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Abstract
In the present investigation, a new electrochemical sensor based on carbon paste electrode was applied to simultaneous 
determine the tramadol, olanzapine and acetaminophen for the first time. The CuO/reduced graphene nanoribbons (rGNR) 
nanocomposites and 1-ethyl 3-methyl imidazolinium chloride as ionic liquid (IL) were employed as modifiers. The electro-
oxidation of these drugs at the surface of the modified electrode was evaluated using cyclic voltammetry (CV), differential 
pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and chronoamperometry. Various techniques 
such as scanning electron microscopy (SEM) with energy dispersive X-Ray analysis (EDX), X-ray diffraction (XRD) and 
fourier-transform infrared spectroscopy (FTIR), were used to validate the structure of CuO-rGNR nanocomposites. This 
sensor displayed a superb electro catalytic oxidation activity and good sensitivity. Under optimized conditions, the results 
showed the linear in the concentration range of 0.08–900 μM and detection limit (LOD) was achieved to be 0.05 μM. The 
suggested technique was effectively used to the determination of tramadol in pharmaceuticals and human serum samples. For 
the first time, the present study demonstrated the synthesis and utilization of the porous nanocomposites to make a unique 
and sensitive electrode and ionic liquid for electrode modification to co-measurement of these drugs.

Keywords Electrochemical sensor · Carbon paste electrode · Tramadol · Ionic liquid · Graphene nanoribbons

1 Introduction

Tramadol, (1R, 2R)-2 -[(dimethylamino) methyl]-1-(3-meth-
oxyphenyl) cyclohexanol as an analgesic extensively employed 
for the treatment of moderate to severe pain Tramadol blocks 
the transmission of pain signal to brain by blocking the opioid 
receptors and also as an inhibitor reuptake of norepinephrine 
and serotonin neurotransmitter. However, the excessive con-
sumption of Tramadol influences the central nervous system 
and lead to risk of mortality and unpleasant consequences, 
such as slowness or ceased breath and heart problems and 
even death [1, 2]. Olanzapine 2-methyl-4-(4-methyl-1-
piperazynyl)10H-thieno- [2,3 b] [1, 5] benzodiazepine is used 

to the stress treatment and remedy schizophrenia and bipo-
lar disease. Long-term consumption of this drug may cause 
in syndrome serotonin. Olanzapine molecule is considered a 
new unusual neuroleptic because it has a great dependency 
for  D2 dopamine and  5H2 serotonin as two receptors in the 
brain for continuing chemical balance in the brain [3–6]. 
Acetaminophen (4'-hydroxyacetanilide, N-acetyl p-aminophe-
nol, paracetamol) as a pain reliever is extensively applied to 
fever, headache and over the counter analgesic. The excessive 
consumption of Acetaminophen may lead to severe diseases 
because of produce the accumulation of toxic [7–11]. The 
simultaneous consumption of Tramadol and Acetaminophen 
could be improved the influence of Tramadol in relieve pain, 
whereas the excessive consumption may include side effects 
which lead to toxicity. Antagonistic activity of olanzapine in 
comparison with other antipsychotic drugs is more on sero-
tonin, dopaminergic and adrenergic receptors [4]. While 
Tramadol obtained low risk of addiction but it can consider 
as inhibitor serotonin reuptake and could be increased dose of 
serotonin which leading to syndrome of serotonin. As a result 
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the simultaneous measurement of Olanzapine, Acetaminophen 
and Tramadol in clinical samples is important [12].

