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Abstract
Due to their fascinating properties, there is a rise in the critical consideration of carbon-based nanomaterials in a plethora of 
applications. Carbon nanomaterials, such as nanotubes, graphene, fullerenes, and nanodiamonds, have broad applicability 
and potential research prospects. In the past few years, the developments and consumption of still smaller nanomaterials, 
namely graphene quantum dots and carbon nanodots or carbon dots (CDs) have been explored. Since carbon as a component 
exhibits insignificant cytotoxicity and remarkable biocompatibility, CDs have found a wide scope of potential applications. 
Owing to their fascinating aspects, such as small size, biocompatibility, low toxic nature, environment-friendliness, cost-
effectiveness, ease of chemical functionalization, derivatization and surface modification, and photoluminescence tenability, 
CDs have been widely acknowledged. CDs have found major prospects in the areas of catalysis, sensors, and optical and 
bio-related applications. CDs are generally synthesized by employing techniques of pyrolysis, laser ablation, arc discharge, 
electrochemical method; hydrothermal and solvothermal techniques; and microwave and ultrasonic irradiations. This review 
article presents a brief account of the major properties of CDs, and applications, with particular emphasis on the green and 
environment-friendly synthesis methodologies. An overview of the microwave and ultrasound irradiation-induced synthe-
ses for the preparation of CDs is presented in the light of green chemistry principles. In addition, some of the green and 
environmentally benign precursors for the production of CDs are outlined. The most recent work on CDs is included in this 
review article.
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SWCNT	� Single-walled carbon nanotubes
MWCNT	� Multi-walled carbon nanotubes
GO	� Graphene oxide
GQDs	� Graphene quantum dots
CDs	� Carbon nanodots
PL	� Photoluminescence
LED	� Light-emitting diode
EL	� Electroluminescence
TEM	� Transmission electron microscopy

HRTEM	� High-resolution transmission electron 
microscopy

XPS	� X-ray photoelectron spectroscopy
EDPL	� Excitation-dependent photoluminescence
EIPL	� Excitation-independent photoluminescence
SDPL	� Size-dependent photoluminescence
QY	� Quantum yield
MW	� Microwave
US	� Ultrasound
HER	� Hydrogen evolution reaction
OER	� Oxygen evolution reaction
ORR	� Oxygen reduction reaction
CO2RR	� Carbon dioxide reduction reaction
MBC	� Minimum inhibitory concentration
ROS	� Reactive oxygen species
PTT	� Photothermal therapy
DFT	� Density functional theory
MD	� Molecular dynamics simulations
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1  Introduction

Over the years, carbon-based nanomaterials have found 
applications in a plethora of areas. The major application 
is in single and multi-walled carbon nanotubes (SWCNT, 
MWCNT), which can be classified into one-dimensional 
materials. Graphene and graphene oxide (GO), graphene 
quantum dots (GQDs), etc. come in the two-dimensional 
category, whereas fullerene, nanodiamonds, and carbon dots 
(CDs) can be termed as zero-dimensional [1–3]. Figure 1 
shows the different forms of carbon nanoallotropes [2, 4]. 
Carbon nanodots (CDs) are carbon nanoparticles having a 
size in the dimensions of < 10 nm [5–7], are quasi-spherical, 
and are well dispersed [5, 8]. CDs, in general, comprise car-
bon skeleton besides other primary elements such as oxygen 
and hydrogen in varying ratios. CDs mostly exist in amor-
phous quasi-spherical shapes containing both sp2 and sp3 
hybridized carbon atoms having a size < 10 nm [6].

In recent years, owing to their remarkable properties, 
such as low toxicity, high biocompatibility, nanoscale 

size, ease of chemical functionalization, and tunability 
of photoluminescence, CDs have been widely explored. 
The major applications are in catalysis, sensors, optical 
devices, and bioimaging [5, 9, 10]. CDs have been synthe-
sized using both the top-down and the bottom-up methods 
depending upon the required application [6, 11]. The latter 
is the preferred one because of the large-scale and low-cost 
synthesis. Due to the stringent environmental regulation, 
nowadays, the greenness and sustainability of nanomateri-
als are major requirements. This is to avoid the discharge 
of any toxic/harmful effluent to the soil/aquatic life, lead-
ing to possible contamination/environmental pollution.

Several research articles have covered the chemical 
synthesis methodologies of CDs and their wide applica-
bility. This article presents a brief account of the vari-
ous synthesis strategies of CDs and their application. The 
important properties of the CDs are outlined and the bio-
compatible nature is highlighted. The focus is on the green 
and environmentally friendly synthesis of CDs with ease 
of preparation, scalability, and green nature. Accordingly, 
some of the modern synthetic techniques are reviewed for 
the preparation of CDs with desirable properties. Some 

Fig. 1   Nanoallotropes of carbon 
[2, 4]
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of the greener precursors of CDs are outlined, and a brief 
account on the applications of the CDs is presented. The 
scope of further research in this area is outlined.

2 � Green synthesis of CDs

2.1 � Top‑down and bottom‑up approaches

Depending upon the requirement for the target application, 
various synthetic strategies have been explored for the 
preparation of CDs. Figure 2a shows the general mecha-
nism for the preparation of CDs. The different preparation 

Fig. 2   a General mechanism for the preparation of CDs [12]; b top-down and bottom-up methods for the preparation of CDs; c major techniques 
used for the structural characterization of CDs; and d properties and applications of CDs



1606	 Carbon Letters (2022) 32:1603–1629

1 3

methods can be broadly categorized into the top-down and 
the bottom-up approaches, as shown in Fig. 2b. Chemi-
cal oxidation, mechanical grinding of activated carbon to 
get the nanoscale precursor (e.g., nanodiamond, carbon 
black, graphite, CNTs, ash), discharge, laser ablation, 
electrochemical preparation, etc., are the major top-down 
methods [3, 9, 10]. The bottom-up method describes the 
production of the nanomaterials using small molecules as 
precursors. These involve pyrolysis, microwave/ultrasonic 
irradiation, hydrothermal/solvothermal preparation, etc. 
The choice of the synthesis route stems from the follow-
ing goals: (i) simplicity and reproducibility of the method, 
(ii) achieving high yield or scalability of the method, (iii) 
minimizing waste production, (iv) cost-effectiveness, and 
(v) optical properties. Figure 2c shows the major tech-
niques used for the characterization of CDs. Some of the 
major properties and applications of the CDs are outlined 
in Fig. 2d.

2.2 � Green synthetic methods of CDs

Green chemistry is the branch of science dealing with envi-
ronmentally benign synthesis techniques, using safer sol-
vents or solventless synthesis, minimizing waste production, 
use of enzymes, biocatalysts, etc. [13]. In this connection, 
herein, we present the microwave- (MW) and ultrasonication 
(US)-assisted methods for the preparation of CDs. Conven-
tional organic synthesis methods require a long time for the 
organic synthesis to complete; therefore, these methods are 
considered inefficient and slower. Further, these methods 
offer poor selectivity and lower yields of the desired prod-
ucts. On the other hand, using the non-conventional methods 
of microwave and ultrasonic irradiations [12, 14, 15], the 
synthesis can be completed within a fraction of minutes and 
with a high product yield. These methods offer advantages of 
greater temperature homogeneity, uniform heating, reduced 
generation of waste, higher reaction rate and consquently 
low synthesis time, low operating cost, and high purity. 
Therefore, these techniques are considered environmen-
tally benign and green methods. Almost all kinds of organic 
transformations have been reported using microwave and 
ultrasonic irradiations.

For the preparation of CDs, hydrothermal and solvother-
mal techniques are generally preferred. However, employ-
ing the MW and US methods, the synthesis time could be 
reduced from several hours to a few minutes [12, 16–18]. In 
addition, homogeneous heating during the MW irradiation 
method ensures the formation of uniform size CDs [19]. The 
use of template synthesis can provide good monodispersity 
and controlled size during CD preparation. The template 
synthesis methods can be facilitated using MW and US 
methods. Careful selection of MW/US parameters can pro-
vide a control over the size and morphology of nanoparticles 

even in the absence of any template [20]. Further, compared 
to the solvothermal method that employs non-aqueous sol-
vents, the MW and US techniques can be carried out quite 
easily in aqueous media, thereby avoiding the use of toxic 
solvents. In addition, during the MW and US methods, vis-
ual changes and temperature profiles in the synthesis vessels 
can be easily followed and directly recorded, which is not 
possible for the hydrothermal method. Among MW and US 
techniques, the basic working principle is quite different and 
both techniques have their own merits as discussed below. 
Various kinds of catalytic reaction schemes can be further 
tuned by optimizing the MW and US parameters.

