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Abstract
In recent years, people are increasingly interested in  CO2 hydrogenation to produce value-added chemicals and fuels  (CH4, 
 CH3OH, etc.). In the quest for an efficient treatment in  CO2 methanation and methanolization, several technologies have been 
practiced, and DBD plasma technology gain attention due to its easily handling, mild operating conditions, strong activation 
ability, and high product selectivity. In addition, its reaction mechanism and the effect of packing materials and reaction 
parameters are still controversial. To address these problems efficiently, a summary of the reaction mechanism is presented. 
A discussion on plasma-catalyzed  CO2 hydrogenation including packing materials, reaction parameters, and optimizing 
methods is addressed. In this review, the overall status and recent findings in DBD plasma-catalyzed  CO2 hydrogenation are 
presented, and the possible directions of future development are discussed.
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1 Introduction

Since the Industrial Revolution, fossil resources have been 
fast depleted and lead to a continuous build-up of exces-
sive  CO2 concentration in the atmosphere, which is the 
major contributor to global warming [1, 2]. It is showed 
in Fig. 1 that the trend of  CO2 content in the atmosphere 
since the 1960s. The  CO2 content is rising at an increasing 
rate which kept pace with the Global greenhouse effect. To 
restrain the impact, the intergovernmental panel on climate 
change (IPCC) recently recommend that the temperature 

rise should be kept below 1.5 °C by 2100, which required 
a 45% reduction in greenhouse gas emissions by 2030 and 
zero emissions by 2050 [3]. Therefore, how to reduce the 
 CO2 effectively and environmentally friendly has become 
a research hotspot.

Up to now, considerable efforts have been devoted to 
develop innovative, stable and cost-effective technologies 
for treating  CO2. These technologies can be divided into two 
types: Carbon Capture and Storage (CCS) [4] and Carbon 
Capture and Utilization (CCU) [5, 6]. CCS is an effective 
method to reduce the concentration of  CO2 in the atmos-
phere in a short period, but it can’t fundamentally solve 
the problem for the remaining  CO2 total amount [7, 8]. By 
comparison, CCU is a promising method based on CCS for 
 CO2 treatment, which brings  CO2 into the carbon cycle and 
converts it into value-added chemicals or fuels, thus reduc-
ing the total amount of  CO2. It is of great significance to the 
sustainable development of chemical and energy industries 
[9, 10]. Weatherbee et al. [11] studied the effect of reaction 
conditions and gas phase producted on  CO2 hydrogenation 
reaction as early as 1982, and put forward a conjecture on 
the kinetic reaction mechanism. Therefore, with the develop-
ment of catalysts and processes, CCU will gradually become 
a mainstream technology for  CO2 treatment.
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CCU technologies mainly include thermocatalysis 
[12], photocatalysis [13, 14], biocatalysis [15–17], elec-
trocatalysis [18–21] and plasma catalysis [22] etc. How-
ever, the high thermodynamic stability of  CO2 molecules 
(ΔG° =  − 394 kJ·mol−1)is the greatest challenge for CCU 
[23]. Investigate its reason, it will spend plenty of energy to 
breakdown the C = O double bonds (783 kJ·mol−1) [24] and 
dissociate the molecule during thermal activation process 
[25]. The energy efficiency is only 4.4% at a temperature of 
300 K. The reaction does not start until the temperature rises 
to about 2000 K. The temperature needs to be raised to about 
3000 K to reach 80% conversion and the energy efficiency 
is only 47%. [23]. The energy efficiency of photocatalysis is 
far from satisfactory. Electrocatalysis has higher energy effi-
ciency and  CO2 conversion, and the modular reaction system 
is easy to scale amplification, but the product selectivity is 
lower. Biocatalysis has the high spatiotemporal yield and 
product selectivity, but it is limited by inactivation and high 
cost. Impressively, non-thermal plasma (NTP) technologies 
with non-thermodynamic equilibrium characteristics have 
shown some remarkable advantages in terms of  CO2 con-
version [26], including low activation barrier, mild reaction 
conditions, fast reaction rate, and easy handling [27]. The 
ionized gas produced by plasma has a high activation ability, 
and is composed of electrons, free radicals, ions, photons, 
and excited states [28, 29]. These energetic species with an 
optimum range of electron energy is between 1 and 10 eV, 
which is used to activate  CO2 molecules by collision and 
dissociation under environmental conditions [30]. Besides, 
NTP is flexible in terms of the source of electricity, scal-
ability both in size and applicability, and rarely relies on 
rare earth materials, etc. Thereby, plasma technology shows 
a great potential for  CO2 treatment [23].

According to the ways of the plasma produce, it can be 
classified as dielectric barrier discharge plasma (DBD), 
corona discharge, gliding arc discharge (GA), glow 

discharge (GD), radio frequency (RF), and Microwave dis-
charge (MW) [31, 32], etc. Among them, DBD plasma has 
become a research hotspot due to its wide range of pressure 
and discharge frequency, uniform discharge, and flexible 
combination with catalysts. By far, the methods of DBD 
 CO2 catalysis is mainly divided into  CO2 splitting [33, 
34], carbon dioxide reforming of methane [35], and  CO2 
hydrogenation [36]. Among them, the main products of  CO2 
splitting are CO and  O2, and the by-products are the least 
[6]. Carbon dioxide reforming of methane requires a higher 
temperature. It is easy for coking and carbon deposition, and 
leads to the deactivation of catalyst and higher energy con-
sumption [1]. Compared with formers,  CO2 hydrogenation is 
the most complicated and involves many reaction pathways. 
Due to the high reducibility of  H2, the high activation ability 
of plasma, and the synergistic effect between plasma and 
catalysts, it results in multiple reduction reactions of inter-
mediate products and product diversification. The reaction 
mechanism and effect factors of  CO2 hydrogenation cata-
lyzed by DBD plasma are still controversial, so a summary 
of the reaction mechanism is firstly presented in this review. 
Then, a discussion on plasma  CO2 hydrogenation including 
paking materials, react parameters, and optimize methods is 
addressed. Finally, this review presents the overall status and 
recent findings in DBD plasma-catalyzed  CO2 hydrogena-
tion [36, 37].