Up to now several analytical techniques such as 
HPLC [2, 13, 14], LC–MS/MS [15–17], SERs [18–20], 
GC–MS [21], colorimetric [22, 23] and electrochemical 
techniques [24–28] was employed to determine 
Olanzapine, Acetaminophen and Tramadol. Among 
techniques, electrochemical methods have more attractive 
due to beneficial features such as fast response, high 
sensitivity and low cost [29–37]. Modification of CPE 
with nanomaterial could be overcome on undesired features 
such as slow electron transfer rate, slow response and low 
sensitivity [38–40]. Cupric oxide (CuO) was used in the 
present work mainly because of its eco-friendly nature, 
low-cost and its frequent been widely applied in many 
fields. The important p-type metal oxide as an important 
p-type metal oxide semiconductor has a narrow band gap 
(Eg ¼ 1.2 eVe1.5 eV). Recently, metal oxide/graphene 
hybrids, have attracted increasing attention because of their 
improved electrochemical performance [41, 42]. Among 
different carbon-based nanomaterial graphene nanoribbon 
(GNR) as a new type of conductive materials have reached 
more attention in sensing platforms, in compared with 
other carbon-based nanostructures. GNR have opened 
new avenue toward extended potential to react with so 
many nanoparticles in various fields. The features of GNR 
are dependent on edge structure and type of functional 
groups including the carbonyl (–CO), carboxyl (–COOH), 
hydrogenated (–CH), and amines (–NH2) that have attached 
on GNR's edges [43]. In electrochemical investigation, 
GNR is a suitable choice because of some unique 
attributes such as large specific surface area, fast electron 
rate because of many edge and defects existed in GNR 
structure and extended potential window in determination 
of various analytes [44, 45]. Room temperature ionic 
liquids (RTILs) as known ionic solvent are combination 
of equal electropositive asymmetrical organic cations 
and electronegative organic/inorganic anions with molten 
point less than room temperature. Among ILs, 1-ethyl 
3-methyl imidazolinium chloride is widely applied for 
electrochemical purposes because of outstanding properties 
such as negligible vapor pressure, thermal stability and 
recyclability [46]. In this investigation, a new modified 
sensor based on CuO-rGNR and ionic liquid (IL) exhibited 
excellent sensitivity toward measurement of Tramadol in 
biological samples. Proposed nanostructure with some 
attributes such as high surface-area, great conductivity 
and superior electro-catalytic behavior could be used as 
suitable modifier for working electrode in electrochemical 
measurements of these drugs for the first time.

2  Experiments

2.1  Chemicals and reagent

All chemicals utilized in this study were of analytical grade. 
Ethanol, paraffin oil, graphite powder, copper acetate (Cu 
 (CH3COO)2), acetic acid  (CH3COOH), sodium hydroxide 
(NaOH), carbon nano tube (CNT), sulfuric acid  (H2SO4), 
potassium permanganate  (KMnO4), phosphoric acid 
 (H3PO4), hydrogen peroxide  (H2O2) and other chemicals 
used were got from Merck. A stock solution with a 
concentration of 0.1  M was applied to prepare several 
concentrations of Tramadol. Phosphate buffer solutions 
(PBS) were employed as supporting electrolytes with a 
concentration 0.1 M were ready from sodium hydroxide 
and  H3PO4 to adjusted the pH value (pH from 3.0 to 9.0). 
Employed drugs were supplied from Merck with high purity. 
1-ethyl 3-methyl imidazolinium chloride was acquired from 
Sigma–Aldrich with 99% Purity. Phosphoric acid (85% 
Purity) and sodium hydroxide (0.1 M) (85% Purity) was 
employed to adjust pH value of the prepared phosphate 
buffer solution (PBS). The pure graphite powder (%99 
purity) and high viscosity paraffin oil (> 99%) were obtained 
from Merck.

2.2  Apparatus and instruments

Electrochemical signals were achieved by the Autolab 
PGSTAT 302 N electrochemical device consist of three 
electrodes. In this system modified carbon paste electrode 
as working electrode, a saturated Ag / AgCl /  KClsat and 
platinum-wire were employed as reference and auxiliary 
electrodes, respectively; various pH values were attained 
by Metrohm pH meter made in Switzerland. Scanning 
electron microscopy (Mira3Tescan SEM) and X-ray powder 
diffraction (STOE diffractometer with Cu –  Ka radiation) 
were employed to characterize the synthesized CuO-rGNR.