3 � Significance of green synthetic methods 
for the preparation of CDs

3.1 � MW irradiation

Conventional organic synthesis is slower, and the healing 
process can lead to the development of a temperature gradi-
ent within the sample. Besides, local overheating can lead 
to the decomposition of the desired product, substrate, and 
the used reagents. A domestic microwave (MW) is a com-
mon household appliance that is very commonly adopted 
for the cooking/re-heating of food items. This technique 
has also been reported successfully for numerous organic 
syntheses, preparation of nanomaterials, and solid-state sci-
ence [21]. The MW region in the electromagnetic spectrum 
exists between the infrared and radio waves. Microwaves 
operate within wavelengths of 1 mm to 1 m, corresponding 
to frequencies between 0.3 and 300 GHz. MW radar and tel-
ecommunications systems occupy several band frequencies 
in this region. Thus, to avoid the disturbance from these, the 
MW apparatus for domestic and industrial purposes works 
at a frequency of 2.45 GHz. In the past few years, several 
reports have come up in the literature on the application of 
the MW method for the synthesis of nanomaterials [22–24]. 
The working principle of the MW reactors is based on dipo-
lar polarization and ionic conduction [25, 26]. MW-induced 
synthesis offers the acceleration of organic reactions under 
selectivity of the resulting products by a careful selection of 
MW parameters [24, 27–29]. This offers considerable ben-
efits over the conventional synthesis, such as quicker heating 
rates and greater thermal homogeneity.

The uniform heating of the reaction vessel in the MW 
method avoids the formation of heating gradients, which 
are common in the conventional hot plate and reflux meth-
ods [26, 30]. Thus, the MW method allows the development 
of uniform-sized nanomaterials [12]. Further, the choice of 
aqueous or suitable non-aqueous methods allows efficient 
hydrothermal/solvothermal synthesis. By modifying the con-
ditions, viz., the MW power, synthesis time, and stirring 
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speed (mechanical or magnetic), the desired shapes and 
sizes of nanomaterials can be obtained. Due to these ben-
efits, the MW synthesis is a widely recognized green chem-
istry technique. Figure 3a–c shows the synthesis of CDs 
using xylan [31], l-cysteine [32], and xylose [33] as pre-
cursors following the MW technique. It has been observed 
that with an increase in MW reaction time, the UV–visible 
absorption peak at ~ 260 nm of the resulting CDs shifted to 
shorter wavelengths (4 min, 265.5 nm to 14 min, 253.5 nm) 
[34]. The authors have also noted that the QY of the CDs 

at first increased with an increase in the MW time and then 
decreased significantly [32]. In another report, the authors 
have noted that upon decreasing the MW reaction tempera-
ture, the QY is lowered. The FTIR spectra of the CDs pre-
pared using xylan as discussed above using NH4OH and PEI 
as precursors are shown in Fig. 4. In the following section, 
we present some examples from the literature on the applica-
tion of MW method for the preparation of CDs. 

3.2 � US irradiation

Ultrasound waves act as an alternative source of energy 
and have garnered significant interest in the area of green 
chemistry. The high-frequency ultrasonic (US) waves 
(20 kHz–10 MHz) induce a series of compression/rarefac-
tion cycles through a solvent medium through which they are 
passed. This leads to the cavitation phenomenon in which 
bubbles form and collapse rapidly and provide energy to 
carry out the US-based reactions [21]. The creation of local-
ized extremes of high temperature and pressure (hot spots) 
around/inside the cavitation bubbles not only destroys them, 
but also activates the reacting molecules of organic reagents 
[35]. Besides, micro jet streams and shock waves arising 
due to cavitation facilitate the mass transfer and dispersion 
of molecules in the medium [36]. Figure 5a–c shows the 
schematic of CDs synthesis employing the US method using 
gelatin hydrolysate [37], D-fructose [38], and crab shells 
[39] as precursors and its application in bioimaging, anti-
counterfeiting, and heavy metal detection.

Fig. 3   Schematic of microwave-assisted synthesis of CDs using precursors: a xylan, NH4OH, and PEI, to produce CDs having variable PL 
behavior [31]; b l-cysteine having N, S, doping, and variable sizes [32]; and c xylose [33]

Fig. 4   FTIR spectra of CDs prepared from xylan following MW irra-
diation using different N-doping agents [31]
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Ultrasonic (US) cleaner bath is the simplest ultrasonic 
processor commonly used for cleaning of artificial den-
tures, jewelry, and electrodes, and also for some organic 
synthesis in the laboratories. The US probe processor, 
on the other hand, is useful for dedicated application in 
organic chemistry, nanomaterial preparation, and other 
scientific purposes [14, 18, 36, 40, 41]. The probe pro-
cessor comes with varying sizes of probes having radii 
generally varying from 3 to 10 mm. The major differ-
ence between the US cleaner and the US probe processor 
is that in the former, a reaction vessel is inserted into 
the water. In contrast, in the latter, the probe is directly 
inserted into the reaction vessel. The probe processor is 
more sophisticated and is of significantly greater power 
in comparison to the ultrasonic cleaner bath. This leads 
to more effective US action, and the probe instrument is 
dedicated to the specialized application. The synthesis 
procedure can be further modulated by adjusting the sol-
vent, power, pulse period, energy, frequency, amplitude, 
sonication time, temperature, precursors, and catalysts. It 
has been noted that prolonged US treatment (6 h) results 
in the formation of heterogeneous nanoparticles [18]. In 
such conditions, the initially synthesized nanoparticles 
could behave as seeds that can promote the synthesis of 
greater-sized nanoparticles. However, the exact particle 

size will also be influenced by the size of the smaller-
size particles and the concentration of the precursors. In 
general, for the preparation of CDs, a sonication time of 
90–120 min is required. On the other hand, the sonication 
time also considerably influences the fluorescence inten-
sity of the formed CDs. It has also been observed that 
the yield of CDs increases with sonication time and tem-
perature [17]. In the following section, we have presented 
some examples from the literature on the application of 
the US technique for the preparation of CDs.

4 � Importance of green precursors for CDs 
synthesis

In the above sections, we have outlined the application 
of MW and US techniques for the preparation of CDs 
using various types of precursor chemicals. In addition 
to the above, there are several precursors that can be cat-
egorized as green and environmentally benign, and their 
application in the synthesis of CDs is under the provisos 
of green chemistry principles of environmentally benign 
and low-toxicity reagents, renewable raw materials, and 
minimizing waste production (Table S1 in the Support-
ing Information) [13, 42]. The major categories of such 

Fig. 5   Schematic of ultrasound-assisted preparation of CDs using precursors: a gelatin hydrolysate [37] and application in bioimaging and anti-
counterfeiting; b d-fructose [38] and application in methylmercury detection; c crab shells [39], and application in the imaging of cancer cells
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kinds of precursors include the extracts derived from 
naturally occurring plants [43], carbohydrates [44, 45], 
amino acids [46], and proteins. It is understood that the 
above-mentioned categories are of natural origin and have 
obvious biocompatibility. Other categories include hetero-
cyclic biomolecules [47], pharmaceutical products, and 
ionic liquids (Fig. 6) [47]. All of these types of chemicals 
are abundantly available, environmentally benign, and 
cost-effective. An additional benefit is that these mole-
cules allow achieving the synthesis of CDs with scalable 
preparation. Another aspect is that these molecules are 
composed of chemicals having plenty of heteroatoms (N, 
S, O, P), which results in the doped form of the CDs, sur-
face passivation, formation of functionalized CDs and no 
further requirement of post-modification.

5 � Luminescence mechanism in CDs

The property of luminescence is an exciting feature of the 
CDs that has facilitated a myriad of applications of these 
nanomaterials. For this purpose, endeavor has been made to 
understand the underlying mechanisms thoroughly. How-
ever, the universally acceptable origin of the fluorescence 
of CDs is still a mystery, and the topic is debatable. CDs are 
produced by various precursors, employing different tech-
niques, which results in complex components and structures 
of the resulting CDs. This means that CDs prepared follow-
ing different synthesis methods, precursor molecules, and 
post-treatment procedures have varying optical performance, 
suggesting that the luminescence mechanism of CDs is quite 
intricate and it is difficult to formulate a unified theory [10]. 