2  Reaction mechanism of DBD plasma 
catalysis

The schematic diagram of the DBD plasma reactor is shown 
in Fig. 2. The inner electrode is a conductive steel rod, and 
the outer electrode is a conductive steel mesh. Non-conduc-
tive material (e.g. quartz glass) is inserted between them 
as the barrier medium. The outer electrode is powered by a 
high-voltage alternating current (AC) or pulse, supplying the 
energy to generate plasma. Interestingly, Ozkan et al. [38] 
has found that if the AC voltage was switched off at regular 

Fig. 1  Change trends of  CO2 content in the atmosphere in recent dec-
ades

Fig. 2  Schematic diagram of DBD plasma reactor
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times, a higher  CO2 conversion and energy efficiency will 
be obtained because of the lower gas temperature and the 
higher plasma voltage.

The electrons are heated selectively to be energetic 
electrons in the reacting area, with a suitable electron 
temperature of  104 ~  105 K (1 ~ 10 eV) [39] to breakdown 
the reactants  (CO2 and  H2) by the ways of collision, dis-
sociation, and ionization to produce ions, free radicals and 
excited molecules. These reactive species are catalyzed by 
the catalysts and quickly form new molecules such as CO, 
 CH4, and  CH3OH, etc. [28, 40]. Meanwhile, with the move-
ment of these active species, the micro-discharge channels 
are formed and a non-spark stable discharge phenomenon 
is shown, which is named filamentary discharge. The insu-
lating medium between the electrodes plays an important 
role in discharge storage, which restricts the discharge mode 
transition from filament discharge to spark discharge and 
improves the distribution of filament discharge in the whole 
electrode region [41, 42].

The possible reaction pathways of DBD plasma catalytic 
process for  CO2 hydrogenation without catalysts are shown 
in Table 1 [43] and Fig. 3. The thickness and the color of the 
arrow lines are proportional to the rate of the net reactions. 

The high-energy electron collisions lead to the dissociation 
of  CO2 and  H2, yielding CO, O, and H radicals. The recom-
bination of O and H radicals forms OH radical, which fur-
ther recombined into  H2O. The recombination of CO and H 

Table 1  Main consumption 
and production pathway of 
main reactants involved in  CO2 
hydrogenation in the DBD 
plasma process [44]

Molecule Consumption reactions Production reactions

CO2 e− +  CO2 →  2e− + CO + 2
e− +  CO2 →  e− + CO + O
e− +  CO2 →  O− + CO
CO+ +  CO2 → CO + 2 + CO

O + CHO → H +  CO2
CO + OH →  CO2 + H
CO + 2 +  H2O →  H2O+ +  CO2

H2 e− +  H2 →  e− + H + H
e− +  H2 →  2e− + H + 2
H + 2 +  H2 →  2e− + H + 3 + H
H2O +  H2 →  H3O+ +  CO2
H2 + OH → H +  H2O

e− +  H3O+ → OH +  H2
H + 3 +  H2O →  H3O+ +  H2
H + H + M →  H2 + M
H + CHO →  H2 + CO

CO H + CO + M → CHO + M
CO + OH →  CO2 + H
e− + CO →  e− + C + O

O + CHO → CO + OH
CO+ +  CO2 → CO + 2 + CO
e− + CO + 2 → CO + O
e− +  CO2 → CO +  O−

e− +  CO2 →  e− + CO + O
H + CHO →  H2 + CO

CH4 H + 3 +  CH4 → CH + 5 +  H2
CO + 2 +  CH4 → CH + 4 +  CO2
e− +  CH4 →  e− +  CH3 + H
e− +  CH4 →  2e− + CH + 4
CH4 + CH →  C2H4 + H
e− +  CH4 →  2e− + H + CH + 3
CH + 3 +  CH4 →  C2H + 5 +  H2
e− +  CH4 →  e− +  CH2 +  H2
e− +  CH4 →  e− + CH +  H2 + H
H2O+ +  CH4 →  H3O+ +  CH3

CH + 5 +  H2O →  H3O+ +  CH4
CH3 + H + M →  CH4 + M

CH3OH H +  CH3OH →  CH2OH +  H2
H +  CH3OH →  CH3O +  H2
OH +  CH3OH →  CH2OH +  H2O
O +  CH3OH →  CH2OH + OH
OH +  CH3OH →  CH3O +  H2O
O +  CH3OH →  CH3O + OH

H2O +  CH3O →  CH3OH + OH
H +  CH2OH + M →  CH3OH + M
CH3 + OH + M →  CH3OH + M

Fig. 3  Possible reaction pathway without catalysts in DBD plasma
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is much more complex, the formed radicals will keep hydro-
genating till to stable compounds s as  CH4, and  CH3OH. 
Fortunately, these reactions can be simplified by catalysts. 
For instance, Ni-based catalysts show better catalyst activ-
ity in  CO2 methanation [44]. Cu-base catalysts show better 
catalyst activity in  CO2 methanolization [9].