2.3  Synthesis of CuO/rGNR nanocomposite

The CuO nanoparticles were synthesized using a facile 
method [47]. In brief, a mix of acetic acid (2  ml) and 
copper acetate (0.2 M) was heated up to the boiling point. 
After that 30 ml of sodium hydroxide (8 M) was added the 
mixture. Then the solution was stirred at the boiling point 
for 2 h. After cooling down to room temperature, the black 
precipitate obtained (CuO-nanoparticles) was washed 
with distilled water several times. The unzipping method 
was used for the synthesis of GNR. In brief 100 mg of 
functionalized MWCNT was added to a beaker containing 
180  ml of sulfuric acid  (H2SO4). The suspension was 
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stirred for 1 h. Phosphoric acid (85%, 20 mL) was added 
to mixture and the solution was stirred for 20 min. After 
that 6 g of potassium permanganate  (KMnO4) was added 
into the solution slowly. The resulting mixture was heated 
up to 328 K and stirred for another 2 h. After cooling down 
to room temperature, 100 ml of DI water which contained 
2 ml of hydrogen peroxide  (H2O2) was poured into the 
solution. The result mixture was centrifuged and washed 
with HCl and acetone several times, and the precipitate 
obtained was dried at 333 k [48, 49]. For the synthesis of 
CuO-rGNR nanocomposite a mix of synthesized CuO and 
synthesized GNR with mass ratios of 1: 2 was transferred 
into a beaker consist of 20 ml of ethanol and stirred for 
1 h. then the heterogeneous mixture obtained transferred 
into a Teflon-lined stainless-steel autoclave and heated at 
453 K temperature for 18 h. The mixture was washed with 
a mixture of DI water and ethanol several time and dried at 
333 K.

2.4  Fabrication of modified electrode

To achieve the modified electrode, the IL/CuO-rGNR/CPE 
(0.10 g) was added to mixing of 0.99 g of graphite powder 
with paraffin oil at a ratio of 70:30 (w/w). After that 0.1 ml 
1-ethyl-3-methylimidazolium chloride were added to the 
attained carbon paste. The IL/CuO-rGNR/CPE was packed 
into a glass tube with a copper wire to obtained electrical 
contact and it was employed as a working electrode.

2.5  Real samples fabrication

To preparation of real sample, the amount of 1 ml of fresh 
human plasma or human urine samples was diluted 10 times 
by 0.1 M of PBS (pH 7.0). To dissolve the real sample of 
the tablet, a certain amount of tramadol tablet was dissolved 
in deionized water (DI water) and it was diluted in 10 ml of 
PBS at pH = 7.0. For diluted samples, a 0.45-μm membrane 
filter was applied.

3  Result and discussion

3.1  Characterization of CuO‑rGNR

The morphological investigation of CuO-rGNR was distin-
guished by SEM micrographs at various scales. As shown 
in Fig. 1A–C, the images indicated that the CuO nanopar-
ticle distributed on GNR layers. It was showed that GNR 
act as a supportive sheet for CuO nanoparticles. The exist-
ence of Cu, O and C elements in CuO-rGNR nanocomposite 
was revealed by EDX analysis (Fig. 1D). As can be seen in 
the XRD pattern of CuO-rGNR as shown in Fig. 1E, there 
was no any characteristic peak related to GNR, it can be 

attributed to reduction process of GNR to r-GNR which 
remove the oxygen functional groups of GNR. The sharp 
peaks were observed at 34°,36°,39°,49°,58°,62°,68°,74° and 
76° corresponding crystal planes for CuO. The peak at about 
15 was corresponded to CuO-GNR interaction process.

Based on the obtained FTIR spectrum (Fig.  1F) the 
absorption peak at 1104  cm−1 and 1451  cm−1, was related 
to C–O, C–OH, respectively, and the peak appeared at 
1644  cm−1 can be corresponded to C=O, both intermolecular 
and intramolecular hydrogen bonding with hydroxyl groups 
cause to downshift in the C=O stretching mode. Also the 
board band from 3431  cm−1 could be assigned to stretch of 
O–H. The result of FTIR included many functional groups. 
Also, the peak obtained at 484  cm−1 was recognized to the 
stretching band of Cu–O from CuO-rGNR nanocomposite 
[49, 50].

3.2  Electrochemical investigations

The electro oxidation of 500 μM of Tramadol was studied 
through CV technique on the surface of proposed sensor 
(IL/CuO-rGNR/CPE) at different pH range (from 3 to 9). 
Figure 2A, illustrated as pH values were changed from 3 to 
7, and the  Ip of Tramadol was increased.  Ip was decreased 
at the pH values higher than 7. So, pH = 7 was elected as 
optimum pH. Also, with increasing pH values, the oxidation 
peak of potential  (Ep) was shifted to negative values. It can 
be concluded the  H+ ions can be contributed in the oxidation 
of tramadol at the surface of IL/CuO-rGNR/CPE and elec-
trochemical behavior of Tramadol depends on the amount 
of proton in the solution. As demonstrated in Fig. 2B, there 
was a linear correlation for plot of Ep vs pH with slope value 
of − 0.034 E/pH (R2 = 0.9983), and regarded to the Nernst 
equation (E = E0 −