At present, the most acceptable mechanisms are (i) sur-
face state, (ii) quantum confinement, and (iii) molecular 
fluorescence.

The surface state effect is the most acceptable lumines-
cence mechanism and includes the degree of surface oxida-
tion and surface functional groups. The oxygen content on 
the surface of the CDs has a profound influence on the red-
shifted emission of the CDs. The greater the degree of sur-
face oxidation, the greater is the number of surface defects 
[50]. These defects can trap excitons, and the radiation from 
the recombination of trapped excitons causes the red-shift 
emission. A series of purified CDs with excitation-independ-
ent fluorescence from blue to red is shown in Fig. 7a. The 
extent of CDs surface oxidation gradually increased along 
with the red shift of fluorescence emission. In addition, the 
surface states are also correlated with the surface functional 
groups, also known as the molecular states, such as C=O and 
C=N that have proved to be related to CD’s fluorescence. 
Various surface functional groups can cause a diversity of 
the fluorophores or energy levels in the CDs. The quantum 
confinement effect is noticed when the size of a particle is 
too small to be comparable to the wavelength of the electron. 
The crystal boundary significantly influences the electron 
distribution when a semiconductor crystal is in the nanom-
eter scale size, which displays some properties such as band-
gap and size-dependent energy relaxation dynamics [51]. 
With an increase in the particle size of the CDs, the absorp-
tion peak energy decreases due to the quantum confinement 
effect (Fig. 7b). It has also been observed that the formation 
of fluorescent impurities during the bottom-up chemical 
synthesis (i.e., molecular fluorescence) contributes to the 
emission from CDs [52]. Molecular fluorophores that were 
attached to the CDs exert a great influence on the optical 
properties of the CDs.

6 � Application of green synthesized CDs

6.1 � Light‑emitting diodes

Nowadays, CDs-based LEDs (Fig. 8a) have been prepared 
by two general strategies: (i) CDs as phosphors and (ii) 
CDs as active emitters. The former is realized by using 
CDs as phosphors on a GaN-based UV or blue LED chip, 
which is frequently used to achieve CDs-based multicolor 
and white LEDs. Employing CDs as an emissive layer in 
EL LEDs is the most promising application for flat-panel 
displays. The CD-based active emission layers and some 
organic conjugate buffer layer materials are processed by 
solution processing [53]. Hence, the solubility of CDs 
in solvents is of significant importance in constructing 
LED devices. Several CDs have been applied in LEDs 
as discussed herein. Using citric acid as carbon source, 

Fig. 6   Some of the green precursors used for the preparation of CDs
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1-hexadecylamine-passivated CDs were prepared follow-
ing pyrolysis [54]. Following the same method, solution-
processed inverted white LEDs were prepared [55]. Using 
banana leaves as the precursor, in a single-step hydrother-
mal method, CDs were prepared and used as the electron 
transporting layer (ETL) in organic LED [56]. N-doped 
CDs were prepared following a single-step hydrothermal 
treatment using starch as a carbon source and ethylenedi-
amine as N dopant [57]. White LEDs based on starch/CDs 
composite were prepared, and an ultraviolet LED chip was 
fabricated. The device emitted white light when operated 
at 3.0 V. Using ammonium citrate and urea, highly green 

emissive CDs were prepared following a solid-state reac-
tion method [58]. The CDs depicted green emission with 
thermal stability from room temperature to 90 °C, and 
photochemical stability up to 3 h. Following a solvother-
mal treatment, CDs were prepared using citric acid as a 
precursor [59]. Bright PL emission from blue to red was 
observed, following which monochrome LEDs with blue, 
green, yellow, and red color were prepared. All the LEDs 
showed stable- and voltage-independent EL emissions. 
Table 1 provides a list of some CDs prepared using green 
precursors and their application in LED. 

Fig. 7   a Mechanism for the 
fluorescence of CDs based on 
the degree of surface oxidation 
[48]; b change in fluorescence 
emission based on variation 
in the average size of the CDs 
(shown by the HRTEM images) 
[49]
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Fig. 8   a A typical device structure of CDs-based electroluminescent LED [53]; b schematic of the charge transfer process in dye-sensitized solar 
cells [60]; schematic of c photocatalytic and d photoelectrochemical hydrogen evolution [61]

Table 1   Structural properties of some green synthesized CDs and their application in LED

Precursor Preparation condition Particle size (nm) Emission proper-
ties/emission 
color

PLQY% Application References

Citric acid Pyrolysis 5 EDPL/– – White LED [54]
Citric acid Pyrolysis 6 ± 1.9 EDPL/blue 44 White LED [55]
Banana leaves Hydrothermal; 125 °C, 7 h 4–6 EDPL/blue – OLED [56]
Starch Hydrothermal; 200 °C 

for 16 h
2.22 EDPL/– 9.65 Ultraviolet LED chip [57]

Ammonium citrate + urea Solid-state reaction; 
200 °C for 1 h

9.3 EDPL/green 13.4 Bioimaging and solid-
state LED

[58]

Citric acid Solvothermal; ethanol 
200 °C

1.95
2.41
3.78
4.90
6.68

EIPL/blue
Green
Yellow
Orange
Red

75%
73%
58%
53%
12%

Monochrome LEDs with 
blue, green, yellow, and 
red color

[59]
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6.2 � Solar panels

The excellent electrical properties, strong light absorp-
tions, bright photoluminescences, high chemical stabilities, 
and great electrical conductivities indicate great promise 
for applications of CDs to a broad range of solar cells. A 
schematic of the dye-sensitized solar cell (DSSC) is shown 
in Fig. 8b. Abundant functional groups (e.g., amino, car-
boxyl, amide, imine, carbonyl) on CD surfaces endow CDs 
with excellent electron-transfer abilities (i.e., good donor/
acceptor characteristics), which enable CDs to be used as 
electron acceptors [62–64] or donors [65, 66] in solar cells. 
CDs have been used in different functional layers of solar 
cells, electron-transporting layers, active absorbing layers, 
hole-transporting layers, and as interlayer spacing employed 
to align and adjust the energy levels of other components. 
Three different CDs were prepared using chitin, chitosan, 
and glucose and employed for the preparation of solid-state 
nanostructured solar cells [67]. Layer-by-layer coating of 
two different types of CDs resulted in the highest efficiency. 
N-doped CDs were prepared using citric acid and ammonia, 
following a pyrolysis procedure for 200 °C for 3 h [68]. The 
N-doping was readily modified by the mass ratio of the reac-
tants. The CDs were green emissive with power-conversion 
efficiency of 0.79%. Using citric acid and ethanediamine, 
CDs were in situ grown on TiO2 surface using the hydrother-
mal method [69]. A low-cost, environment-friendly CDs-
sensitized solar cell was developed with a power conver-
sion efficiency of 0.87%. N-doped CDs were prepared from 
hydrothermal treatment using strawberry powder as a pre-
cursor [70]. The CDs were co-sensitized using commercially 
available N719 dye to develop a high-performance solar cell 
with a power conversion efficiency of 9.29%. Using glucose 
as the precursor, CDs were prepared in a hydrothermal treat-
ment followed by surface modification with PEG [71]. A 
solar cell prototype was developed co-sensitized with N719 
dye and PEG-modified CDs. Table 2 provides a list of CDs 

prepared using green precursors and their application in 
solar cells.

6.3 � Electrocatalysis

CDs possess excellent electrical transfer/transport capa-
bilities and numerous surface/edge-active sites [62, 72, 73]. 
Therefore, combinations of CDs with various active met-
als and semiconductors were used to improve the hydrogen 
evolution reaction (HER) in electrocatalytic water splitting, 
and the incorporated CDs provided more interfacial reac-
tion sites. CDs show more abundant heteroatom-doped sur-
face chemistry than other carbon-based nanomaterials such 
as graphene, CNTs, and diamonds. Figure 8c, d shows the 
schematic of photocatalytic and photoelectrochemical water 
splitting. Abundant surface/edge sites and easily modifia-
ble structures of individual CDs make them promising for 
application to efficient oxygen evolution reaction (OER) pro-
cesses [74–76]. Further, individual CDs have shown great 
oxygen reduction reaction (ORR) activities in fuel cells. In 
addition, CDs are expected to be an important component of 
electrocatalytic carbon dioxide reduction reaction (CO2RR) 
[75, 77–79] and in other electrocatalytic reactions, including 
alcohol oxidation reactions (AOR) and nitrogen reduction 
reactions (NRR).