3  Effects and optimizations

In the studies on DBD plasma-catalyzed  CO2 hydrogenation, 
researchers found that the optimizations of packing material 
properties, reaction parameters, and reactor structure should 
be a balance between higher  CO2 conversion and energy 
efficiency, and it will be discussed in detail in this section.

3.1  Packing materials

Many researches have been conducted on packing materials 
for DBD plasma assisting  CO2 hydrogenation. It has been 
found that the packed DBD plasma reactor shows a higher 
 CO2 conversion and energy efficiency than the nonpacked 
reactor [45–47]. It is ascribed to the permittivity [48], parti-
cle size, acid-base, and structure of packing materials. These 
parameters optimized the reactor system and changed the 
discharge mode from uniform space discharge to surface 
discharge to gain more energetic electrons and current under 
the same conditions.

The permittivity of the packing materials is one of the 
most important parameters influencing the DBD plasma 
catalytic process for  CO2 hydrogenation. The higher permit-
tivity, the more energetic electrons and active free radicals 
will be generated in the packing materials under the same 
reaction condition [49], thus it can improve  CO2 conver-
sion and energy efficiency. Mora et al. [50] has found that 
alumina shows better catalytic performances than quartz, 
which is due to the higher relative dielectric permittivity 
coefficient of alumina.

The particle size is another parameter of packing mate-
rial. The particles near the contact point of the electrode 
formed a higher electric field and were easier to discharge 
[51]. The larger the particles, the higher the void fraction, 
which reduced the number of active species and energetic 
electrons and resulted in a decline in  CO2 conversion [52, 
53]. Duan et al. [45] has found that appropriately increas-
ing the alkalinity of the packing materials facilitates  CO2 
adsorption, thus promoting  CO2 conversion. They also 
explored the structure of packing materials, and found 
that the packing materials of fiber structure contribute to a 
higher  CO2 conversion because the sharp edge morphology 
increased the intensity of micro-discharge filaments [54].

Packing the thermostable, conductive, and fibrous struc-
ture materials in a DBD reactor will further strengthen 

the electrified and give birth to more energetic electrons. 
Hence, the higher chance of collisions obtained between 
high-energy electrons and reactive materials led to higher 
 CO2 conversion and energy efficiency.

3.2  Reaction parameters of DBD plasm system

The reaction parameters of DBD plasma-catalyzed  CO2 
hydrogenation mainly include discharge power, discharge 
frequency, discharge length, feed flow rate, discharge gap, 
etc.

3.2.1  Discharge power

Energy is one of the most important factors influencing 
the hydrogenation of  CO2 by DBD plasma. As shown in 
Fig. 4, the enhancement of discharge power increased the 
numbers and the energy levels of active radicals and ener-
getic electrons in the reaction area [55]. It improved the 
collision probability of reactants and plasma, thus forming 
more discharge channels and promoting  CO2 conversion 
[45]. However, there was a limitation on  CO2 conversion 
with increasing the discharge power, as the electrode sur-
face has been covered by the micro-discharge filaments. The 
 CO2 conversion had little change, but energy efficiency was 
decreased. In addition, increasing the discharge power would 
cause higher heat loss in the whole reactor, which reduced 
energy efficiency [56, 57].

3.2.2  Discharge frequency

To explore the effect of reaction parameters on  CO2 conver-
sion, researchers found that the discharge frequency affected 
 CO2 conversion and energy negligibly efficiency [24, 60]. 
It was ascribed to the fact that the modulation of discharge 
frequency mainly changed the motion path of plasma, but 
hardly influenced the number and average lifetime of micro 
discharges. However, discharge frequency played a main 
factor in vibration activation  CO2, due to its effects on the 

Fig. 4  Effect of discharge power on current signals [58]
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voltage of gas gap [60] and the improvement of the reso-
nance oscillation [25]. Some researchers also found that  CO2 
conversion and energy efficiency decreased slightly with the 
increase in frequency, and it may be caused by the decrease 
in gas voltage [61].

3.2.3  Discharge length

With the increasing discharge length, the residence time of 
species in the discharge area will be prolonged, and the col-
lision chance between reactive gas and energetic electrons 
or active free radicals will be increased. It would improve 
 CO2 conversion and energy efficiency (as shown in Fig. 5). 
However, the increasing discharge length can also reduce 
the discharge voltage and energy density. The effect of dis-
charge length on  CO2 conversion rate and energy utilization 
efficiency presented as a parabola, so there was an optimal 
discharge length [13].

3.2.4  Feed flow rate

The influence of feed flow rate relates to the residence time 
of reactants in the reaction area (shown in Fig. 6). The col-
lision chance of  CO2 molecules with energetic electrons and 
active radicals is decreased, but the absolute  CO2 conversion 
is increased because the availability of input energy is pro-
moted. Higher energy efficiency and lower  CO2 conversion 
can be gotten with an increase in feed flow rate. As the feed 
flow rate increases, some of the energy was wasted in raising 
the reactor temperature and gas temperature, but the impact 
on energy efficiency was not significant [24].

3.2.5  Discharge gap

Due to the formation of high-energy micro discharged with 
increasing of the discharge gap [62],  CO2 conversion and 

energy efficiency should be decreased, overall power con-
sumption increased, and the number of active species and 
energetic electrons decreased. Besides, the collision prob-
ability and frequency among  CO2 molecules, active species, 
and energetic electrons was reduced, and this led to a further 
decline in  CO2 conversion efficiency [41].

