49]. Similarly, Au NPs 
have been distributed on the CNFs and are hard to remove 
from the CNFs, indicating that materials sustainability. Also, 
the carbon shell layer can protect the Au NPs from the oxida-
tion and corrosion during the electrochemical process. The 
enhanced interaction between Au NPs and CNFs allows 
electron transfer and enhance the electrochemical activity. 
All these characterization results demonstrate the expected 
Au-CNFs are prepared successfully.

3.1  Electrochemical behaviour of Au‑CNFs/SPE

The electron transfer kinetics and electrocatalytic activity 
of Au-CNFs/SPE was examined using CV in 0.5 M  H2SO4 
medium. The mass of the CNFs and Au-CNFs are kept con-
stant on each modified SPE. As illustrated in Fig. 4a, the 
redox peaks were significantly enhanced at the Au-CNFs/
SPE as compared with those of CNFs/SPE and bare SPE. 
This could be ascribed to the significant properties with 
accelerating electron transfer of the Au-CNFs, which leads 
to improved electrochemical performance. Furthermore, it 
is obvious that Au-CNFs modified SPE exhibited the strong 
oxidation peak at 350 mV and peak current (5.42 mA) as 
compared to bare SPE. The minimum potential value and 
higher peak current response of Au-CNFs/SPE revealed 
that the Au-CNFs performed efficiently for electron transfer. 
Moreover, the increased electrochemical properties of Au 

Fig. 1  XPS spectra of prepared Au-CNFs for a survey spectrum, b C 1s, c O 1s and d Au 4f
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NPs decorated CNFs were enhanced the significant elec-
trochemical performance of the modified electrode [22]. 
Further, Fig. 4b shows the CV curves of Au-CNFs in 0.5 M 

 H2SO4 in different scan rates. The redox currents of Au-
CNFs modified SPE is gradually increase from 20 mV  s−1 
to 100 mV  s−1.

Fig. 2  FE-SEM images of a & b CNFs, c & d Au-CNFs and e EDS spectra of Au-CNFs
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The EIS technique was used to evaluate the modified 
electrode's interfacial charge transfer properties. Figure 4c 
shows the EIS results of CNFs/SPE and Au-CNFs/SPE 
with a solution of 0.5 M  H2SO4 in the range of 100 kHz to 
100 mHz. It was well understood that the typical imped-
ance spectrum consisted of half-circle and a straight-line 
section. At higher frequencies, the half-circle radius rep-
resented the charge transferring resistance (Rct), whereas 
at lower frequencies, the linear section represented the 
diffusing mechanism [50]. The Au-CNFs/SPE exhibited 

a smaller semicircle charge transfer resistance (Rct) (7.1 
Ω) compared to CNFs/SPE (13.2 Ω), suggesting that Au 
NPs decorated CNFs can enhance electron transfer in bare 
SPE. Inset Fig. 4c shows the equivalent circuit diagram, 
which  R1 represents the fluids resistance,  R2 represents 
the surface resistance,  R3 represents the charge transfer-
ring resistance and Q  (Q1 and  Q3) represent the elements 
constant, respectively [51]. The enhancing effects of Au-
CNFs/SPE were greater than those of CNFs/SPE, which 
can be determined by the high contact at the interface of 

Fig. 3  TEM images of a & b CNFs and c & d Au-CNFs and Insert d HR-TEM image of Au-CNFs
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electrode and electrolytes. The results reveal that decora-
tion of Au NPs improved the conductivity of CNFs, hence 
increasing the electrochemical activity.

The electrochemical stability of the Au-CNFs modi-
fied SPE was also evaluated using CV. Figure 4d shows 
the typical CV curves of Au-CNFs/SPE; it is clearly 
observed that no major decrease in redox peak currents 
by the increases in number of cycles. However, the Au-
CNFs modified SPE electrode shows a minor drop in redox 
peak currents after 500 cycles, decreasing only 0.48 mA 
and 0.51 mA, respectively. The observed small drop in 
redox peak currents is attributed by the dissolving of 
active materials in the electrolyte throughout the number 
of cycles. Based on the results, the Au-CNFs/SPE elec-
trode can significantly increase electrochemical stability 
for analyte oxidation.