�RT

nF
pH ), to calculate the mechanism of 

electron transfer in the electro-oxidation process of Trama-
dol, the number of electrons was twice than the proton which 
are contributed in the electrochemical process (n = 2). CV 
technique was employed to investigate of the electro oxida-
tion behavior of Tramadol at the surface of CPE and various 
modified electrodes including (CPE, CuO/CPE, GNR/CPE, 
CuO-GNR/CPE, IL/CPE, IL/CuO-rGNR/CPE) in PBS at 
pH = 7. As shown in Fig. 3, no reduction peak was existed 
in the reverse scan, which showed the oxidation of Trama-
dol on the surface of electrodes was irreversible. Besides, 
the largest peak current  (Ip) with value of 41.67 µA was 
obtained for IL/CuO-rGNR/CPE comparison with the  Ip of 
CPE with value of 17.2 µA. The current density of CPE (a), 
CuO/CPE(b), GNR/CPE(c), CuO-GNR/CPE (d), IL/CPE(e), 
IL/CuO-rGNR/CPE (f) in the presence of 500 μM Trama-
dol at pH 7.0 and scan rate of 50 mV  s−1, were obtained 
237.29, 345.71, 484.29, 488, 525.29 and 591.43, respec-
tively. It can be concluded modifying CPE with nanocom-
posite and ionic liquid improved the active surface area 
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Fig. 1  The SEM micrographs (A–C), EDX (D), XRD patterns (E) and FT–IR analysis (F) of as-synthesized IL/CuO-rGNR/CPE
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which was related to higher electrical conductivity and 
greater sensitivity for electrochemical investigations. Gra-
phene nanomaterials like GNR and metal nanocomposites 

can have inherent advantages of high ratio of surface area to 
weight, high exposure surface atoms, and fast charge trans-
port properties. The space and channels between the layers 
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can significantly boost ions or/and reactants availability and 
makes significantly diffusion of electrode. To investigate the 
electrocatalytic mechanism of Tramadol at surface of IL/
CuO-rGNR/CPE, CV was used at different scan rates of 20, 
30, 50, 70, 90, 100 and 120  mVs−1. Figure 4 demonstrated 
a linear relation between  Ipa and square roots of scan rates 
from 20 to 120  mVs−1 which indicated the electrocatalytic 
relation behavior of Tramadol at surface of IL/CuO-rGNR/
CPE was under diffusion process. As can be seen, there was 
a negative peak potential shift with an increase in the scan 
rate, which confirmed the irreversibility of the electrochemi-
cal reaction. Also, with the slope equal to 2.3RT/n (1-α) F 
regarded to the Tafel plot, the electron transfer coefficient 
(α) was obtained about 0.8 (α = 0.8), which confirmed the 
presence of an irreversible electro-oxidation reaction.

Figure 5, shows the chronoamperometric tests of 100, 
200, 300 and 400 μM Tramadol (pH 7.0) at the surface of 
sensor proposed (IL/CuO-rGNR/CPE). At experimental con-
dition, the electron transfer rate of Tramadol was higher than 
diffusion rate to the surface of IL/CuO-rGNR/CPE. Under 
this condition, the electrochemical reaction of Tramadol as 
an electroactive species was obtained through Cottrell equa-
tion (I =  nFAD1/2Cπ–1/2t−1/2). Besides, a linear relationship in 
plot I vs.  t−1/2 indicated that by the related slopes that were 
attained from these curves, and according Cottrell equation 

with F = 96,485 C  mol−1, n = 2 and A = 0.7  cm2 the diffusion 
coefficient was calculated as 1.14 ×  10− 7  cm2s−1.