Tu et al. [58] studied the influences of reaction param-
eters on the  CO2 conversion process. They found that the 
discharge power and feed flow rate were the main factors that 
affected  CO2 conversion. The influence degree of different 
reaction parameters on  CO2 conversion compared as q (feed 
flow rate) ≈ P (discharge power) > dg (discharge gap) > L 
(discharge length) > f (discharge frequency), and that of 
the energy efficiency as P > q > dg > L > f. In addition, they 
noted that the minimum breakdown voltage and the peak 
operating voltage were the two most important parameters, 
and needed to be measured in the DBD process.

The DBD plasma-catalyzed  CO2 hydrogenation is 
affected by a number of interrelated factors. Although the 
relationships among these factors are complicated, there 
are two evaluation criteria, SEI (specific energy input) 
and residence time, respectively. SEI represented the 
average energy of particles in the reaction area and was 
defined as Equations R1 and R2, which were mainly deter-
mined by discharge power, discharge gap and discharge 
frequency. The residence time of molecules affected the 
collision probability and frequency of the reactants with 
energetic electrons in the reacting area, significantly influ-
encing the  CO2 conversion. It was mainly determined by 
the discharge gap, discharge length, and feed flow rate 
[59]. Their relationships is shown in Fig. 7. Higher SEI, 
which improved the  CO2 conversion efficiency, could be 

Fig. 5  the effect of gas flow rate on  CO2 conversion (the data at the 
bottom of the figure is SEI value)

Fig. 6  Effects of SEI and residence time on  CO2 conversion and 
energy efficiency [33]
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obtained by increasing the discharge power, narrowing the 
discharge gap, reducing the feed flow rate, and shortening 
the discharge length. However, the energy efficiency was 
decreased due to less residence time and heat loss. On the 
contrary, longer residence time will reduce SEI, which 
decreased energy efficiency as well as the  CO2 conversion 
was increased. Therefore, there was an optimum reaction 
condition point between SEI and residence time, it was 
one of the guiding theories to realize the industrialization 
of DBD plasma-catalyzed  CO2 hydrogenation. However, 
limited by the performance of the DBD reaction system, 
it was much more difficult to improve energy efficiency 
than  CO2 conversion. Therefore, there was an optimum 
economic point as shown in Fig. 7. It could be expected 
that future researches focused on optimizing the  CO2 
conversion will be more than that on optimizing energy 
efficiency.

The relationship between SEI formula and reaction 
parameters is as follows:

Specific energy input(SEI):

P is power, F is feed flow rate; Vmol is the molar volume at 
a given pressure and temperature; NA is Avogadro's constant.

(R1)SEI

(

kJ

ml

)

=
P (KW)

F (ml/min)

(R2)SEI

(

eV

mol

)

= SEI

(

kJ

ml

)6.241 × 1021 × V
mol

N
A

3.3  Optimization of DBD system

It would be very complicated to improve both  CO2 conver-
sion and energy efficiency only by adjusting reaction param-
eters, packed materials, and optimizing catalysts. There are 
many factors involved to restrict the relationship between 
SEI and residence time. It is a mutual-beneficial solution 
to improve SEI and residence time simultaneously, which 
is to optimize the reaction system. The specific solutions 
are as follows.

(1) Multiple parallel electrode plasma reactor. Compared 
with the traditional DBD reactor, this type of reactor 
could produce more edge effects to form a wilder elec-
tric field, then give birth to more energetic electrons 
and active radicals, increase the number of the dis-
charge channels, and promote  CO2 hydrogenation and 
energy efficiency [33].

(2) Water electrode DBD reactor [9]. The gas temperature 
was raised when plasma catalyzes  CO2 hydrogena-
tion, and the higher gas temperature should let to an 
expansion of gas and a decrease of the gas density. This 
will result in a reduction in residence time and energy 
efficiency against hydrocarbon generation. It is water, 
which circulate between internal and external cylinders 
in this type of reactor, act as a groundwater electrode, 
and absorb the heat emitted by the reactor as well as 
maintaining the react area temperature. This process 
could effectively reduce CO generation during the  CO2 
hydrogenation process and improved energy efficiency.

(3) The quartz glass reactor had better high-temperature 
resistance and chemical stability than the ordinary glass 
reactor.

(4) Compared to ordinary steel mesh covers, the use of 
aluminum mesh as the outer electrode of the reactor 
helped the filter material reduce the leakage of ultra-
violet light from the reactor, thus the light source was 
fully used [63].

(5) Adding pure inert gas (e.g.,  N2, He, and Ar) into the 
DBD plasma reactor could promote  CO2 conversion 
[48], and the most commonly used inert gas is Ar. The 
addition of Ar made the discharge formed more easily 
and uniformly [64, 65], then increased the contact area 
and the synergistic effect between plasma and catalyst. 
Besides, the presence of Ar made a significant contri-
bution to  CO2 conversion for the new reaction routes 
formed by the formation of metastable argon [66].

(6) Regulating  H2/CO2 ratio could significantly affect the 
product selectivity [62]. Appropriately increasing the 
 H2/  CO2 ratio will lead to an obvious improvement of 
 CO2 conversion, facilitate  CH4 and  CH3OH generation, 
but it’s contrary to that of CO generation. A lower  H2/
CO2 was beneficial to generate CO, but the  CO2 conver-

Fig. 7  a Optimum reaction condition; b Optimum economic point  (F1 
Flow rate; L discharge length;  F2 discharge frequency; G discharge 
gap; P discharge power)
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sion, methanation and methanol were suppressed [67]. 
The energy efficiency decreased with the higher  H2/
CO2 ratio, because the hydrogen molecules competed 
with the  CO2 molecules in absorbing the energy sup-
plied by plasma.

