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Abstract
In this work, we investigated a modern combined processing technique for the synthesis of lightweight superhard composites 
based on boron–carbon. We used traditional B4C with precipitates of free graphite and Al powder as initial materials. In the 
first stage, the composites were fabricated by the self-propagating high-temperature synthesis (SHS) with the subsequent hot 
pressing of the compound. Further, by the disintegration and attrition milling, the ultrafine-grained powder was obtained. 
We used HCl and HNO3 acids for the chemical leaching of the powder to remove various impure compounds. At the last 
stage, a solid composite was obtained by the spark plasma sintering (SPS) method under nitrogen pressure. The main feature 
of this approach is to implement different synthesis techniques and chemical leaching to eliminate soft phases and to obtain 
superhard compounds from low-cost materials. The phases were studied by X-ray diffraction and scanning electron micros-
copy with energy-dispersive spectroscopy. The composites compacted by the SPS method contained superhard compounds 
such as B13C2, B11.7C3.3, and c-BN. The fabricated composite has an ultrafine-grained microstructure. Using a Berkovich 
indenter, the following nanohardness results were achieved: B13C2 ~ 43 GPa, c-BN ~ 65 GPa (all in Vickers scale) along 
with a modulus of elasticity ranging between ~ 400 GPa and ~ 450 GPa.

Keywords  Self-propagating high-temperature synthesis · Attrition milling · Chemical leaching · Light-weight superhard 
composites

1  Introduction

The superhard and ultrahard materials are mainly light-
weight ceramics that have a Vicker's microhardness (HV) 
exceeding 40 GPa and 80 GPa, respectively [1–3]. They are 
synthesized by modern high-pressure–high-temperature syn-
thesis techniques [4–6]. The ultrahard materials are mainly 
single crystal (SC) with a Vicker's nanohardness of HV ≈ 
75–100 GPa [7]. In former studies, it was shown that the 
hardness and indentation modulus of these materials such as 

SC diamond depends on the direction of measurement in the 
crystallographic plane. The hardness of these materials like 
nanocrystalline (NC) hyper-diamond synthesized at pres-
sures of 12–25 GPa is considerably high (Knoop hardness 
of 120–140 GPa) [8]. Unfortunately, such sintered diamonds 
can be used only at temperatures up to 600–700 °C in the 
air or up to ~ 1200 °C in an inert gas atmosphere. Composite 
materials, based on boron carbide (B4C) have lower hard-
ness compared to diamond, but their operating tempera-
ture is higher and can reach up to 1250 °C. For instance, 
Xian et al. show that boron carbide has a hardness of 30 
GPa, low density of 2.51 g/cm3, good wear resistance, and 
high neutron absorption factor [9]. Sivkov et al. fabricated 
B4C by plasma dynamic method which represented high 
Vickers hardness (~ 37 GPa) and good fracture toughness 
(6.7 ± 0.3 MPa·m1/2 [10]. The corresponding Spark Plasma 
Sintering (SPS) processing parameters for such synthesis 
were processing temperatures of 1600–1950 °C, the pres-
sure of ~ 60 MPa, a heating rate of 100 °C/min, and the time 
of exposure of 5 min [11, 12]. Nonetheless, the manufac-
ture of B4C-based composites using the traditional powder 
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metallurgy (PM) sintering technology is difficult, since B4C 
crystallites are not wetted by a metal binder during sintering 
at high temperatures [13]. Accordingly, there is currently 
one method for fabricating metal-bonded B4C composites. 
This process is called self-propagating high-temperature 
synthesis (SHS). For this, traditional B4C powder with free 
graphite and ASD-4 grade aluminum powder is used [14]. 
This composite powder was heated in a steel capsule and 
pressed with a hydraulic press immediately after the SHS 
process to obtain a dense material, and then heat-treated in 
a zirconium oxide flux at a temperature of 1080 ± 15 °C to 
obtain the desired mechanical properties. Such a lightweight 
composite material had a hardness of HRA 80 ± 5 on the 
Rockwell scale can be used to protect pilots of military air-
craft from neutron radiation and bullets. Over the past two 
decades, superhard binary and ternary compounds, based 
on B–C–N have been developed by high-temperature–high-
pressure (HT–HP) processing in a vacuum [15–19]. Such 
compounds are thermally stabler than SC diamond, having 
thermal stability of up to ~ 900 °C. Various studies showed 
that boron–carbon–nitrogen (BCN) compounds are rather 
harder than cubic boron nitride (c-BN) as well as twice 
harder than boron carbide (B4C). Different researchers 
reported different values of Vickers hardness for c-BC2N 
ranging from 68 to 85 Gpa [6, 13, 20, 21]. In the case of 
B13C2, the Vickers hardness results reported in two studies 
were in the same order of magnitude, equal to ~ HV44 [20, 
22]. The diamond cutter is resistant to cutting materials up 
to 600 °C, but boron carbide and boron nitride compounds 
are thermally stabler than diamond at high-speed cutting, 
although the Vickers hardness is lower than that of diamond 
[23].