Several research reports are available mentioning the 
application of CDs in electrocatalysis. An anionic metal 
organic framework (MOF) was prepared, and following a 
high-temperature treatment, CDs were obtained [80]. The 
synthesized CDs showed electrocatalytic activity as a metal-
free catalyst for the oxygen reduction reaction (ORR). The 
incorporation of Co nanoparticles improved the catalytic 
activity and stability. In a one-pot hydrothermal synthesis 
using citric acid and dicyandiamide, N, S-doped CDs were 
obtained [81]. The N, S-doped CDs showed efficient oxy-
gen electrocatalytic activity comparable to noble metals. In 
another study, CDs were prepared following a hydrothermal 

Table 2   Structural properties of some green synthesized CDs and their application in solar cells

Precursor Preparation condition Particle size (nm) Emission proper-
ties/emission 
color

PLQY% Application References

Chitin
Chitosan
Glucose

– 14.1 ± 2.4
8.1 ± 0.3
2.57 ± 0.04

EDPL/blue – Solid-state nanostructured 
solar cells

[67]

Citric acid + ammonia Pyrolysis; 200 °C, 3 h 10.8 EDPL/blue 36 Solar cells [68]
Citric acid + ethanedi-

amine
Pyrolysis; 180 °C, 24 h 2–6 – – CDs-sensitized solar cells [69]

Strawberry powder Hydrothermal; 170 °C, 
3 h

3.01 EDPL/blue – N300-CQDs/N719 co-
sensitized DSSC

[70]

Glucose Hydrothermal; 
195 ± 5 °C, 6 min

2–3 EDPL/blue – PEG-m-CQDs/N719 co-
sensitized DSSC

[71]
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treatment of citric acid and urea, followed by N-doping 
using pyrrole [82]. The obtained N-CDs were success-
fully applied as synergistic agents with tungsten nitride for 

electrocatalysis of ORR. CDs were hydrothermally synthe-
sized using citric acid and ethylenediamine, and a composite 
with Co9S8 nanoparticles was prepared [83]. In the presence 
of this system, aniline was polymerized to afford effective 
catalysts for both OER and ORR in high-performance Zn–air 
batteries. CDs were prepared from glucose and dicyandi-
amine following a one-pot hydrothermal synthesis route 
[84]. A nitrogen-doped carbon-encapsulated cobalt nano-
particles (N–C@Co NPs) system was in situ constructed that 
acted as an efficient electrocatalyst for OER in water split-
ting. Following hydrothermal treatment of willow leaves, 
N-doped CDs were prepared and utilized for ORR [85]. The 
activity was comparable to commercially available Pt/C cat-
alyst. Table 3 provides a list of some CDs prepared using 
green precursors and their application in electrocatalysis.

6.4 � Photocatalysis

Nanomaterials have found extensive application in photo-
catalysis in recent years [86, 87]. CDs have also been uti-
lized as effective catalysts for the degradation of a number 
of organic dyes and in photo-splitting of water for hydro-
gen production [88, 89] (Fig. 9a). Ashes of the eggshell 
membrane were subjected to MW irradiation for 1 min to 
produce CDs having a size < 10 nm [90]. The synthesized 
CDs were highly fluorescent under UV irradiation. Under 
sunlight irradiation, the CDs successfully degraded meth-
ylene blue dye in the range of 26–43% at 5–1 mg L−1 of 
the dye. CDs were prepared via US treatment and further 
subjected to sol–gel treatment and spin coating to obtain a 
heterostructure of ZnO/CDs [91]. The material was success-
fully applied in the photocatalytic degradation of Rhodamine 
B. Following ultrasonication in molten Ga and PEG-400 

Table 3   Structural properties of some green synthesized CDs and their application in electrocatalysis

Precursor Preparation condition Particle size (nm) Emission proper-
ties/emission 
color

PLQY% Application Reference

Anionic MOF {[Mg3(n
dc)2⋅5(HCO2)2(H2O
)]⋅[NH2Me2]⋅2H2O⋅
DMF}

Pyrolysis; 500 °C, 6 h  < 10 EDPL/blue – Electrocatalytic ORR 
activity

[80]

Citric acid + dicyandi-
amide

Hydrothermal; 180 °C, 
6 h

8.5 – – Electrocatalyst for both 
OER and ORR

[81]

Citric acid + urea Hydrothermal; 180 °C, 
12 h

5–7 – – ORR activity [82]

Citric acid + ethylenedi-
amine

Hydrothermal; 200 °C, 
8 h

20–80 (size of com-
posite)

– – Electrocatalyst for both 
OER and ORR

[83]

Glucose + dicyandi-
amine

Hydrothermal; 200 °C, 
6 h

3.4 EDPL/blue – OER activity [84]

Willow leaves Hydrothermal; 180 °C, 
24 h

2–4 EDPL/blue – Electrocatalytic ORR 
activity

[85]

Fig. 9   Principles of a photocatalysis by CDs; and b photodynamic 
therapy for cancer treatment
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as the precursor, Ga-doped CDs (Ga@CDs) were prepared 
[92]. A greater photosensitization was shown in doped CDs 
compared to the pristine CDs. Waste polyethylene tereph-
thalate bottles were used as a precursor via air oxidation 
and sulfuric acid-assisted hydrothermal treatment [93]. 
The synthesized CDs were used in catalytic dehydration of 
fructose to 5-hydroxymethylfurfural (HMF) at low tempera-
tures, leading to high yields (up to 97.4%) of HMF. MW 
synthesis of N-doped CDs was performed in the presence of 
d-glucose and 1-ethyl-3-methylimidazolium ethylsulfate in 
aqueous medium [94]. The synthesized CDs were used as a 
metal-free catalyst for the selection and production of H2O2. 
Table 4 provides a list of some CDs prepared using green 
precursors and their application in photocatalysis. 

6.5 � Photodynamic therapy

Photodynamic therapy is an advanced biomedical tech-
nique wherein energy transfer can be applied for the 
destruction of damaged cells and tissues [95–97]. This 
method is helpful in cancer treatment because it efficiently 
targets the malignant tissue leading to its destruction 
without harming normal healthy tissue [98]. The photo-
dynamic therapy procedure employs a photosensitizer (a 
photosensitive molecule that can be localized in the target 
biological environment) and an activator (which activates 
the photosensitizer by transmitting a suitable wavelength 
light), both of which should be non-cytotoxic [95, 99]. 
Reactive oxygen species [ROS, e.g., superoxide (O2

·−), 
hydroxyl radical (·OH), and/or singlet oxygen (1O2)] are 
generated by the photosensitizer via the transfer of energy 
from photons to molecular oxygen. These ROS species 
cause cytotoxic effects, and their action is specific to 

Table 4   Structural properties of some green synthesized CDs and their application in photocatalysis

Precursor Preparation condition Particle size (nm) Emission proper-
ties/emission color

PLQY% Application References

Eggshell membrane 560 W, 2 min 3.88 ± 0.56 SDPL/blue 5 Degradation of methyl-
ene blue

[90]

Graphite powder, H2SO4 
and HNO3

2 h 3 SDPL/green, yellow – Photocatalysis [91]

Molten Ga, PEG-400 120 min, 50% amplitude 5 ± 2 EDPL/violet blue 2 Production of ROS for 
biomedical application

[92]

Waste polyethylene tere-
phthalate plastic bottles

Pyrolysis 120 °C, 6 h 3 – – Separable production of 
5‑hydroxymethylfur-
fural at low temperature

[93]

d-Glucose, ionic liquid MW 12 ± 2 – – Production of H2O2 [94]

Table 5   Structural properties of some green synthesized CDs and their application in photodynamic therapy

Precursor Preparation condition Particle size (nm) Emission proper-
ties/emission 
color

PLQY% Application References

Cannabis sativa leaf 
extract

Room temperature stir-
ring for 1 h

5 – 13% Bactericidal activity 
against Escherichia coli 
and Staphylococcus 
aureus

[104]

Metronidazole Hydrothermal 250 °C 
for 3 h

2.9 EDPL/multicolor 28.1 Antibacterial activity 
against Porphyromonas 
gingivalis

[105]

