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Abstract
Porous carbon nanofiber (CNF) electrodes for supercapacitors were prepared by using polyacrylonitrile (PAN) and cucur-
bituril (CB), which is a macrocyclic compound comprising glycoluril units containing hollow cores. Mixture of PAN and 
CB in dimethyl sulfoxide was electrospun, and thermally treated to produce CNF electrodes. Their thermal stability, surface 
morphology, carbon microstructures, and surface porosity were investigated. Electrochemical properties were measured using 
three-electrode with synthesized CNFs without further treatment as a working electrode and 1 M  Na2SO4 as an electrolyte. 
CNFs derived from PAN and CB exhibited a high specific capacitance of 183.5 F  g−1 and an energy density of 25.4 Wh  kg−1 
at 0.5 A  g−1 with stable cyclic stability during 1000 cycles, which is significantly higher than those for CNFs derived from 
PAN only. This demonstrated that the introduction of CB successfully improved the energy storage performance of CNF 
electrodes.
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1 Introduction

Supercapacitors are one of the energy storage devices which 
have acquired considerable attention due to their fast charge, 
high power density, long life cycles, and temperature-inde-
pendent performance [1, 2]. Recently, these advantages of 
supercapacitors allow them to be used as ancillary devices 
of electric and hybrid vehicles for acceleration and regenera-
tive braking [3]. Supercapacitors include electrochemical 

double layer capacitors (EDLCs), pseudocapacitors, and 
hybrid capacitors [4]. Among them, EDCLs store the charge 
by electrostatic interactions on two symmetric electrodes, 
which are typically porous carbon materials such as acti-
vated carbon. Lack of the Faradaic redox reaction of carbon 
electrodes results in low capacitance and energy density of 
EDLCs, which limits their wide applications. Since energy 
storage performance of supercapacitors has a proportional 
relationship to contact area between electrode and electro-
lyte, enlarging surface porosity of electrode materials is con-
sidered as a good strategy to overcome this shortage.

Cucurbituril (CB) is a nonadecacyclic compound consist-
ing of tetrazocane units fusing glycoluril moieties, which is 
synthesized from urea, glyoxal, and formaldehyde, and its 
shape resembles the shape of a pumpkin containing a hol-
low core [5, 6]. It was found that as the number of glycoluril 
units increases, the internal pore space of the ring becomes 
wider and the molecule becomes flexible [7]. Due to its 
exceptional binding ability and stable pore structures, CB 
has been investigated in a wide range of applications such 
as sensors, water treatment, and drug delivery and so on. It 
was reported that its porous structures are transferred after 
carbonization, making it an excellent precursor for superca-
pacitor electrodes [8].
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Carbon nanofibers (CNFs) are also good candidate for 
EDLC electrodes due to their high specific surface prop-
erties and good conductivity [9]. There are two synthesis 
methods: thermal treatment of electrospun nanofibers of 
precursor polymers, and chemical vapor deposition (CVD) 
using carbon precursors and metal catalyst [10, 11]. For the 
former method, the electrochemical performance of CNFs 
can be optimized by adjusting the chemical structures of 
precursor polymers, and the conditions for electrospinning 
and thermal treatments [12, 13]. Electrospinning is the most 
common way to fabricate nanofibers since the most of poly-
mers and solvents can be applicable. It is also well-known 
that composite nanofibers can be readily produced by mixing 
additives in the polymer solutions, and then electrospinning 
them [14].

Most of the studies on CNFs for supercapacitor elec-
trodes focus on the increase in surface area and porosity 
using sacrificial pore generating agents such as thermally 
degradable substance [15]. During the conversion of pre-
cursor polymers to carbon under high temperature, they are 
thermally decomposed creating pores in the CNF surface. It 
was also reported that precursor polymer blends can convert 
into porous carbon [16–18]. Investigating novel precursor 
composite or blends is critical to obtain highly porous CNFs 
with exceptional energy storage performance. Despite the 
outstanding pore structures of CB, limited research on CB 
in the field of energy storage has been conducted.

The present study is aimed at producing porous CNF 
electrode by thermal treatments of PAN/CB composite 
nanofibers to obtain high energy storage performance. CNFs 
can make them as free-standing electrodes without the use 

of binders while the addition of CB can improve the surface 
porosity of CNFs due to its stable pore structures. Surface 
morphology and carbon microstructures were investigated 
by scanning electron microscopy and Raman spectroscopy, 
respectively. Electrochemical properties were tested by 
assembling a three-electrode cell with pristine CNFs as a 
working electrode, and cyclic voltammetry (CV), galva-
nostatic charge–discharge, and cycling performance were 
investigated.