Former studies showed that the Vickers hardness of dif-
ferent ceramics is a function of the crystallite size of the 
compound [2–5]. It is well known that according to the 
Hall–Petch law, nanostructured metals obtained by severe 
plastic deformations (SPD) technique also have a higher 
hardness as a result of microstructural refinement in compar-
ison with metals with coarser microstructure [24, 25]. In the 
work under consideration, we tried to implement different 
techniques including SHS, attrition milling, chemical leach-
ing, as well as SPS to fabricate superhard composites with 
nanostructured ultrahard ceramics (such as B11.72C3.28) 
using industrially low-cost materials (B4C powder) with 
some additions of free graphite and aluminum powders as 
starting materials.

2 � Experimental

2.1 � Materials

The starting materials were coarse-grained B4C powder 
with precipitates of free graphite. Aluminum powders (Al) 
of the ASD-4 grade were also used as a binding phase. For 
SHS treatment, different proportions of B4C and Al powders 
were used at the level of 50, 60, 70, and 80 wt%, respec-
tively. During the disintegration and abrasion processes, 
iron, nickel, and cobalt were added from the balls and attri-
tion blades as a result of wear. In this case, copper in an 
amount of 3 wt. % was added to increase the wettability of 
Al with B4C grains during the SHS process. Further, this 
fine-grained powder was subjected to chemical leaching in 
concentrated acids of HCl and HNO3 (35% and 65%, respec-
tively) to remove the soft phases and to obtain the desired 
composite for SPS processing.

2.2 � Processing features

First, the initial powders were mixed in a planetary mill, 
enclosed in steel capsules, heated in an oven to a temperature 
of 1160 ± 20 °C to start the SHS process, and pressed in a 
hydraulic press at compressive pressures of 200–250 MPa. 
Next, the sintered material was subjected to heat treatment 
in a zirconium oxide flux with a stepwise increase in tem-
perature to 1080 ± 20 °C for 24 h and then cooled to room 
temperature. To obtain a superhard composite, the samples 
after SHS and subsequent heat treatment were subjected to 
high-energy grinding (by the method of disintegration and 
attrition) into an ultrafine-grained powder. The facilities for 
disintegration and attrition milling were designed and manu-
factured at the Powder Metallurgy lab of TalTech University, 
Estonia. The powder obtained after this step was chemically 
leached in HCl and HNO3 concentrated acids and used as 
an initial powder mixture for the SPS synthesis The mixture 
was processed in an SPS furnace (type HPD 10-GB, FCT 
System GmbH) under the nitrogen gas pressure of 120 MPa 
at temperatures of 1150, 1500, and 2000 °C for 20 min and 
the piston speed of 10 mm/min. Further details of the pro-
cessing parameters of the SPS synthesis are shown in Fig. 1.