3.2  Electrochemical detection of AA, DA, and UA

The developed Au-CNFs/SPE electrochemical sensor 
towards the oxidation of AA, DA, and UA were explored 
by voltammetry analysis. The CV curves of SPE and Au-
CNFs modified SPE in independent 1 mM of AA, DA and 
UA as illustrated in Fig. 5. The oxidation of AA, DA and 
UA on SPE (Fig. 5a) exhibited a weak response due to its 
poor conductivity, which causes weak electron transport 
at the electrode–electrolyte interface. The oxidation peaks 
potential of AA, DA and UA were found at 295, 466 and 
531  mV, respectively. It shows that the oxidation peak 
potential separation of AA, DA and UA has insufficient to 
bring grate selective behaviour at SPE. After modifying SPE 
with Au-CNFs (Fig. 5b), the potential peaks of AA, DA 
and UA were entirely separated as three distinct peaks with 

Fig. 4  a CV curves of SPE, CNFs/SPE and Au-CNFs/SPE in 0.5 M 
 H2SO4 at 20  mVs−1, b CV curves of Au-CNFs/SPE in 0.5 M  H2SO4 
at different scan rate of 20, 40, 60, 80 and 100  mVs−1, c EIS spectra 

of CNFs and Au-CNFs and insert shows the equivalent circuit, and d 
CV curve of Au-CNFs/SPE for 500 cycles
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high currents. Moreover, the potentials of AA, DA and UA 
were found at 122, 402 and 561 mV, respectively. This large 
potential difference is sufficient to distinguish and selective 
determination of AA, DA and UA. These findings imply the 
constructed flexible miniature type of Au-CNFs/SPE sensor 
possesses significant effects on the excellent oxidation of 
AA, DA and UA.

Furthermore, the effective method of DPV analysis is 
also used to assess the electrocatalytic activity of Au-CNFs 
modified SPE towards the oxidation of AA, DA, and UA. 
The DPV response of SPE, CNFs/SPE, and Au-CNFs/SPE 
in 0.1 M PBS contained a ternary mixture of 1 mM AA, 
DA, and UA as displayed in Fig. 5c. The SPE showed the 
overlapped broad weak oxidation peak at 225 mV, indicat-
ing that it is not possible to simultaneous detection of these 
three analytes. On the contrary, well-defined DPV oxidation 
peaks were observed at Au-CNFs/SPE with peak potential 

value of 9 mV, 299 mV and 465 mV for AA, DA and UA, 
respectively. The separation of electro oxidation peak poten-
tial for AA-DA, DA-UA and AA-UA are 290 mV, 166 mV 
and 456 mV, respectively. The large separation of the peak 
potentials reveals that the higher electrocatalytic response 
of Au-CNFs could be employed to develop the biosensor 
for simultaneous or selective detection. The possible oxida-
tion mechanism of AA, DA, and UA at Au-CNFs/SPE can 
be described as Scheme 3. Under the experiment condition 
of pH 7.2, there exists an electrostatic attraction between 
cationic DA and negative functional groups on the surface 
of Au-CNFs, which contributes to promote the oxidation of 
DA to dopamine o-quinone. In addition, the hydroxyl groups 
of AA, DA, and UA can interact with the oxygen contain-
ing functional groups on the surface of Au-CNFs to form 
hydrogen bonds, which then weakens the hydrogen bonding 
on the benzene ring of the three substances and promotes 

Fig. 5  CV curves for a SPE, b Au-CNFs/SPE in 0.1 M PBS contain-
ing 1 mM of AA, DA and UA at 50  mVs−1, c DPV curves of SPE, 
CNFs/APE and Au-CNFs/SPE in 1  mM ternary mixed of AA, DA 

and UA and d DPV curves of Au-CNFs in different pH. DPV set-
tings: step potential: 5 mV; amplitude: 60 mV; pulse width: 0.05  s; 
sample width: 0.01 s and pulse period: 0.2 s



Carbon Letters 

the oxidation of AA to dehydroascorbate, DA to dopamine 
o-quinone, and UA to dehydrourate [52].