2  Experimental

Scheme 1 shows the preparation process of CNFs using PAN 
and CB. CB [6] consisting of 6 glycoluril subunits was cho-
sen as a pore generator, and synthesized according to litera-
ture procedures [19]. Glycoluril was suspended in sulfuric 
acid, heated at 70 °C, and then formaldehyde dissolved in 
water was added. While the mixture was stirred at 70–75 °C 
for 24 h and at 95–100 °C for 12 h, crystalline CB [6] was 
precipitated. After pouring the reaction mixtures in water, 
acetone was added to produce precipitate. The mixture was 
filtered and washed with water and dried under vacuum. The 
chemical compositions of synthesized CB [6] were inves-
tigated using an attenuated total reflection (ATR)-Fourier 
transform infrared (FTIR) spectroscopy (VERTEX 80 V, 
Bruker, Ettlingen, Germany) with a germanium ATR crystal.

Seventeen wt% PAN/CB (2:1) dissolved in dimethyl sulfox-
ide (DMSO) was electrospun under an applied voltage range 
from 10 to 15 kV, and PAN only in DMSO was also prepared 
for comparison. Electrospun nanofibers were stabilized at 

Scheme 1.  Preparation of CNFs derived from PAN/CB
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280 °C under air for 2 h and carbonized at 800 °C under nitro-
gen for 30 min to fabricate CNFs. From preliminary study, it 
concluded that electrochemical properties can be improved 
as the content of CB increases. CNFs derived from PAN/CB 
solutions with a ratio of 10:0, 9:1 and 2:1 were prepared and 
showed the energy densities of 13.4, 19.4 and 25.4 Wh  kg−1, 
respectively. It was also observed that the higher content of 
CB induces poor solubility and electrospinnability. Based on 
the electrochemical properties and spinnability, PAN/CB (2:1) 
was chosen. Carbonized PAN and PAN/CB were represented 
as cPAN and cPAN/CB, respectively.

Thermal stability was measured by thermogravimetric 
analysis (TGA) using a DTA-60, DSC-60, Shimadzu, Japan. 
The surface morphology of electrospun and carbonized PAN 
and PAN/CB nanofibers was observed using scanning electron 
microscopy (SEM) via an S-4800, Hitachi, Japan after sput-
ter coating with osmium. Carbon microstructures of cPAN 
and cPAN/CB were studied by recording Raman spectroscopy 
using an XPLORA, Horiba, Japan. Surface area and porosity 
of CNFs were measured using nitrogen adsorption/desorp-
tion on an Autosorb iQ and a Quadrasorb SI (Quantachrome, 
USA). Specific surface area and pore size distribution were 
calculated using the Brunauer–Emmett–Teller (BET) equation 
and density functional theory (DFT) methods, respectively.

Electrochemical measurements were performed on an 
electrochemical workstation (WBCS3000S, Wonatech, 
KOREA) using a three-electrode cell consisting of Pt as the 
counter electrode, Ag/AgCl as the reference electrode, and 
cPAN and cPAN/CB nanofibers were directly used as the 
working electrode without further treatment. 1 M  Na2SO4 
was utilized as the electrolyte.

Cyclic voltammograms were recorded between 0 and 
1.0 V (vs. Ag/AgCl) at various scan rates ranging from 10 to 
100 mV  s−1. Galvanostatic charge/discharge (GCD) testing 
was conducted between 0 and 1.0 V (vs. Ag/AgCl) at dif-
ferent current densities of 0.5–6 A  g−1. The specific capaci-
tance (Csp, F  g−1) was measured using Csp =

Idtd

mV
 , where Id 

is the discharge current (A), td the discharge time (s), m the 
mass of a working electrode (g), and V the voltage win-
dow (V). Energy density (E, Wh  kg−1) and power density 
(P, kW  kg−1) were calculated using E =

IdtdV

2m
 and P =

E

td
 , 

respectively. Capacitance retention by GCD testing after 
5000 cycles was measured to confirm the cycling stability. 
Electrochemical impedance spectra (EIS) were evaluated 
over the frequency range of 100 kHz and 0.1 Hz using a 
0.01 V amplitude on a PEC-L01, Peccek, Japan.

3  Results and discussion

CB was synthesized and its chemical structures were studied 
by FTIR as shown in Fig. 1. It shows distinctive bands at 
1717  cm−1 for the stretching vibration of C=O, at 1464  cm−1 

for the banding vibration of C–H, and 3005 and 2930  cm−1 
for the stretching vibration of C–H of methylene. Significant 
peak at 3440  cm−1 is assigned to O–H of the water.

PAN and CB were dissolved in DMSO and electrospun, 
followed by thermal treatments including stabilization under 
air and carbonization under inert gas. Surface morphology 
of electrospun and carbonized nanofibers was studied by 
observing SEM images as shown in Fig. 2. It is seen that 
both PAN and PAN/CB show continuous and uniform 
nanofibrous structure with average diameters of 660 nm 
and 730 nm, respectively. After stabilization at 280 °C and 
carbonization at 800 °C, they still have nanofibrous structure 
with reduced diameters of 470 nm for cPAN and 570 nm for 
cPAN/CB.