The heat-treated samples were subjected to microstruc-
tural studies by using an optical microscope (Nikon CX) and 
a scanning electron microscope (SEM) equipped with an 
energy-dispersive spectrometry (EDS) system (Zeiss EVO 
Ma-15, Ultra 55 ns Gemini LEO Supra-35). The surface of 
the samples was polished by diamond paste and then cleaned 
by ion milling using an Etching Coating System (Model 682) 
at 30 kV for 30 min in an argon (Ar) gas environment. The 
X-ray diffraction (Bruker AXS, D5005) was implemented to 
obtain the XRD patterns of the compounds in the composite 
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and the ICDD PDF-4 + 2014 database was used to analyze 
the patterns by profile fitting. The hardness of composite 
samples was measured by a Mikromet 2001 (Vickers hard-
ness) under a load of 1000 g and a dwelling time of 12 s. 
The micromechanical properties of composite samples were 
studied by a nanoindentation device (NanoTest NTX testing 
center of Micro Materials Ltd., using a trigonal Berkovich 
diamond tip with a radius of 100 nm. The flexural strength 
was measured by an Instron-8516 in low cycle fatigue mode 
according to the ASTM standard test method B528-16 of 
powder metallurgy. The specimens with dimensions of 
5 × 6 × 25 mm were used, and three pieces were utilized for 
each material. The tribological behavior of the composites 
was tested by a tribometer CETR Bruker-UMT2 in dry slid-
ing conditions using the ball-on-disk technique with alumina 
balls (Al2O3) with a diameter of 3 mm. Reciprocal wear 
testing was used because of the fact that the main character-
istic of such composites is their higher hardness and resist-
ance against abrasion, and therefore, this type of test could 
be a good method to evaluate the resistance of materials 
against abrasion as well as evaluation of the penetration of 
the ball given a specific amount of normal load. The wear 
testing parameters were comprised of a normal load of 2 N, 
a sliding distance of 2 mm, frequency of 19 Hz, velocity 
of 40 mm/s, and sliding time of 10 min. For volume loss 
calculations the cross-section area of the wear tracks was 
measured by the confocal microscope Mahr Perthometer-
PGK 120 Concept 7.21. The friction coefficient (COF) was 
continuously recorded by the tribometer based on measuring 
the normal load and the transversal load along the direction 
of sliding.

3 � Results

3.1 � Microstructural investigations 
of the composites

The microstructural analysis shows that SHS powder con-
tains mainly three types of particles. A small number of 
large grains with the size of about 20–30 µm, fine grains 
with the size of about 1–2 µm, and ultrafine particles of 
about 200–500 nm (see Figs. 2 and 3).

The SEM–EDS investigation of the SHS powder after 
milling (Fig. 3a) and after SPS processing (Fig. 3b) are pre-
sented below, and the results of the analysis are collected in 
Tables 1 and 2. The results show that the composition of the 
materials changed due to chemical leaching.

As shown in Table 2, the boron content is the highest 
(spectra 3 and 5) in comparison with other elements. The 
large grains (according to SEM–EDS) could be mainly B4C, 
B13C2, B6O, and Al3BC. During treatment in the HIP fur-
nace, free aluminum reacted with nitrogen, and AlN was 
formed. During chemical leaching, aluminum carbide Al4C3 
was mainly washed out from the compounds. However, 
some grains (such as spectrum 1) contain large amounts of 
oxygen O and Al, indicating the presence of Al2O3. The 
WC content (spectrum 4) was very stable during these treat-
ments. The boron content in carbon B13C2 increased from 
61.7 wt% up to 97.3 wt%.

3.2 � XRD investigations

The XRD patterns of the compounds after each step of syn-
thesis are presented below in Figs. 4, 5, and 6. To study the 

Fig. 1   Spark plasma sintering 
(SPS) process parameters dur-
ing the composite processing 
running at 120 Mpa of nitrogen 
gas pressure. The left vertical 
axis represents dual scales for 
the force (KN) and the piston 
movement (mm)



1314	 Carbon Letters (2023) 33:1311–1319

1 3

XRD patterns and analyze the phases, an XRD line profile 
analysis was performed on the patterns of the samples after 
the final step of SPS processing (Fig. 6). The results of the 
analysis are collected in Table 3.