In the control experiment (Fig. 5c), three distinct oxida-
tion peaks of AA, DA, and UA have been observed in CNFs/
SPE at − 4, 195, and 330 mV, respectively. However, as com-
pared to Au-CNFs/SPE, the ascorbic acid peak current is 
very little, and the DA-UA peak potential separation is very 
close. The Au NPs decorated CNFs have significantly higher 
electrochemical activity than bare CNFs owing to their large 
surface and good conductivity between the electrode inter-
faces. As a result, the significant electrocatalytic response 
of Au-CNFs/SPE offers the simultaneous determination of 
AA, DA and UA.

As seen in Fig. 5d, DPV analysis were used to further 
examine the impact of electrolyte pH (5 to 9) on the oxida-
tion peak potential of AA, DA and UA at the Au-CNFs/
SPE. When the electrolyte pH was less than 6, the analytes 
oxidation peaks overlapped. Further, the identical oxida-
tion peaks with the potential separation of AA, DA and 
UA were observed by an increase in electrolyte pH of 7.2 
and 9. This implies that ions play a direct role in the entire 
electrocatalytic activity, i.e., the electro-oxidation process 
occurs through an electron transfer followed by protona-
tion [53]. Moreover, it is clear that the peak potentials for 
AA-DA and DA-UA are significantly separated at pH 7.2. 
As a result, the Au-CNFs modified SPE allows for the indi-
vidual or simultaneous detection of AA, DA, and UA from 

their ternary mixture over a wide pH range. According to 
separation of peak potential as well as sensing response, 
we chose an electrolyte pH 7.2 for our analysis.

The simultaneous determination of AA, DA, and UA 
on the Au-CNFs/SPE has been examined using the DPV 
approach. Figure 6a, c and e shows the DPV curves for 
particular analyte detection in a ternary mixed solution of 
AA, DA and UA with one analyte concentration changing 
while the other two analytes kept constant. The oxidation 
peak current increases linearly as the specific analyte con-
centration increased. Meanwhile, Fig. 6b, d and f depicts 
a linear range between the analytes concentrations ver-
sus peak currents. The consequent linear range for AA, 
DA and UA determination are 5 to 45 µM (R2 = 0.9984), 
2 to 16 µM (R2 = 0.9962) and 2 to 16 µM (R2 = 0.9983) 
with detection limit of 0.9, 0.4 and 0.3 µM (S/N = 3), 
respectively. Also, the relative standard deviation (RSD) 
obtained were 4.36%, 4.27% and 5.31% for AA, DA, 
UA, respectively. In the simultaneous determination, the 
minimal influences of other analytes are occurring while 
increasing the specific analyte concentration. The com-
parison of the previously reported electrochemical sensors 
for the simultaneous determination of AA, DA, and UA 
and this work is shown in Table 1. It is obvious that Au-
CNFs/SPE shows relatively advantage over other reported 
electrodes at linear range and detection limit. The distinc-
tive structure and electrocatalytic activity of Au-CNFs/

Scheme 3  Schematic illustra-
tion for the electro-oxidation 
mechanism of AA, DA and UA

HO

HO

NH2 O

O

NH2
-2e-

O
HO

HO

O

OHHO

-2e-
O

HO

HO

O

OO

HN

N
H

O

O N
H

H
N

O
-2e- HN

N
H

O

O N

N

O

Dopamine

Ascorbic acid

Uric acids

+ 2H+

+ 2H+

+ 2H+

Dehydroascorbate

Dopamine O-quinone

Dehydrourate



 Carbon Letters

Fig. 6  DPV curves and corresponding linear fit of Au-CNFs/SPE in 
0.1 M PBS containing 2 µM DA, 2µ M UA and various concentra-
tions of AA: 5, 10, 15, 20, 25, 30, 35, 40  µM (a & b), containing 
20 µM AA, 2 µM UA and various concentrations of DA: 2, 4, 6, 8, 

10, 12, 14, 16 µM (c & d) and containing 20 µM AA, 2 µM DA and 
various concentrations of UA: 2, 4, 6, 8, 10, 12, 14, 16 µM (e & f). 
DPV settings: step potential: 5 mV; amplitude: 60 mV; pulse width: 
0.05 s; sample width: 0.01 s and pulse period: 0.2 s
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SPE serve as an attractive platform to develop an electro-
chemical sensor.