Wheat bran Hydrothermal 180 °C 
for 3 h

2.5–8.5 EDPL/blue-green 33.23 Drug delivery agent for 
Amoxicillin for antibac-
terial activity against S. 
aureus, and E. coli

[106]

Arginine, lysine, histidine, 
cysteine, methionine

MW 5–20 EDPL/blue 10–38 Antibacterial activity 
against S. aureus, and 
E. coli

[107]

Citric acid MW 3.81 – – In vivo antibacterial activ-
ity against S. aureus

[16]
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the target cells/tissues exposed to light [95]. This photo-
induced toxicity can kill malignant tumors or cancer cells 
[98] (Fig. 9b). For the purpose of antimicrobial activity, it 
is a combination of a non-toxic photosensitizer and light 
of a suitable wavelength that can interact with molecular 
oxygen to afford ROS that can selectively kill pathogenic 
microbial cells [23, 96]. Several reports are available in 
the literature on the antimicrobial activity of CDs synthe-
sized via different procedures [100, 101]. The CDs are 
tested as antimicrobial agents in vitro and in vivo against 
Gram-positive and Gram-negative bacteria. Furthermore, 
CDs–drug conjugates and metal-doped CDs are reported 
to show enhancement in antimicrobial action. Table 5 pro-
vides a list of CDs prepared using green precursors and 
their application in photodynamic therapy.

Folic acid (FA)-functionalized CDs were developed as 
carriers for the PS zinc phthalocyanine (ZnPc) for simultane-
ous bioimaging and targeted photodynamic therapy in cancer 
cells [102]. CDs were surface passivated using PEG and 
loaded with the photosensitizer zinc phthalocyanine (ZnPc). 
CD-PEG-FA/ZnPc exhibited excellent imaging and therapy 
of cancer cells. N- and S-doped CDs were prepared using 
citric acid and thiourea following hydrothermal treatment 
and used for photothermal therapy (PTT) in mouse models 
[103]. Using Cannabis sativa leaf extract, CDs and Ag@
CDs were prepared [104]. The structural characterization 

revealed functional groups from the aromatic, carboxylated, 
and hydroxylated moieties. The synthesized CDs showed 
remarkable antibacterial behavior against E. coli and S. 
aureus. Highly photoluminescent CDs were prepared from 
metronidazole, a widely used antibacterial drug, following 
a hydrothermal approach [105]. The synthesized CDs were 
successfully utilized in the growth inhibition of Porphy-
romonas gingivalis. Using wheat bran as green precursor, 
CDs were prepared having high QY of 33.23% [106]. The 
synthesized CDs were used for the preparation of conjugate 
with drug amoxicillin (AMX), and the CD–AMX conjugate 
was used for antibacterial activity against Gram-positive and 
Gram-negative bacteria. N- and S-doped CDs were produced 
via MW irradiation from amino acids arginine, lysine, his-
tidine, cysteine, and methionine [107]. The synthesized 
CDs showed a minimum inhibitory concentration (MBC) 
of 1 mg L−1 against Gram-positive and Gram-negative bac-
teria. One-pot MW synthesis of CDs was carried out using 
citric acid as precursor and investigated in vitro and in vivo 
(in mice) against S. aureus bacteria [16]. Complete healing 
of the wounded tissue in mice was observed.

6.6 � Bioimaging

Imaging of cells and tissues is an important aspect relevant 
to the diagnosis of various diseases, especially cancer. 

Table 6   Structural properties of some green synthesized CDs and their application in bioimaging

Precursor Preparation condition Particle size (nm) Emission proper-
ties/emission 
color

PLQY% Application References

Crab shells – 8 EDPL/blue 14.5 Imaging cancer cells [39]
Gelatin hydrolysate 30 min 3.8 EDPL/blue 33.8 Bioimaging and anti-

counterfeiting
[37]

Citric acid + triethylenete-
tramine (TETA)

Thermal pyrolysis 3.07 ± 0.43 EDPL/green 11.4 In vivo bio-imaging of 
HepG2 cells

[114]

tetraethylenepentamine 
(TEPA)

3.16 ± 0.53 10.6

polyene polyamine 
(PEPA)

3.73 ± 0.33 9.8

Andrographis paniculata 
(Kalmegh)

Hydrothermal 160 °C 
for 8 h

9 EDPL/blue 15.10 Imaging of human 
breast carcinoma cells 
(MCF-7)

[115]

Bovine gelatin Hydrothermal 200 °C 
for 3 h

59 EDPL/blue – Anticancer and bioimag-
ing applications

[116]

PHM3 microalgae strain 200 °C for 3 h 67 EDPL/green
Glycerol, glycol, glucose, 

sucrose
MW 1.1 ± 0.42 EDPL/blue, green 5.8 Biolabeling and Bioimag-

ing
[34]

2.1 ± 0.76
Milk MW 3 EDPL/blue – Imaging of HeLa cells [117]
Sucrose MW 5 EDPL/green 2.4 Imaging of C6 glioma 

cells
[118]

Glutathione MW – – 16.8 Deep-tissue two-photon 
bioimaging and drug 
delivery

[119]
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Several systems having considerable fluorescence have been 
reported for bioimaging purposes. These include organic and 
inorganic dyes and nanoparticles [108–110]. The incorpo-
ration of carbon nanomaterials in this application presents 
a primary advantage in the lack of metal ions that can 
adversely influence the in vivo environment via cytotoxicity. 
The suitable agent for bioimaging should possess biocom-
patibility, tunable emission spectra, and lack of cytotoxic-
ity. The advent of nanomaterials has found application not 
only in bioimaging for diagnosis, but also in therapy. The 
theranostic applications are performed by functionalizing 
the molecules of the required chemical to the fluorescent 
nanomaterial via chemical functionalization. A number 
of quantum dots such as ZnO, GQDs, and CDs have been 
reported for the imaging application of living cells [111, 
112]. The CDs produce attractive optical features, viz., up-
conversion photoluminescence, piezo-chromic fluorescence, 
solid-state fluorescence, excitation-dependent emission, and 
phosphorescence. Due to their excellent photoluminescence 
behavior, CDs are reported as a potential agent for bioimag-
ing of cells in both in vitro and in vivo conditions (Fig. 11a). 
Cao et al. first reported the application of CDs in bioimaging 
in vitro and in vivo [113]. Table 6 provides a list of some 
CDs prepared using green precursors and their application 
in bioimaging.

A sonochemical approach was adopted to produce 
N-doped CDs from crab shells showing excellent water 

solubility and high quantum yield [39]. The synthesized CDs 
were applied as nanoprobes to target imaging of cancer cells. 
Gelatin hydrolysate was used as a green precursor via the 
US method within 30 min [37]. The developed CDs were 
employed in the application of cell imaging and anti-coun-
terfeiting. Using citric acid, triethylenetetramine (TETA), 
tetraethylenepentamine (TEPA), polyene polyamine (PEPA), 
CDs having sizes of the order of 3 nm and green color PL 
emission with QY of 9–11% [114] were produced. Figure 10 
shows the synthesized CDs samples' TEM, HRTEM, and 
XPS survey scan spectra. The TEM images indicate uniform 
particle size distribution without any aggregation, with the 
lattice planes showing spacing of 0.21 nm and 0.245 nm cor-
responding to (103) diffraction plane of diamond-like (sp3) 
carbon and (100) facet of graphitic carbon, respectively. The 
XPS spectra show considerable N-doping with an increase 
in the N content of the passivating agents. The synthesized 
CDs were employed for the in vivo bioimaging of HepG2 
cells. Andrographis paniculata (Kalmegh), an Ayurvedic 
medicinal plant, was used as a precursor for the production 
of CDs [115]. The synthesized CDs were successfully uti-
lized in cellular imaging of human breast carcinoma cells. 
In addition to the natural products, carbohydrates, and 
amino acids, CDs have also been synthesized using pro-
tein molecules as discussed above. In another study, CDs 
were prepared from gelatin protein and from algal biomass 
of Pectinodesmus sp. via the hydrothermal method [116]. 