The thermal stability of synthesized CB, and electro-
spun PAN and PAN/CB-6 nanofibers was observed using 
TGA measurements with a heating rate of 10 °C  min−1 from 
room temperature to 800 °C, as shown in Fig. 3. It seems 
the pyrolysis of PAN starts around 300 °C, and the oxida-
tive stabilization temperature was generally based on it [20]. 
During stabilization, linear PAN chains are transformed into 
oriented cyclized ladder structures caused by thermal cross-
linking, and thus the stabilization step determines the carbon 
yield and the graphitic structures resultant CNFs [21]. For 
CB, the weight loss around 250 °C may occur due to the loss 
of hydrated and coordinated water molecules [7, 22]. PAN/
CB shows significant weight loss around 250 °C resulting 
from the decomposition of CB, which is also observed in 
a TGA curve of CB only. It is also seen that 50% of PAN/
CB-6 remains at 800 °C, and the intermolecular interaction 
between nitrile groups in PAN and carbamide groups in CB 
may result in high thermal stability of PAN/CB.

The Microstructure of CNFs derived from PAN and 
PAN/CB was studied by measuring Raman spectroscopy, 

Fig. 1  FTIR spectrum of synthesized CB
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as shown in Fig. 4. Both cPAN and cPAN/CB indicated 
two significant peaks near 1585 and 1350  cm−1, correlat-
ing with  E2g2 graphitic crystallites (G-band) and disordered 
structure of carbon (D-band), respectively. This indicates the 
successful conversion of nanofibers into carbon via thermal 
treatments. The ratio of peak intensities (ID/IG), calculated 
using area under each curve, are 3.36 for cPAN and 3.56 
for cPAN/CB, indicating predominantly disordered carbon 
derived from polymer precursors. Carbon materials derived 
from polymer precursors generally showed the high con-
tent of amorphous carbon. It was reported that the ratio of 
peak intensities is 2.9 for CNFs from PAN and 3.3 for CNFs 
from polybenzimidazole [20, 23, 24]. It was also known that 
carbonized CB is mainly composed of amorphous carbon 
phase [8].

Specific surface area and porosity were measured by 
nitrogen adsorption/desorption, as shown in Fig. 5, and 

specific surface area and pore volumes were calculated, as 
shown in Table 1. It is clearly seen that cPAN/CB exhibits 
higher surface area and pore volume than cPAN. It is also 
noticeable that cPAN/CB has significant increased meso-
pore (with diameters in the range of 2–50 nm) volume of 
0.140  cm3g−1, which is 26.9% of total pores. This means 
that the decomposition and carbonization of CB induce the 
creation of meso-pores on the CNF surface, and large pores 
of carbon electrodes can facilitate the access of electrolyte 
ions and improve the interfacial contact of ions between 
electrode/electrolyte [25].

Electrochemical properties of CNFs were measured in a 
three-electrode system with 1 M  Na2SO4, and CNFs were 
used as a working electrode without adding any binders. 
Figure 6 exhibits cyclic voltammograms (CVs) of CNF elec-
trodes, and both cPAN and cPAN/CB show typical CVs for 

Fig. 2  Surface morphology of a 
as-spun PAN, b as-spun PAN/
CB, c cPAN, and d cPAN/CB 
nanofibers

Fig. 3  Thermogravimetric analysis of a PAN, b CB and c PAN/CB Fig. 4  Raman spectra of cPAN, and cPAN/CB
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carbon electrode in EDLCs. It is obviously seen that cPAN/
CB has higher current densities than cPAN over the whole 
voltage range (Fig. 7). 

Galvanostatic charge–discharge testing was performed in 
the current density range from 0.5 to 6 A/g, the energy stor-
age performance such as specific capacitance, and energy 
and power densities were calculated from the discharge 
curves from 1 to 0 V. Specific capacitances of cPAN and 
cPAN/CB are 96.5 and 183.5 F  g−1 at 0.5 A/g, respectively. 
It is also seen that energy densities of cPAN and cPAN/CB 
are 13.4 and 25.4 Wh  kg−1 at 0.5 A  g−1, respectively, while 
power densities show the identical value of 1.8 kW  kg−1 at 6 
A  g−1. Higher surface area and porosity caused by the exist-
ence of CB may result in significant higher energy storage 
performance.