4  CO2 hydrogenation to methane

The  CO2 methanation is shown in Fig. 8, also known as 
the Sabatier reaction, is considered as one of the most 
efficient  CO2 conversion methods. It provides a feasible 
way for the storage and utilization of renewable hydrogen 
and produces syngas. Besides, it is an essential part of 
the whole process of coal gasification to produce natural 
gas. Because  CO2 methanation is an 8-electron transfer 

reaction, highly active metals, such as metals in groups 
VIII to X (Ru, Rh, Pd, Fe, Co, Ni, etc.), are usually 
selected to prepare catalysts. Nakayama et al. [68] pre-
pared Ni/MgO catalysts with large Ni metal surface area. 
These Ni/MgO catalysts achieved NiO-MgO solid solu-
tion formation, and inhibited the aggregation of Ni metal 
particles as well as have high catalytic performance for 
 CO2 hydrogenation. In this review, plasma-catalyzed  CO2 
hydrogenation Table 2 catalysts such as ruthenium-based 
catalysts, nickel-based catalysts, and hotspot catalyst MOF 
will be focused to be introduced.

4.1  Ruthenium‑based catalyst

Ruthenium-based catalysts were considered as one of 
the most active  CO2 methanation catalysts due to their 
high catalytic activity and low reduction temperature. Lee 
et al. [41] used DBD plasma synergy Ru/γ-Al2O3 to cata-
lyze  CO2 methanation, and confirmed that the presence 
of Ru affected the discharge characteristics of γ-Al2O3. 
The results of OES analysis showed that dielectric heat-
ing and electron collision were the major contributors to 
improve the efficiency of  CO2 methanation. Xu et al. [69] 
prepared Ru/MgAl-LDH to plasma-catalyzed methanation 
of  CO2with  CO2 conversion of 85%, The  CH4 yield of the 
catalyst is 84%, the  CO2 conversion rate is 85%, which is 
about six times of the thermal catalytic  CO2 conversion 
at 250℃, and the activation barrier is one quarter of the 
thermal system. In addition, the synergistic effect between 
plasma and catalyst enhanced  CO2 hydrogenation at low 
temperatures.

(R3)CO2 + 4H2 = CH4 + 2H2OΔH = −164kJ∕mol

Fig.8  CO2 hydrogenation to methanation

Table 2  Reaction parameters and activity of several catalysts

a Feed gas:  H2/CO2 molar ratio
b Energy efficiency

Catalyst F (kHz) V (kV) P (W) T (°C) Feed  gasa CH4 sell % CH4 yield CO2 conv % References

Ru/γ-Al2O3 3 9 7:1 97.38 23.2 [41]
Ru/MgAl-LDH 23.5 5 4:1 84% 85 [69]
15NiCZ5842 80 100% [70]
Ni-Ce-Zr Hydrotalcite 80  ≥ 99% [71]
Ni/TiO2 73.2 Nearly 90% [72]
15Ni-20La/Na-BETA 20.3 6 400 97 84 [73]
Ni/ZSM-5 14 3:1 87.9 46.3 [74]
Ru/Zr-MOF 7.1 19.2 13 4:1 94.6 39.1% 41.3 [75]
Ru@UiO-66 13 4:1 30 95.4 72.2 [76]
Ni/γ-Al2O3 250 70 40 [77]
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4.2  Nickel‑based catalyst

Although noble metals exhibit excellent catalytic per-
formance, their high prices have prompted researchers 
to open or find a new path or snap course. Nickel-based 
catalysts are one of the best replacements for noble met-
als, which have been extensively studied in DBD plasma-
catalyzed  CO2 methanation due to the lower price, easily 
accessible, and excellent catalytic activity. Recent studies 
have shown that the catalytic performance of Ni-based 
catalysts for  CO2 methanation mainly depends on the sup-
port, nickel loading quantity, secondary metals, and prepa-
ration methods [78].

Different supports had a significant impact on the mor-
phology of the active phase, adsorption, and catalytic prop-
erties of Ni-based catalysts [78]. To prepare highly dispersed 
supported metal catalysts, oxides with high surface area are 
usually used, such as  Al2O3,  SiO2,  TiO2,  CeO2,  La2O3, and 
zeolites. There were many factors that influence the per-
formance of supported metal catalysts, including pore size, 
structure, surface chemistry, and strong metal support inter-
action (SMSI) [79]. Ni/γ-Al2O3 was commonly used in the 
methanation of carbon dioxide with hydrogen. It has shown 
highly catalytic activity, but suffers severe carbon deposi-
tion and poor stability in high reaction temperature [80]. 
Jin et al. [81] pre-treated the precursor of Ni/γ-Al2O3 by 
DBD plasma and founded the discharge power significantly 
impact the reducibility and catalytic activity of Ni/γ-Al2O3. 
At the low discharge power, the precursor (nickel nitrate) 
did not obviously reduce and decompose into Ni oxides, 
butthe catalytic activity, stability, and reducibility could be 
improved and stabilized at limit value with the increasing of 
power. It could be mainly ascribed to the smaller Ni particle 
size, more basic sites, weaker alkalinity and less prone to 
carbon deposition and sintering caused by plasma treatment. 
Sivachandiran et al. [77] used plasma to treat Ni/γ-Al2O3 
to catalyze  CO2 methanation in DBD. In this process, the 
catalytic temperature was 50℃ to 250℃ lower than that in 
conventional thermal catalysis, and it is observed that NiO 
is evenly dispersed on the surface of alumina beads. Plasma 
treatment could slightly increase the pore size of Ni, and 
40%  CO2 conversion, and 70%  CH4 selectivity were reached, 
respectively. Jia et al. [82] prepared Ni/ZrO2 by plasma 
decomposition of nickel precursor, which showed high dis-
persion and Ni(111)as the main lattice plane. Besides, an 
enhancement of the cooperation between Ni and interfacial 
active sites was achieved, and led to a faster dissociative 
adsorption of  H2 and hydrogen spillover. Therefore, suffi-
cient H atoms were generated for  CO2 hydrogenation, which 
enhanced the generation of oxygen vacancies on  ZrO2 sur-
face, then the oxygen vacancy further enhanced the adsorp-
tion and activation of  CO2, so that the excellent low tem-
perature activity for  CO2 methanation could be obtained. 