Fig. 10   TEM (a–e) and HRTEM (b–f) of CDs-TETA (a, b), CDs-
TEPA (c, d) and CDs-PEPA (e, f). Inset: corresponding particle size 
distributions and fast Fourier transform images. XPS (g, j, m), XPS 

C1s (h, k, n), and XPS N1s (i, l, o) spectra of CDs-TETA, CDs-TEPA 
and CDs-PEPA, respectively [114]
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The gelatin-synthesized CDs displayed activity in the imag-
ing of plant and bacterial cells. On the other hand, the CDs 
from the algal source had anticancer applications. CDs 
were prepared following a single-step MW irradiation of 
carbohydrates without employing any surface passivating 
agents [34]. The synthesized CDs were biocompatible and 
cell permeable and were applied successfully in bio-labeling 
and bioimaging. Fluorescent N-doped CDs were prepared 
from milk that were well-dispersed in an aqueous medium 
[117]. The synthesized CDs were employed in the bioimag-
ing of HeLa cells. Using sucrose as precursor and diethylene 
glycol as the reaction medium, CDs were prepared follow-
ing the MW irradiation method [118]. The CDs were well 
dispersed in an aqueous medium with a bright green lumi-
nescence. The application was reported for the bioimaging 
of C6 glioma cells. Following MW heating of glutathione, 
near-infrared emissive CDs were prepared and utilized for 
deep tissue bioimaging and drug delivery [119].

6.7 � Chemical sensors

There is a growing research interest in the application of 
nanomaterials as chemical/biosensors [120–122]. A number 
of reports are available on the application of metal nanopar-
ticles, carbon nanomaterials, and semiconductor nanostruc-
tures for sensor development. CDs have been extensively 
reported for sensor development [111, 122–124]. Employ-
ing the fluorescence activity and surface functionalization 
of CDs, several sensors for chemical and biological species 
have been developed using CDs. The CDs have interesting 
features such as bright and intense fluorescence emission in 
the visible range, fluorescence quenching by the target ana-
lyte, variable emission spectra, negligible cytotoxicity, and 
feasibility of preparation. The general working principle of 
the CDs-based sensor is shown in Fig. 11b. Table 7 provides 
a list of some CDs prepared using green precursors and their 
application in sensor development. 

Using citric acid, amino acid l-cysteine, and the polysac-
charide dextrin, in a one-step MW method, highly fluorescent 

Fig. 11   Principles of a bioimaging using CDs; b CDs-based sensors; and c CDs as corrosion inhibitors
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Table 7   Structural properties of some green synthesized CDs and their application in sensors

Precursor Preparation condition Particle size (nm) Emission proper-
ties/emission color

PLQY% Application References

Citric acid, l-cysteine, 
dextrin

800 W, 3 min 2.61 SDPL/blue 22 Detection of copper ions [125]

Lactose, HCl 600 W, 15 min – EIPL/blue – Analysis of heterocyclic 
aromatic amines

[126]

Glucose, H3PO4 700 W, 5 min 4.5–13.5 EIPL/yellow 8 Cr(VI) sensing [127]
BSA, urea 700 W, 5 min 2.4–5 EDPL/blue, green 14 pH and temperature 

sensing
[128]

Xylose 200 °C, 10 min 8.43 nm EDPL/green-yellow 42.44 pH sensing [129]
Xylose 220 °C, 200 °C, 180 °C, 

10 min
6.80 EDPL/green 73.6 Anti-counterfeit printing [33]
7.23 EDPL/green 56.1
6.80 EDPL/green 40.9
9.88 EDPL/green 65.3
8.83 EDPL/green 49.5
6.87 EDPL/green 42.8
16.37 EDPL/blue 8.0
10.70 EDPL/blue 6.8

Lemon extract 150 W, 1 h 60 EDPL/green – Identification of toxic 
metal ions and bac-
teria Pseudomonas 
aeruginosa

[130]

d-Fructose 60 s, 10% amplitude 2.5 EDPL/ – Methylmercury detec-
tion

[38]

Citric acid + thiourea Hydrothermal 160 °C, 
8 h

3.2 EDPL/faint yellow – Fluorescent detection 
of living cancer cells 
(HepG2)

[131]
EDPL/bright blue

Tryptophan Hydrothermal, 180 °C, 
12 h

3.0 ± 0.4 to 6.0 ± 0.4 EDPL/blue 55.6 Array-based protein 
sensing

[132]
Arginine 48.6
Cysteine 45.6
Phenylalanine 62.1
Glutamine 39.0
Leucine 50.4
Histidine 61.8
Tyrosine 51.5
Glycine 38.4
Cysteine Hydrothermal, 160 °C, 

3 h
6 EDPL/ 18 ± 4 Sensing of metal cations [133]

Histidine 6 25 ± 4
Lysine 5 19 ± 2
Arginine 6 27 ± 4
Grape skin Hydrothermal 4.0 ± 1.5 EDPL/green 18.67 Picric acid detection [5]
Gardenia flowers Hydrothermal 180 °C 

for 6 h
9 EDPL/blue 9.82 Detection of metronida-

zole in pharmaceuti-
cals and rabbit plasma

[134]

Azadirachta indica Hydrothermal 150 °C 
for 4 h

3.2 EDPL/blue 27.2 Detection of H2O2 and 
ascorbic acid in com-
mon fresh fruits

[135]

Citric acid + thiosemi-
carbazide

Hydrothermal 180 °C 
for 5 h

1.2 to 2.4 EDPL/blue 37.8 Detection of picric acid 
in aqueous solution 
and living cells

[136]

Dunaliella salina 
biomass

Hydrothermal 200 °C 
for 3 h

4.7 EDPL/blue 8 On–off sensing of 
Hg(II), Cr(VI) and 
live cell imaging

[137]
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CDs having a size of 2.61 nm were obtained [125]. The CDs 
were N, and S doped and showed efficient performance in 
Cu2+ ion detection. Using lactose as precursor and the MW 

method, CDs were prepared and applied as a nanosensor 
platform for the detection of heterocyclic amines in the 
range of concentration 0.35–0.45 mg L−1 [126]. Amphibious 

Table 7   (continued)

Precursor Preparation condition Particle size (nm) Emission proper-
ties/emission color

PLQY% Application References

Histidine + thiourea Hydrothermal 220 °C 
for 3 h

2.9 EDPL/blue 46 Colorimetric detec-
tion of H2O2 and 
glutathione in human 
blood serum

[138]

Jatropha fruits Hydrothermal 180 °C 
for 5 h

3.2 EDPL/bright blue 13.7 Fluorometric sensor for 
the detection of chlor-
pyrifos pesticide

[139]

Latex of Euphorbia 
milii

Hydrothermal 180 °C 
for 3 h

3.4 ± 0.45 EDPL/blue 39.2 Detection of glutathione 
in human blood serum

[140]

Mustard seeds Hydrothermal 180 °C 
for 4 h

4.58 ± 0.26 EDPL/blue – Colorimetric detection 
of H2O2 and ascorbic 
acid in a real sample

[141]

Fig. 12   a–h TEM images of different CDs samples from 1-CDs to 8-CDs, with insets showing corresponding SAED patterns; i–l HRTEM of 
1-CD, 2-CDs, 3-CDs and 4-CDs [33]
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yellow emitting CDs were prepared using a rapid MW 
method and applied as a colorimetric nanosensor for the 
discrimination of Cr(III) and Cr(VI) [127]. Using bovine 
serum albumin (BSA) and urea as the precursor, highly pho-
toluminescent CDs were synthesized in one-step MW treat-
ment [128]. A multifunctional fluorescent nanosensor for pH 
and temperature was developed using the CDs. This method 
suggested the development of CDs using other protein-based 
sources, e.g., lipase and trypsin, and application in metal 
ion detection. In other studies, xylose-derived CDs having 
N, and S doping were developed via MW treatment and 
application in anti-counterfeiting [129] and pH sensing was 
explored [33]. Figure 12 shows the diffraction patterns and 
rings of CDs samples synthesized using xylose as precursor 
employing MW at different conditions [33]. The HRTEM 
images display a clear lattice spacing of 0.34 nm consistent 
with the (002) lattice plane of graphite. Lemon extract was 
used as a green and biocompatible precursor to develop CDs 
following the US method [130]. The synthesized CDs were 
used to prepare MgFe2O4-CDs nanocomposite, which was 
utilized in the fluorescence detection of Ni (II), Cd (II), Hg 
(II) ions and Pseudomonas aeruginosa. D-fructose was used 
as a green precursor for the sonochemical synthesis of CDs 
having average size of 2.5 nm and a narrow size distribution 
[38]. The synthesized CDs were utilized for preparation of a 
fluorescent nanoassay for detection of methylmercury.