As shown in this table, a large fraction of the compos-
ites after SPS contains B11.72C3.28 up to ~ 86.7 wt%, and 

only ~ 3.7 wt% of B13C2, 3.3 wt% of the boron nitride, 1.9 
wt% of carbon nitride (C11N4), 0.9 wt% of tungsten boride 
(WB2), and 0.3 wt% of iron boride (FeB2), as well as 1.9 
wt% of graphite (C).

Fig. 2   Optical microscopy of SHS processed coarse-grained B4C/Al-composite (a), the same composite after heat treatment at 1150 °C (b)

Fig. 3   SEM–EDS images of SHS processed compound (after disintegrations and attrition milling followed by chemical leaching) (a); and after 
SPS processing (b). The spectra indexed in the figures are analyzed in Tables 1 and 2

Table 1   Chemical analysis of 
SHS composite (Fig. 3a) after 
disintegration and attrition 
milling. The numbers are in 
weight percentage (wt%)

Spectrum Chemical composition of spectra in wt%

B C Al O Fe Co Cu W

1 14.6 11.26 1.56 5.44 65.02 0.45 0.4 1.27
2 63.69 31.94 0.92 3.27 0.23 0.26 0 0
3 58.66 34.12 0.93 6.13 0 0.01 0.1 0.3
4 23.68 7.74 55.19 10.01 0.01 0.12 1.53 1.72
5 8.28 33.89 1.07 1.91 0.24 4.3 0.29 50.03
6 64.13 31.65 0.59 3.05 0.13 0.02 0.07 0.36
7 20.07 15.31 55.64 6.54 0.11 0.03 1.23 1.06
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3.3 � Mechanical and physical properties of SHS 
and SPS composites

The composite after SPS processing presented a light weight 
with an average density of ~ 2.5 g/cm3. Results of Nanohard-
ness testing showed that SHS composite presented a hard-
ness of HV = 30–32 GPa for B4C, HV = 43 GPa for Boron-
rich carbide (B13C2), HV = 65 GPa for c-BN. On the other 
hand, chemical leaching of the samples removed Al-con-
taining phases, mainly retaining the carbon-rich phase of 
B11.72C3.28 in the SPS synthesized samples and presenting 
a hardness value of ~ HV = 46 GPa and an elastic modulus 
of ~ 400 GPa as shown in Fig. 7. Such superhard composites 
are usually highly wear resistant as well.

To evaluate the mechanical properties of the composite, 
wear test and flexure testing were performed on the samples 
and the results are shown below. These tests revealed the 
effect of heat treatment on the volume loss, COF, and flex-
ural strength of the samples (Fig. 8a, b).

4 � Discussion

This research studied the formation of superhard solid 
solutions of B13C2, c-BN, and B11.72C3.28 obtained 
from a mixture of B4C (67 wt%)–Al (28 wt%)–WC–Co (3 
wt%).)–Cu (2 wt%) by self-propagating high-temperature 
synthesis (SHS) with the subsequent chemical leaching and 
spark plasma sintering (SPS). In a similar study presented 
before, we used pure materials without the need for chemi-
cal leaching and SPS processing. Nonetheless, the cost of 
starting materials was considerably high [27]. On the con-
trary, the new approach presented here started with less-pure 
materials to avoid an extra cost and to make it affordable 
for industrial applications. Interestingly, the formation of 
superhard phases of B13C2 and c-BN depended on the pres-
ence of Co in the composition of the powder [9]. Increas-
ing the content of Co and B4C in the powder leads to an 
increase in the formation of B13C2 during SHS. Earlier 
research showed that the composition of the composite and 
the grain size could have a considerable impact on the igni-
tion temperature in the SHS process [14]. Decreasing the 