EIS technique was used to examine the surface behavior 
of CPE electrode and different modified electrodes in pres-
ence of 5 mM of probe solution ([Fe (CN)6] 3−/4−) and KCl 
(0.1 M). Electron transfer resistance  (Rct) determined by 
diameter of the semicircle of the Nyquist diagram. Accord-
ing to Fig. 6, the largest diameter of the semicircle was 
assigned to CPE with largest  Rct and the lowest electron 
transfer resistance was referred to the IL/CuO-rGNR/CPE. 
Rct values of CPE, CuO/CPE, GNR/CPE, CuO-rGNR/CPE, 
IL/CPE and IL/CuO-rGNR/CPE was calculated as 317, 143, 
111, 86, 74 and 36, respectively. This was due to the syner-
gistic effect of IL and CuO-rGNR, which improved the elec-
trical conductivity and, therefore, reduced the charge transfer 
resistance at the modified electrode. So IL/CuO-rGNR/CPE 
was chosen for using in electrochemical measurements.

3.3  Linear range and detection limit investigation

DPV technique was applied to study the sensitivity of sug-
gested sensor for measuring of Tramadol (Fig. 7). According 
to the recorded oxidation peak versus concentration of Tram-
adol (0.08, 1, 5, 10, 15, 30, 50, 70, 90, 100, 300, 500, 700 
and 900 µM) as the concentration increased, the related Ip 
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was raised over the two concentration range of 0.08–100 and 
100–900 µM with various slopes. According to the equation 
(LOD = 3Sb/m), the LOD was attained as 0.05 µM. the com-
parison of the results of this investigation with other studies 
demonstrated in Table 1.

3.4  Simultaneous determination of tramadol, 
acetaminophen and olanzapine

The determination of Tramadol in the presence of Olan-
zapine and Acetaminophen by IL/CuO-rGNR/CPE was 
one of the main purpose of this study. According to Fig. 8, 
to evaluate the simultaneous determination, three separate 
cathode peak currents at 0.2 and 0.44 and 0.9 V potentials 
was obtained which referred to the oxidation of Olanzapine, 
Acetaminophen and Tramadol, by DPV curves at various 
concentrations of these drugs, respectively. It can be con-
cluded the measuring of Tramadol in presence of Olanzap-
ine and Acetaminophen was possible without significant 
interference.

3.5  Selectivity investigations

To investigate the selectivity of the technique used, 
different foreign species which can be affected on the 
Tramadol signal was investigated by DPV technique. 
The results are demonstrated in Table. 2. The result was 
indicated that no apparent interference was observed 
in the Tramadol analysis by adding foreign substrates. 
The stability of suggested sensor was evaluated by DPV 
of 500  µM of Tramadol after 2  weeks. The obtained 
responses were demonstrated the change of  Ip were about 
4.7%, which indicated acceptable stability of the suggested 
sensor.

3.6  Real sample analysis

The capability of IL/CuO-rGNR/CPE as a sensor for elec-
trochemical investigations in real sample was performed 
by DPV and standard addition methods. Because the tissue 
of biological sample was complex, the standard addition 
technique was used to determine. For this purpose, real 
samples containing various concentration of Tramadol was 

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45 50

C
ur
re
nt
(µ
A
)

t/s

A

dy =33.687x+0.8334
R2=0.9988

y = 43.017x+15.255
R2=0.9977

y =65.484x +25.385
R2=0.9977

y = 85.482x+46.906
R2=0.9968

0

20

40

60

80

100

120

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

C
ur
re
nt
(µ
A
)

t-1/2/s-1/2

B

a

Fig. 5  A Chronoamperograms performed at IL/CuO-rGNR/CPE in the presence of 100.0, 200.0, 300.0 and 400.0 μM Tramadol in PBS (pH 7.0) 
(a→d). B Cottrell’s plot



1440 Carbon Letters (2023) 33:1433–1444

1 3

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200

Z i
m
(Ω

)

Zre (Ω)

a
b
c
d
e
f

0

50

100

150

200

250

300

350

a b c d e f

B

R
ct

A

Fig. 6  A Nyquist diagrams of CPE (a), CuO /CPE (b), GNR/CPE (c), CuO-GNR/CPE (d), IL/CPE (e), IL/CuO-rGNR/CPE (f) electrodes (from 
inner to outer) in 5.0 mmol  L−1 [Fe (CN)6]3−/4− in 0.1 mol  L−1 KCl. B The related Rct values

0

5

10

15

20

25

30

0 200 400 600 800 1000

C
ur
re
nt
(µ
A
)