For CNF electrodes synthesized via electrospinning, most 
of studies focus on enlarging surface porosity by adding pore 
generating materials. Polymers with poor thermal stability 
can be good candidates since they are decomposed during 
thermal treatment creating pores on the CNF surface. Poly-
l-lactic acid (PLLA), poly (ethylene glycol) (PEG), and poly 
(methyl methacrylate) (PMMA) have been reported as pore 
generating materials, and CNFs from PAN showed high 
energy storage performance due to the enlarged surface area 
and porosity [26–28]. CB was chosen as pore generating 

materials since its stable cavity structures can generate pores 
on the CNF surface via thermal treatment. It is known that 
the cavity size of CB can be variable by controlling the 
number of glycoluril subunits [29, 30]. It was found that 
the width of cavities is ranged from 4.4 to 8.8 Å from CB 
[5] and CB [8], which can produce different size of pores 
when they are carbonized. It is known that an electrolyte 
is one of the critical parts to determine the energy storage 
performance by controlling the voltage window. Ionic liquid 
electrolytes show wide voltage window compared to aque-
ous ones (up to 1 V) [31, 32]. However, the bulkiness of 
their ions limits the access to the electrode surfaces, and it 
becomes more important enlarging surface area and porosity 
of electrode when ionic liquids are used as an electrolyte. It 
seems worthy to study the size of pores generated by various 
CBs and to match with size of ionic liquid ions, which can 
result in the optimization of energy storage performance.

It has been reported that high crystallinity of PAN is 
unfavorable to the cyclization during the stabilization 
step, in which the linear polymer chains are converted 
to an aromatic ladder structure [33]. Vinylimidazole and 

Fig. 5  Nitrogen adsorption/desorption isotherms of CNFs

Table 1  Structural parameters of cPAN and cPAN/CB

Vmicro micro-pore (< 2 nm) volume, Vmeso meso-pore (2–50 nm) vol-
ume
a SSA: specific surface area
b TPV: total pore volume

SSAa 
 (m2g−1)

TPVb 
 (cm3g−1)

Vmicro 
 (cm3g−1)

Vmeso 
 (cm3g−1)

cPAN 604 0.334 0.327 0.007
cPAN/CB-6 812 0.521 0.381 0.140
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Fig. 6   Cyclic voltammograms of a cPAN, and b cPAN/CB electrodes
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itaconic acid have been reported as effective comonomer 
candidates to disrupt the strong dipole–dipole interactions 
between nitrile groups in PAN and to reduce the crystal-
linity [34–37]. Small organic molecules such as CB can 
also play a role of a plasticizer to enhance the movement 
of PAN chains. It can be concluded that the introduction 
of CB is effective not only for increasing surface area and 
porosity, but for reducing crystallinity of PAN, resulting in 
superior energy storage performance the resultant CNFs.

EDLCs store their charge physically at the interface 
between electrodes and electrolyte without irreversible 
redox reactions, and thus exhibit long cycle life. Cycling 
stability of cPAN and cPAN/CB was evaluated by measur-
ing specific capacitance at 1 A/g for every 250 cycles, as 
shown in Fig. 8. cPAN and cPAN/CB exhibit high capaci-
tance retentions of 92.0% and 91.6% after 5000 cycles, 
respectively. A high degree of reversibility demonstrates 
the stable cyclic performance of the CNF electrodes.

Figure 9 shows EIS of cPAN and cPAN/CB electrodes. 
The size and shape of the semicircle at high frequency 
depend on the adsorption kinetics of ions at electrode 
pores, and on the resistances of materials and mass trans-
fer while the slope of the plots in the low frequency region 
is related to the rate of the electrochemical double layer 
formation inside of the electrode pores [38]. cPAN/CB 
exhibits significantly lower impedance than cPAN, indicat-
ing the incorporation of CB effectively improves electric 
conductivity by enlarging the contact area and facilitating 
the charge transfer. Wu et al. reported that presence of pyr-
rolic-nitrogen and quaternary-nitrogen in carbonized CB, 
which are conductive to the electron conduction [8]. Thus, 
it is also expected that a higher content of nitrogen enables 
cPAN/CB to contain more conductive carbon matrix.
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4  Conclusion

CB was introduced as a pore generating material to pro-
duce porous CNF electrodes in supercapacitors. PAN/CB 
(2:1) solution in DMSO was prepared, electrospun, and 
thermally treated. Thermal stability of PAN/CB was con-
firmed by TGA, and the conversion of PAN/CB into CNFs 
was done by Raman spectroscopy. cPAN/CB showed sig-
nificantly high specific surface area and meso-pore volumes 
compared to cPAN. Due to its superior surface properties, 
cPAN/CB exhibited exceptional energy storage performance 
such as a specific capacitance of 183.5 F/g and an energy 
density of 25.4 Wh/kg at 0.5 A/g with stable cyclic stability 
during 5000 cycles. It was also found that cPAN/CB has sig-
nificantly lower impedance than cPAN, confirming PAN/CB 
composite is excellent precursor candidate as porous carbon 
for supercapacitor electrodes.
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