To further reflect the difference between thermal catalysis 
and plasma catalysis.

To overcome the sinterability of nickel-based catalysts 
in carbon dioxide methanation, the second metals like Fe, 
Zr, Co, La, Mg, etc. could be loaded to change the catalytic 
electronic distribution and geometric structure, which could 
improve the stability and catalytic activity of the nickel-
based catalysts [83]. Li et al. [84] found that Fe can improve 
the catalytic performance of Ni/Al2O3 for  CO2 methanation, 
but the positive effect of adding Fe was volcanic and had an 
optimal point. Wierzbicki et al. [85] compared a series of 
bimetallic layered double hydroxide-derived materials con-
taining a fixed amount of Ni and different amounts of Fe 
by coprecipitation. It was found that the introduction of Fe 
in the layered double hydroxyl group changed the interac-
tion between Ni and the support matrix. After Introducing a 
small amount of Fe, the number of medium bases increased 
sharply, but the weakly basic bases increased slightly. 
The number of high bases decreased when more Fe was 
introduced.

The catalyst performance of  CO2 methanation could be 
improved by improving the preparation method of the cata-
lyst and the dispersion degree of the active site of the cata-
lyst, which should be paid attention by researchers. Besides, 
although NTP-DBD cooperated with high temperature and 
showed excellent catalysis results, the high temperature 
favored  CH4 reforming to CO and  H2, and facilitated water 
gas reaction to produce CO [77].

4.3  Metal–organic framework materials

Metal–organic framework (MOF) is a series of porous crys-
talline materials self-assembled by metal ions and organic 
ligands through coordination bonds. It has attracted much 
attention due to its high specific surface area, porosity, 
adjustable functional structure and  CO2 adsorption per-
formance [86]. UiO-66 is a typical Zr-based MOF with a 
perfect frame structure and excellent thermal stability. The 
common carriers of UiO-66 are Cu, Au, Pd, Pt, Ru, etc. Xu 
et al. [75] prepared Zr-MOF loaded Ru with a solvothermal 
method to catalyze  CO2 methanation, and found that  Ru3+ 
was oxidized to RuO in the reaction process. Thus, catalytic 
capacity showed better, and the selectivity and yield of  CH4 
reached 94.6% and 39.1%, respectively. Xu et al. [76] used 
solvothermal method preparing UiO-66 loaded Ru nanopar-
ticles (NPs) to catalyze  CO2 methanation under NTP-DBD, 
and no change was found after the loading of Ru in terms of 
the integrity of structure, crystallinity, specific surface area 
and thermal stability of UiO-66. Besides, the Ru NPs in 
Ru@UiO-66 had good dispersibility, unique frame structure, 
and the synergy with NTP-DBD, thus showing a better cata-
lytic activity than UiO-66 and Ru/Al2O3, with  CO2 conver-
sion of 72.2% and  CH4 selectivity 95.4%, respectively. Lan 
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et al. [74] studied the effect of ZSM-5 loaded different met-
als on  CO2 hydrogenation, and found that Cu/ZSM-5 cannot 
promote the generation of any hydrocarbons. Ni/ZSM-5, Fe/
ZSM-5, and Mo/ZSM-5 promoted methane generation, and 
Ni/ZSM-5 showed the highest selectivity 90.5%. Co/ZSM-5 
promoted C2-C4 formation with the highest C2-C4 selectiv-
ity of 13.7%.

5  CO2 hydrogenation to methanol

To reduce  CO2 content in the atmosphere and the reliance 
of fossil resource, “methanol economy” [87, 88] gradually 
attracted special attention, as shown in Fig. 9. Methanol 
was not only an important raw material for chemical indus-
tries and a cleaner resource than fossil fuels [89], but also a 
good chemical storage carrier for  H2. It provided a solution 
for  CO2 utilization [90]. The reaction equations [91, 92] is 
shown below:

5.1  Photocatalysis

As one of the most important catalysts to catalyze  CO2 
hydrogenation to methanol, copper-based catalysts have 
been greatly developed recently due to their higher activ-
ity and higher product selectivity [93]. For example, in the 
field of photocatalysis  CO2 methanol, Cu/ZnO is one of 
the most effective photocatalysts. Because ZnO improved 
the dispersion of Cu particles, the SMSI between Cu and 