C/µM

y=0.1585x+2.3058
R2=0.9947

B

0

5

10

15

20

25

30

0.5 0.6 0.7 0.8 0.9 1 1.1

C
ur
re
nt
(µ
A
)

Potemtial/V (vs. Ag/AgCl)

A

y=0.0079x+17.068
R2=0.9942

Fig. 7  A DPVs for various concentrations of Tramadol (0.08, 1, 5, 
10, 15, 30, 50, 70, 90, 100, 300, 500, 700 and 900 µM) in the range 
of range 0.08 to 900.0  µM at surface of IL/CuO-rGNR/CPE at pH 

7.0 and scan rate: 50 mV  s−1. B Plots of linear range as a function of 
Tramadol concentration



1441Carbon Letters (2023) 33:1433–1444 

1 3

Table 1  Comparison of this study with other works

Nano composite Electrode Limit of detection (µM) Linear range (µM) Reference

La3+/ZnO NF-MWCNT CPE 0.08 0.5–800 1
CoO@f-CNT GCE 0.449 1–300 2
SnO2/α-Fe2O3 CPE 0.006 0.5–65 3
HTP-Au NPs/GN CPE 0.82 1–100 4
1-M-3-BBR/PR(OH)3-GQD CPE 0.003 0.009–100 5
H-GONPs GCE 0.015 0.08–200 6
Sb2O3NPs/MWCNT GCE 0.095 0.04 -18 7
IL/CuO-rGNR CPE 0.05 0.08–900 This work

Fig. 8  The DPVs of IL/CuO-rGNR/CPE at different concentra-
tions of (A) Olanzapine, (B) Acetaminophen and (C) Trama-
dol solutions with (A): 20.0 + 40.0 + 170.0 + 200.0; (B): 

100.0 + 150.0 + 300.0 + 400.0; (C): 50.0 + 300.0 + 550.0 + 950.0  μM, 
respectively, at pH 7.0 phosphate buffer

Table 2  Interference investigates data for analysis of 500 µM Tramadol

Species Tolerant limits 
( Wsubatmmes∕WAnalytes)

Na+,K+
,Ca

2+
,NH+

4
,Mg2+,Cl

−
, I−,SO

2−

4

NO
−

3
,PO

3−

4
,F−,CO

2−

3

500

Glucose, sucrose, urea, uric acid 400
Ascorbic acid 300
Glycine, valine and Starch 600
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examined using proposed sensor. Real sample preparation 
was done as mentioned in Sect. 2.5. The observed results 
are listed in Table. 3 which confirmed the IL/CuO-rGNR/
CPE can be used to determine the Tramadol in biological 
samples.

3.7  Reproducibility and stability

The stability of IL/CuO-rGNR/CPE was evaluated by 
repeating eight consecutive measurements for 500 μM 
Tramadol in PBS at scan rate 50 mV  s−1. No observable 
change in peak current was obtained, that affirmed that 
IL/CuO-rGNR/CPE was greatly stable. The relative 
standard deviations (RSD) was obtained to be below 5% 
representing a suitable reproducibility. Also after CPE 
modifying which was kept for 10 days, an improvement 
by 5% in the oxidation peak of 500 μM Tramadol was 
attained. These results can be related to the high stability 
of IL/CuO-rGNR/CPE sensor compared to other evaluates 
with other modified electrodes.

4  Conclusions

In this work, simultaneous determination of Tramadol, 
Acetaminophen and Olanzapine using IL/CuO-rGNR/CPE 
nanocomposite as a sensitive sensor was suggested for 
the first time. According to the responses, the synergistic 
influence of CuO-rGNR and IL increased the electrical 
conductivity, catalytic activity and surface area accessible 
for these drugs at the suggested electrode that can 
considerably improve electron transfer. Under optimum 
conditions, the IL/CuO-rGNR/CPE electrode displayed 
wide linear range, about 0.05 μM and 0.08–900.0 μM and 
low detection limit (LOD) was achieved to be 0.05 μM, 
respectively. Furthermore, the value of α = 0.8 and 
D = 1.14 ×  10− 7  cm2s−1 was achieved for Tramadol. The 
obtained results to evaluate the sensitivity demonstrated 
the change of  Ip were about 4.7%, which designated 
acceptable stability of the proposed sensor. The responses 
have illustrated the ability of suggested sensor in real 
samples with satisfied results.
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