Using citric acid and thiourea, in a hydrothermal treat-
ment, CDs were prepared having faint yellow to bright blue 
emission colors [131]. The synthesized CDs were used as a 
selective and cost-effective nanoprobe for the detection of 
living cancer cells. Citric acid was subjected to hydrother-
mal treatment in the presence of a series of amino acids to 
develop amino acid-functionalized CDs [132]. High QY up 
to 62% was achieved with tunability of surface charge and 
hydrophobicity. The synthesized CDs were used in array-
based protein sensing. In another study, CDs were modified 
using ethylenediamine and different amino acids and stud-
ied for sensing metal cations via the fluorescence quenching 
method [133]. The decrease in the fluorescence intensity was 
found to be in direct proportion with the increasing concen-
tration of metallic ions. CDs were prepared via the hydro-
thermal method employing grape skin as precursor [5]. The 
synthesized CDs were employed for the picric acid detection 
via fluorescence quenching in real water samples. Fluores-
cent CDs were prepared from gardenia plant following a 
hydrothermal synthesis procedure [134]. The synthesized 
CDs were applied in the sensing of metronidazole based 
on fluorescence quenching in pharmaceuticals and rabbit 
plasma.

Fluorescent CDs were prepared from leaf extract of 
Azadirachta indica and used for peroxidase-mimetic activity 
for detection of H2O2 and ascorbic acid in fresh fruit samples 
[135]. The peroxidase-mimetic activity was studied toward 

the oxidation of peroxidase substrate 3,3′,5,5′-tetrameth-
ylbenzidine (TMB) with H2O2. Using citric acid and thio-
semicarbazide, N, S-co-doped CDs were prepared using the 
hydrothermal method [136]. The synthesized CDs were used 
for selective detection of picric acid in an aqueous solution 
and in living cells. Using algal biomass of Dunaliella salina, 
N, P-doped CDs were prepared following the hydrothermal 
method [137]. The CDs exhibited blue color under UV light 
with a QY of 8%. The CDs were used for intracellular detec-
tion of Hg (II) and Cr (VI). N, S-doped CDs were prepared 
from histidine and thiourea with an excellent QY of 46% 
[138]. The synthesized CDs showed efficient performance 
for the detection of H2O2 and glutathione in human blood 
serum samples. CDs were prepared from Jatropha fruit fol-
lowing hydrothermal method of synthesis with a high QY 
of 13.7% [139]. The CDs were applied for the detection of 
pesticides in environmental and agricultural samples with a 
limit of detection 2 ng L−1. The latex of Euphorbia milii was 
successfully employed in the development of CDs via hydro-
thermal treatment [140]. The synthesized CDs were applied 
for the detection of glutathione in human blood serum. Mus-
tard seeds were used to prepare CDs via hydrothermal tech-
nique and employed for a peroxidase-like mimetic activity 
for colorimetric detection of H2O2 and ascorbic acid in real 
samples [141].

6.8 � Corrosion protection

Corrosion can be described as the natural degradation of 
metallic materials upon exposure to the environment to 
the ore forms from where the original metallic form was 
extracted and purified [21, 142, 143]. This process can be 
aggravated by the presence of extreme environments, e.g., 
seawater, alkaline conditions, acidic media, high tempera-
tures, and flow conditions. Severe damage to the metallic 
structures takes place under such conditions. This results in a 
considerable detrimental effect to the surfaces of metals and 
can lead to the potential failure of structures, environmental 
pollution, economic losses, and even hazards to human life. 
Different forms of corrosion include pitting, uniform corro-
sion, crevice formation, galvanic corrosion, stress corrosion, 
intergranular corrosion, and erosion corrosion [144, 145]. 
The global loss of corrosion amounts to about USD $2.4 
trillion, which is around 3.4% of the global GDP [146]. To 
address this issue, one of the commonly used methods is the 
application of corrosion inhibitors. A corrosion inhibitor, 
by definition, is a chemical additive, which, when added 
to a corrosive medium, retards the rate of corrosion. Gen-
erally, inorganic inhibitors such as nitrates, nitrites, chro-
mates, and phosphonates are applied in the industries. The 
organic inhibitors commercially used include imidazolines, 
amides, acetylenic alcohols, etc. These categories are highly 
toxic and carcinogenic, and hence their usage is discouraged 
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by the environmental regulatory bodies across the globe. 
Environmentally benign and green molecules are being put 
forward as corrosion inhibitors, such as heterocyclic bio-
molecules, ionic liquids, natural extracts, carbohydrates, 
amino acids, proteins, and pharmaceutical products. From 
the above sections, it can be noted that the same molecules 
also act as novel and environmentally benign precursors for 
the synthesis of CDs.

Conventionally, the nanomaterials such as metal oxides, 
graphene, and graphene oxide (GO) find application in the 
preparation of anti-corrosion coatings. This is owing to their 
hydrophobic behavior, impermeability, chemical stability, 
and barrier action [2, 147–149]. Extensive research is avail-
able on the application of graphene and GO-based coatings. 
In addition, other nanomaterials such as ZnO, TiO2, NiO, 
montmorillonite [150], and graphydine [151] have also 
been utilized in the development of coatings. The nanosized 

Table 8   Performance comparison of some green CDs-based corrosion inhibitors

Precursor Method Metal surface/corrosive 
medium

CR/I.E. (%)/inhibitor concentra-
tion

References

4-Aminosalicylic acid Solvothermal 200 °C, 20 h Copper/0.5 M H2SO4 –/89.2/50 mg L−1 [173]
4-Aminosalicylic acid Solvothermal 200 °C, 18 h Q235 carbon steel/1 M HCl –/87.2/100 mg L−1 [174]
4-Aminosalicylic acid Solvothermal 200 °C, 16 h Carbon steel/CO2 saturated 

3.5% NaCl
0.08 g cm−2 h−1/93.0/50 mg L−1 [175]

4-Aminosalicylic acid and 
l-histidine

Solvothermal 200 °C, 12 h Q235 steel/1 M HCl 91.5/50 mg L−1 [176]

Citric acid + l-histidine Reflux 200 °C, 1 h Q235 steel/0.1 M HCl 96.13/200 mg L−1 [177]
Citric acid + l-serine Hydrothermal 200 °C, 18 h Copper/0.5 M H2SO4 98.5/200 mg L−1 [178]
Citric acid + imidazole ionic 

liquid
Hydrothermal 200 °C, 30 min Q235 steel/1 M HCl, 3.5% 

NaCl
92.60/200 mg L−1

83.45/200 mg L−1
[179]

Citric acid + isoniazid + thio-
urea

Hydrothermal 180 °C, 6 h Mild steel/15% HCl 98.64/200 mg L−1 [180]

Tryptophan Pyrolysis 160–200 °C, 0.5–2 h Q235 carbon steel/1 M HCl 91/200 mg L−1 [181]
Folic acid + o-phenylenedi-

amine
Hydrothermal 200 °C, 6 h Q235 steel/1 M HCl 95.4/150 mg L−1 [182]

Glucose + ascorbic 
acid + 4-amino-3-hydrazine-
5-mercapto-1,2,4-triazole

Hydrothermal 180 °C, 4 h Copper/3.5% NaCl 88/70 mg L−1 [183]

Dopamine Hydrothermal 180 °C, 6 h Q235 steel/1 M HCl 96.1/400 mg L−1 [184]
Coffea caneophora + urea Pyrolysis 220 °C, 5 h Copper/1% NaCl 84.94/1 g L−1 [185]
Durian juice Pyrolysis 125 °C, 12 h Copper/1% NaCl 86/800 mg L−1 [186]

Fig. 13   Schemes for the synthesis of CDs employing hydrothermal and solvothermal methods using a 4-aminosalicylic acid [174–176] and b 
citric acid [177–180] in the presence of some amino acids



1622	 Carbon Letters (2022) 32:1603–1629

1 3

materials are used to cover the pores in the coatings, enhance 
the surface coverage of the coating on the underlying metal-
lic substrate, and improve the hydrophobicity of the coat-
ings. Conventionally reported corrosion inhibitors are based 
on heterocyclic molecules and polymers [24, 29, 152–157]. 
Considering the importance of nanomaterials, researchers 
have also explored the polymer composites of AgNp with 
biopolymers as corrosion inhibitors [158–160] and poly-
mer–ZnO nanocomposites [161].