The anti-interference ability of modified electrode was 
investigated by chronoamperometry (CA). Several potential 
interferential species such as urea, KCl, NaCl,  Cu2+, human 
serum albumin (HAS) and bovine serum albumin (BSA) were 
selected to evaluate the ability of anti-interference. CA meas-
urement was carried out in 0.1 M PBS at a constant potential 
of + 0.5 V with addition of analytes and interferents as shown 
in Fig. 7a. It was found that the existence of aforementioned 
species showed negligible interferences for simultaneous 
detection of AA, DA, and UA, revealing a good selectivity of 
Au-CNFs/SPE. The stability of Au-CNFs/SPE is evaluated 
by continuous current response of 10 μM AA, 10 μM DA and 
10 μM UA in 0.1 M PBS, respectively, for 2000s as shown 
in Fig. 7b. The applied potentials for the three analytes are 
0.01 V, 0.3 V and 0.4 V for AA, DA and UA, respectively. 
The current signals of the three substances remain basically 
unchanged within 2000s, indicating that the sensor has good 
long-term stability. The reproducibility and repeatability of 
the Au-CNFs/SPE were investigated by DPV in a ternary 
mixture of 20 μM AA, 20 μM DA and 20 μM UA. To con-
firm reproducibility, the oxidation of AA, DA and UA was 
examined separately using five individual measurements on 
different Au-CNFs/SPE prepared independently. Further, Ten 
measurements of Au-CNFs/SPE were taken every 2 days for 
3 weeks, with each test stored at 4 ºC to assess repeatabil-
ity (Fig. 7c and d). The RSD percentage of AA, DA and UA 
are 1.81, 1.76 and 2.59% in repeatability, and 2.14, 1.69 and 
2.72% in reproducibility analysis, respectively. These results 
show acceptable reproducibility and repeatability for Au-CNFs 
modified SPE electrode.

4  Conclusion

In summary, a sensitive and cost effective sensor was 
developed based on Au-CNFs/SPE for simultaneous detec-
tion of AA, DA and UA in ternary mixture. The Au NPs 
decorated CNFs were prepared using an electrospinning 
approach and followed by a carbonization process. The 
Au-CNFs modified SPE have an excellent electrochemi-
cal performance towards the simultaneous detection of 
AA, DA and UA with high oxidation currents and well-
separated peaks in DPV measurements. The correspond-
ing peak separations were 290 mV (AA − DA), 166 mV 
(DA − UA), and 456 mV (UA − AA). The linear response 
of AA, DA and UA in DPV analysis over the range of 
5–40 µM, 2–16 µM and 2–16 µM with corresponding 
detection limits of 0.9 µM, 0.4 µM and 0.3 µM at S/N = 3, 
respectively. Also, the significant properties of Au-CNFs 
modified SPE exhibits quick electrocatalytic responses 
with an improved potential separation. Consequently, the 
specific or simultaneous determination of AA, DA and 
UA on Au-CNFs/SPE could be observed with improved 
sensitivity, repeatability, and reproducibility. The current 
study reveals that Au-CNFs/SPE is a promising approach 
to develop simultaneous electrochemical biosensors.

Table 1  Comparison of different modified electrodes for the simultaneous determination of AA, DA and UA

Electrodes Linear range (μM) Detection limit (μM) Potential separation (mV) References

AA DA UA AA DA UA AA-DA DA-UA AA-UA

RGO/AuNPs 10–1000 0.1–100 0.1–100 5.7 0.69 2.2 220 65 285 [54]
AuNPs@GO/PPy/CFP 10–200 0.2–60 2–360 2.4 0.1 1.6 180 120 300 [55]
CTAB–GO/MWCNT/GCE 5–300 5–500 3–60 1 1.5 1 230 80 310 [56]
AuNPs@MoS2/GCE 20–300 5–200 20–400 3 1 5 – – – [57]
Pt@NP–AuSn/CFP 200–2000 1–10 25–800 5.51 0.13 0.67 134 158 292 [58]
GO–PANI/GCE 150–850 2–14 2–16 50 0.5 1.0 250 190 440 [59]
PdNPs/rGO/GCE 500–3500 3–15 300–1400 100 1 16.67 – – – [60]
PANI–GO/GCE 25–200 2–18 2–18 20 0.5 0.2 320 230 550 [61]
Au–CNFs/SPE 5–40 2–16 2–16 0.9 0.4 0.3 290 166 456 This work
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