(R4)
CO2 + 3H2 = CH3OH + H2O ΔH◦

298k
= − 49.5kJ∕mol

(R5)CO2 + H2 = CO + H2O ΔH
◦

298K
= 41.2kJ∕mol

(R6)
CO + 2H2 = CH3OH + H2OΔH

◦

298k
= − 90.6 kJ∕mol

ZnO significantly improved the methanol selectivity. Cu 
was much higher than other crystal facets, so it had higher 
methanol selectivity [94, 95]. Further studies have found 
that adding appropriate amounts of CdSe, g-C3N4,  Al3+, and 
 Ca3+ into the Cu/ZnO will enhance the catalytic activity and 
the product selectivity. Among them, g-C3N4 was cheapest, 
non-toxic, and easiest to hybridize with ZnO. Deng et al. 
[96] prepared Cu/g-C3N4-ZnO/Al2O3 by modifying ZnO 
with g-C3N4, which showed a higher catalytic performance 
than traditional Cu/ZnO/Al2O3. Li et al. [97] found that add-
ing a small amount of  Ca3+ into the precursor of the Cu/ZnO 
catalyst will form gallium spinel  ZnGa2O4, producing CuZn 
bimetallic nanoparticles, which could significantly improve 
the  CO2 conversion and methanol selectivity [98].

5.2  Electrocatalysis

In the field of electrocatalytic  CO2 methanol, copper was 
the only monometallic catalyst that could produce appreci-
able amounts of hydrocarbons [99]. The catalytic perfor-
mance of Cu-based catalysts can be improved by the sur-
face morphology of Cu electrodes, the electronic structure, 
the geometric and bonding properties between copper and 
metal substances. Different crystal faces of Cu exhibit dif-
ferent catalytic properties for  CO2 conversion. For example, 
Cu (111) favored the formation of COH*, which combined 
with  CH2 to produce methane and ethylene under high 
overpotential (< – 0.8 V-RHE). Under low overpotential 
(– 0.4 ~ 0.6 V-RHE), the Cu(100) favored the formation of 
CHO* and two CHO* species will couple to form ethyl-
ene [100]. However, at a high overpotential and CO* rela-
tive surface coverage, Cu(100) gave preference to generate 
COH* and produced  CH4 and  CH3OH via a similar reaction 
pathway as Cu(111) [101]. Jiao et al. [102] revealed that the 
g-C3N4 could be used as the molecular scaffold to appropri-
ately modify the electronic structure of Cu in the resultant 
Cu-C3N4 and efficiently elevate the d-band position of Cu 
toward the Fermi level, thus significantly improved catalyst 
ability to activate  CO2 and adsorbing intermediate reactants. 
Moreover, for the first time, synergistic molecular catalysis 
with double active centers was found on the surface of Cu-
C3N4. Ma et al. [103] has compared the performance of dif-
ferent types of bimetallic Cu-Pd catalysts such as ordered, 
disordered and phase-separated. They found that the order 
Cu-Pd showed the highest C1 selectivity, which suggested 
that the C1 intermediate was easier to dimerize on surface 
of neighboring Cu atoms and the geometric effect was key 
to determine Cu-Pd selectivity. Kattel et al. [104] compared 
the activity and selectivity of  TiO2/Cu and ZrO/Cu. They 
found that the source of the excellent promotion effect of 
 ZrO2 was related to the fine-tuning ability of  Zr3+reduction 
at the interface, which could appropriately combine the key 
reaction intermediates, such as *  CO2, * CO, * HCO and * Fig. 9  Schematic diagram of methanol economy
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 H2CO, to promote the formation of methanol. However, the 
current research progress of Cu-based catalyst forelectro-
catalytic  CO2 methanol is still in the basic research stage, 
focusing on solving the problems to get higher overpotential 
required for the reaction, lower Faraday efficiency, lower 
product selectivity and faster deactivation.

5.3  Plasma catalysis

Despite many technologies mentioned above have been 
well-developed for  CO2 hydrogenation to methanol, they 
still face many challenges. One of the major challenges is 
the high reaction pressure. According to the reaction ther-
modynamics,  CO2 hydrogenation to methanol (Eq. R4) is 
an exothermic and molecule-reducing reaction, which is 
favored to occur at lower temperatures and higher pressure 
[105]. However, lower temperature operation is a subject 
to a thermodynamic equilibrium limitation in  CO2 activa-
tion. Although higher temperature facilitates  CO2 activation, 
the simultaneous formation of CO (Eq. R4) is promoted, 
which is the primary competitive reaction with Eq. R3. 
DBD plasma technology with non-thermodynamic equilib-
rium provides an attractive method to produce methanol at 
atmospheric temperature and pressure. For example, Wang 
et al. [9] used a water-electrode DBD reactor to compare 
the catalytic performance of Cu/γ-Al2O3 and Pt/γ-Al2O3 in 
terms of  CO2 conversion and methanol yield, and found that 
the Cu/γ-Al2O3 had a stronger catalytic activity and achieved 
a  CO2 conversion of 21.2%, a methanol yield of 11.3%. 
They also found that the methanol produced was strongly 
dependent on the DBD plasma reactor configuration. Luo 
et al. [14] found that Cu/ZnO/C prepared by cold plasma 
treatment had higher dispersion, smaller particle size and 
lower agglomeration, and higher  CO2 adsorption capacity 
than the catalyst prepared by calcination. The plasma treat-
ment also introduced specific oxygen-containing groups to 
the activated carbon, which facilitated hydrogen spillover 
onto the catalyst. Besides, plasma promoted the formation 
of ZnO (002) planes, which exhibited higher surface energy 
and a stronger SMSI with Cu than that of other crystal facet, 
thus promoting the activation and hydrogenation of  CO2.