In the past few years, several reports have come in the 
literature focusing on the application of functionalized 
GO-based corrosion inhibitors [162–172]. The oxygen-
containing polar functional groups, e.g., –C=O, –OH, 
–COOH, etc., present on the GO surface, allow GO struc-
ture's chemical modification, thereby affording efficient 
corrosion inhibitors. While the nanomaterial-based coat-
ings are reported most for the neutral and saline media, 
the modified GO-based corrosion inhibitors have been 
reported for aggressive environments, such as 1 M HCl 
and 15% HCl, and even at elevated temperatures. Recently, 
CDs have also been explored as inhibitors for aqueous 

corrosive environments (Fig. 11c). The following section 
provides some of the literature reports available on green 
CDs-based corrosion inhibitors. Herein, we have chosen 
the examples of CDs-based inhibitors focusing on MW, US 
synthesized methods or using green precursors.

Table 8 provides a comparison of the inhibition per-
formance of some green CDs-based inhibitors. 4-Ami-
nosalicylic acid (ASA), an antibiotic primarily used for 
tuberculosis treatment, has been considerably reported for 
the synthesis of CDs following the solvothermal approach. 
Figure 13a shows the reaction schemes for the preparation 
of CDs using ASA as the precursor along with some amino 
acids. The synthesized CDs were N-doped and evaluated 
as corrosion inhibitors for copper in 0.5 M H2SO4 [173], 
Q235 carbon steel in 1 M HCl [174], and carbon steel in 
CO2 saturated 3.5% NaCl [175]. High efficiencies were 
obtained in a concentration range from 50 to 100 mg L−1. 
The adsorption of the CDs on the copper and Q235 steel 
substrates was in agreement with the Langmuir model 
with a mixed mode of physical and chemical adsorptions. 
For the carbon steel in a sweet corrosion environment, 

Fig. 14   Schemes for the synthesis of CDs employing a tryptophan [181], b folic acid [182], c glucose, ascorbic acid [183], and d dopamine 
[184] as precursors
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the authors compared ASA with the CDs. It was revealed 
that CDs showed better performance and made the metal-
lic substrate more hydrophobic in comparison to that of 
ASA alone.

In another study, ASA was used along with L-histidine to 
afford N-doped CDs that were evaluated for Q235 steel surface 
in 1 M HCl solution [176]. Weight loss tests, electrochemical 
corrosion evaluation, and surface analysis supported strong 
adsorption of the N-CDs on the metal surface. Figure 13b 
shows the schematic of preparing CDs using citric acid and 
other precursors. Citric acid is often reported as a green pre-
cursor for the synthesis of CDs, alone and in combination with 
other reagents. Citric acid and L-histidine were used as precur-
sors to obtain N-doped CDs [177]. The CDs showed effective 
corrosion inhibition with > 90% protection at 100 mg L−1. 
The studies on density functional theory (DFT) and molecular 
dynamics (MD) simulations evidenced a low energy gap and 
high binding energy of the inhibitor. L-Serine and citric acid 
were used in a solvothermal protocol to afford N-doped CDs 
[178]. The synthesized nanomaterial was used as an inhibitor 
against the corrosion of copper using electrochemical, sur-
face, and spectroscopic analyses. High efficiency of 98.5% was 
afforded after an immersion time of 24 h. An imidazole-based 
ionic liquid was used to functionalize citric acid-derived CDs 
to obtain a green corrosion inhibitor for carbon steel surface in 
1 M HCl and 3.5% NaCl [179]. The inhibitor showed adher-
ence to Langmuir adsorption isotherm in both cases and fol-
lowed the physicochemical mode of adsorption.

Using tryptophan as a precursor, a series of N-doped CDs 
were obtained (Fig. 14a) depending on varying hydrothermal 
reaction conditions [181]. The developed CDs were used 
as inhibitors for carbon steel corrosion in 1 M HCl, and 
high efficiency was obtained at 200 mg L−1. Both physi-
cal and chemical adsorption of the CDs was observed on 
the metallic substrate. Using folic acid and o-phenylene-
diamine, N-doped CDs were prepared (Fig. 14b) and used 
as an inhibitor for Q235 steel surface in 1 M HCl solution 
[182]. High efficiency of 95.4% was obtained in accordance 
with Langmuir isotherm with a mixed mode of physical and 
chemical adsorption. Heterocyclic molecules, especially tri-
azole derivatives, have shown considerable adsorption and 
protection performance for copper metal. Considering this 
fact, CDs were prepared using glucose, ascorbic acid, and a 
triazole derivative (Fig. 14c) to afford triazole-modified CDs 
[183]. The CDs were employed as inhibitors for Cu substrate 
in 3.5% NaCl using electrochemical techniques and surface 
examination, wherein a high protection of 88% at 70 mg L−1 
was obtained.

N, and S-doped, blue-emitting CDs were obtained using 
citric acid, isoniazid, and thiourea as precursor molecules 
following a hydrothermal reaction [180]. The material 
showed efficient performance in 15% HCl on mild steel 
with > 98% protection after a 6 h immersion period. After 

prolonged exposure to corrosive media of 48 h, still, high 
efficiency of > 91% was achieved. CDs derived from Cof-
fea caneophora and urea after the pyrolysis procedure was 
used for Cu corrosion inhibition in 1% NaCl and showed 
high protection performance [185]. Dopamine was used as a 
green precursor to afford N-doped CDs (Fig. 14d) that were 
utilized for the protection of Q235 steel surface in 1 M HCl 
solution [184]. Even after prolonged exposure of 60 h, a high 
extent of protection with > 92% efficiency was achieved, 
which remained almost unchanged even at the elevated 
temperature of 328 K. Blue-emitting CDs were obtained 
using durian juice as the precursor, which contained C=O, 
O–H, and S=O functional groups [186]. The CDs showed 
strong EIPL with moderate QY. When evaluated for copper 
in 1% NaCl solution, high protection of 86% was afforded 
at 800 mg L−1.

7 � Conclusions and outlook

This review presents a brief introduction to the significance 
of CDs with attention focused on the sustainable sources 
and methodologies for their synthesis. Special emphasis is 
given to microwave (MW) and ultrasonic (US) irradiation as 
modern synthetic techniques in compliance with the green 
chemistry principles. The basic principles governing the 
organic transformations based on MW and US techniques 
are described in this report. In comparison to the conven-
tional heating of the reaction mixture using hot plate stir-
ring as well as solvent refluxing, the nanomaterials can be 
more efficiently produced using MW and US heating with 
significantly high yield and selectivity. The MW and US 
heating offer environmentally benign and quicker methods 
to develop uniform size CDs with scalable yield, and precise 
control over physicochemical properties. A brief review of 
literature on the MW- and US-based synthesis of CDs is 
provided while discussing the important properties such as 
size, photoluminescence behavior (excitation dependence/
independence), emission color, and the quantum yield of 
the CDs. The major mechanisms of luminescence of CDs 
are briefly discussed. The significance of green precursors 
in the production of CDs is given. Some examples of the 
green precursor-derived CDs is highlighted, e.g., carbohy-
drates, amino acids, proteins, ionic liquids, and pharmaceu-
tical products. It is shown that using these precursors, the 
obtained CDs can be doped with N, and S-heteroatoms, het-
erocycles, and ionic liquid moieties, with high hydrophilicity 
and biocompatibility.

Some of the major applications of the CDs are also high-
lighted in the present review. In general, most of the reports 
focus on LEDs, electrocatalysis, solar cells, antibacterial 
activity, anticancer activity, sensors, photocatalysis, etc. In 
addition to the above, in recent years, there have been several 
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reports on the application of CDs as corrosion inhibitors. 
Generally, carbon-based nanomaterials such as graphene and 
graphene oxide have been applied as materials of choice for 
anti-corrosion coatings and corrosion inhibition. Due to high 
aqueous solubility, the CDs-based inhibitors can potentially 
be used as a synergistic component to develop commercial 
corrosion inhibitor formulations. The utilization of green 
CDs as corrosion inhibitors is likely to address the issues 
of toxicity and harmful discharges posed by conventional 
corrosion inhibitors. It is shown that the CDs display high 
inhibition performance at a considerably low inhibitor dose 
and at long exposure times.
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