Table 2   Chemical composition of the SPS composite indexed in Fig. 3b

Spectrum Chemical composition of spectra

B, wt% B, at% C, wt% C, at% N, wt% N, at% O, wt% O, at% W, wt% W, at% Al, wt% Al, at%

1 – – 1.6 2.4 – – 65.1 74.8 – – 33.3 22.7
2 30.7 34.8 55.1 56.2 – – 9.4 7.2 – – 0.7 0.3
3 64.3 67.6 29.8 28.2 1.9 1.5 3.4 2.4 – – 0.6 0.3
4 – – 6.5 51.5 – – – – 93.5 48.5 – –
5 66.6 69.1 30.5 28.6 1.5 1.2 1.5 1.1 – – – –

Fig. 4   X-ray diffraction patterns 
of the SHS composite after heat 
treatment at different tempera-
tures
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Fig. 5   X-ray diffraction patterns of the composite powder after heat treatment and leaching by HCl and HNO3 acids

Fig. 6   X-ray diffraction patterns of SPS processed composite

Table 3   The phase 
concentration of SPS composite

ICDD PDF-4 + 2014 
database code

% Compound formula Compound name

1 00-020-0043 1.2 Al196O288N4 Aluminum oxide nitride
2 04-007-1018 86.7 B11.72C3.28 Boron carbon
3 04-007-9009 3.7 B13C2 Boron carbon
4 01-077-8882 3.3 BN Boron nitride
5 04-006-5764 1.9 C Graphite
6 01-081-8115 1.9 C11N4 Carbon nitride
7 04-003-4034 0.3 FeB2 Iron boride
8 04-004-1673 0.9 WB2 Tungsten boride
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particle size leads to an increase in the ignition temperature 
and vice versa. Evaluation of X-ray patterns showed that 
chemical leaching eliminated the aluminum-based com-
pounds and excluded the soft phases from the composite. 

Microstructural studies revealed the presence of superhard 
phase protrusions formed during diamond grinding on the 
polished composite surface. In the course of SHS, B4C in 
the composite was transformed into B13C2, and upon the 
subsequent heat treatment, c-BN and BC2N were formed. 
As a result, the total average nanohardness increased to 
HV = 42 ± 2 GPa for the compound. The minimum nano-
hardness values of the composite considerably increased 
after the SPS synthesis and turned out to be higher than 40 
GPa. Such composite presents higher hardness and higher 
mechanical strength, as well as a very high neutron attenua-
tion factor [27], and excellent wear resistance.

5 � Conclusions

A modern technique was implemented to produce a light-
weight carbon-based composite. The corresponding micro-
structures, phase compositions, and mechanical properties 
of the composites were investigated. Based on the results, 
the following outcomes are noteworthy:

1.	 Implementing self-propagating high-temperature syn-
thesis (SHS), an initial mixture of B4C and Al powder 
was synthesized to fabricate superhard composites.

2.	 Depending on the temperature of heat treatment, new 
superhard phases were formed in the composite, and the 
mechanical properties of materials changed.

3.	 The SHS powder was exposed to chemical leaching 
and soft phases of aluminum-based compounds were 
removed.

4.	 After chemical leaching, the composite was synthesized 
by Spark Plasma Sintering (SPS) and superhard phases 
of B13C2, B11.72C3.28, c-BN with high values of hard-
ness (in the order of HV = 42 GPa) with the following 
features were obtained:

a.	 Great hardness and mechanical strength.
b.	 Excellent wear resistance in dry sliding conditions, 

relatively high friction coefficient, and good bending 
strength.

c.	 Ultra-fine or nanocrystalline microstructure.
d.	 Such light composites with a density of ~ 2.5 g/cm3 

are capable of serving in a variety of applications 
such as defense and military applications, reactor 
materials for neutron shielding, and wear-resistant 
coating.
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Fig. 7   Dependence of Vickers hardness and elastic modulus on the 
chemical composition of the composite
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