DBD plasma catalyzes  CO2 hydrogenation to methanol is 
rarely reported recently. Analysis of the following reasons: 
(1) The water formed during  CO2 hydrogenation leads to 
catalysts deactivation, and would absorb a large amount of 
energy and blocked the movement of high energetic elec-
trons. It results in the  CO2 conversion and energy efficiency 
reduced. (2) The reaction pathways of  CO2 hydrogenation 
to methanol are very l complex (as shown in Fig. 4 and 
Table 1), and lots of by-products should easily generate. (3) 
At room temperature, the methanol is liquid, which is easy to 
adhere to the reactor, gas pipeline and GC, etc. It may result 
in errors in data calculation, and easily cause pollution and 

damage to the reaction system [9]. (4) Compared with the 
atmospheric operation conditions of DBD plasma-catalyzed 
 CO2 hydrogenation, this reaction (Equation R3) is a phase 
change (from gas to liquid) process, so the impact of higher 
pressure is greater than atmospheric conditions. To address 
the problems, the research and development of a new reactor 
system would become the top priority.

6  Conclusion

In this review, the reaction mechanism of DBD plasma-
catalyzed  CO2 hydrogenation is described in detail. It is a 
process of gradual hydrogenation, and the final products are 
mainly influenced by the  H2/CO2 ratio and the catalyst types. 
For example, a lower  H2/CO2 ratio is easier to produce CO, 
while a higher  H2/CO2 ratio is easier to produce  CH4 and 
 CH3OH, etc. Ni-based catalysts promote the formation of 
methane. Copper-based catalyst promotes the formation of 
methanol.  CO2 conversion and energy efficiency are impor-
tant indicators for DBD economic evaluation. Their influ-
encing factors and optimization measures as follow.

(1) Packing materials can improve discharge mode from 
filamentous discharge to the combination of surface 
discharge and filamentous discharge, which increases 
the amount of high energetic electrons, active species, 
and free radicals, and thus improves the  CO2 conver-
sion and energy efficiency. Specifically, a good per-
formance is found in the materials with high specific 
surface area, fiber and high dielectric constant.

(2) The SEI and residence time can be used as the evalu-
ation criteria to adjust the reaction parameters such as 
discharge voltage, discharge length, discharge gap, dis-
charge frequency and feed flow rate, so as to obtain the 
optimum reaction parameters.

(3) Optimization of the reaction system can improve both 
SEI and residence time, so as to improve  CO2 conver-
sion and energy efficiency at the same time. This is a 
very good method, but it still needs theoretical break-
through and innovation. At present, relatively good 
reaction systems included multiple external electrodes 
in parallel, hydroelectric poles, rhombus aluminum grid 
reactors, etc. In addition, adding inert gas, such as Ar, 
is a useful measure too.

Based on the presented researches above, the further 
study directions of DBD catalyzed  CO2 hydrogenation to 
methane or methanol are proposed as follow.

(1) CO2 methanation. Recently, the research mainly 
involved Ruthenium-based catalysts, Nickel-based 
catalysts, and MOF. Ruthenium catalysts showed the 



983Carbon Letters (2023) 33:973–987 

1 3

best reactivity, but its price is the highest. MOF had a 
higher specific surface area, porosity,  CO2 adsorption, 
and adjustable functional structure, but its preparation 
is difficult. Most research reported on Ni-based mate-
rials and mainly focused on the supports, nickel load-
ing, secondary metals and preparation methods. The 
goal is to improve the pore diameter, structure, surface 
chemical properties and the SMSI, and subsequently 
to enhance catalyst stability,  CO2 adsorption, catalytic 
activity and dispersion degree of active components 
as well as reduce the carbon deposition and sintering 
phenomenon. In addition, the catalyst prepared by the 
plasma system generally showed a better performance 
of  CO2 conversion and methane selectivity, which was 
a promising method.

(2) CO2 methanolization. Copper-based catalysts, as the 
main catalysts for  CO2 methanolization, have been 
developed well in recent years. In the field of photoca-
talysis, Cu/ZnO is one of the most important catalysts, 
and the SMSI between Cu and ZnO is further studied. 
It was also found that CdSe, g-C3N4,  Al3+, and  Ca3+ 
could further improve the yield and selectivity of the 
products. Recent studies in the field of electrocatalysis 
showed that the catalytic performance of copper-based 
catalysts could be improved by studying the surface 
morphology, electronic structure, geometric structure, 
and bonding performance of copper and metal mate-
rials of copper electrodes. It is the guiding theory to 
solve the problems of high overpotential, low Faraday 
efficiency, low product selectivity, and rapid deactiva-
tion. Compared with the formers, DBD plasma technol-
ogy with non-thermodynamic equilibrium characteris-
tics has a great potential on  CO2 methanol in theory. 
The reason might be the long reaction pathway during 
which water is generated and then leads to catalyst 
deactivation. At the same time, the generated methanol 
is easy to condense and adhere to the reactor and gas 
pipe. Besides, the reaction condition is low pressure 
and the stimulating effect on the phase transition reac-
tion is weaker than high pressure. The performance of 
DBD plasma-catalyzed  CO2 methanolization places a 
strong requirement on the design and structure of the 
reaction system. Therefore, in addition to the develop-
ment of high-performance catalysts, optimization of the 
reaction system will be an essential step, which should 
be taken seriously by researchers.
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