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Abstract
Polyacrylonitrile (PAN)-based carbon fibers (CFs) and their composites, CF-reinforced plastics, have garnered significant 
interest as promising structural materials owing to their excellent properties and lightweight. Therefore, various processing 
technologies for fabricating these advanced materials using thermal energy have been intensively investigated and developed. 
In most cases, these thermal energy-based processes (heat treatment) are energy and time consuming due to the inefficient 
energy transfer from the source to materials. Meanwhile, advanced processing technologies that directly transfer energy to 
materials, such as radiation processing, have been developed and applied in several industrial sectors since the 1960s. Herein, 
general aspects of radiation processing and several key parameters for electron-beam (e-beam) processing are introduced, 
followed by a review of our previous studies pertaining to the preparation of low-cost CFs using specific and textile-grade 
PAN fibers and improvements in the mechanical and thermal properties of CF-reinforced thermoplastics afforded by e-beam 
irradiation. Radiation processing using e-beam irradiation is anticipated to be a promising method for fabricating advanced 
carbon materials and their composites.

Keywords  Electron-beam irradiation · Polyacrylonitrile fiber · Carbon fiber · Carbon-fiber-reinforced thermoplastic · 
Tensile property · Thermal stability

1  Introduction

Carbon fiber (CF) is an advanced material that possesses 
high specific strength and high chemical and corrosion 
resistance compared with steel, rendering it a promising 
structural material [1]. CFs are typically synthesized by 
heating polymers, such as polyacrylonitrile (PAN) fibers, to 
gradually transform them to carbon with a graphitic struc-
ture. PAN fibers are heat treated by passing them through a 
series of ovens under gradual temperature increments and 
different atmospheres. Because this process is both energy 
and time consuming, the price of CFs is high. Therefore, to 
reduce the price of CFs, extensive investigations have been 

performed to reduce the heat treatment duration or enable 
the use of low-cost precursor fibers [2–5].

CFs are widely used as reinforcements for composite 
materials embedded in a matrix, such as polymers [6, 7]. 
Carbon-fiber-reinforced plastics (CFRPs) possess high 
strength owing to CFs, and the matrix of CRFPs effectively 
transfers load to the CFs. Thermoset resins are initially 
developed as matrices that exhibit desirable interfacial prop-
erties with CFs [8, 9]. Recently, thermoplastic resin-based 
CFRPs and CF-reinforced thermoplastics (CFRTPs) have 
been actively investigated to overcome the productivity and 
recycling limitations of thermoset-based CFRPs [10]. How-
ever, a few challenges associated with the intrinsic properties 
of thermoplastics must be addressed.

Meanwhile, the application of radiation to process 
materials has been developed since the 1960s [11–13]. 
Conventionally, polymers are irradiated with γ-rays or 
electron beams (e-beams) to cross-link the claddings of 
cable/wire, plastic foam, hydrogels, and radial tires [14]. 
Furthermore, thermoset resins were cured via irradiation. 
High-energy radiation with sufficient penetration ability 
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was performed to treat the bulk of the material. The main 
advantage of radiation processing technology is its energy 
efficiency: high-energy particles transfer energy directly 
when they penetrate the material, which enables various 
reactions to occur at room temperature [15, 16]. Typi-
cally, these reactions can be induced without using agents, 
thereby allowing the final product to be pure, without any 
risk associated with residual unreacted agents in the mate-
rial; it is noteworthy that impurities will deteriorate the 
properties of the final product. Modern industrial irradia-
tors are equipped with a conveyer system, e.g., a system 
that enables continuous processing to increase the pro-
ductivity for mass production. Furthermore, considering 
technical and security aspects, e-beam irradiation is more 
advantageous compared with γ-ray irradiation.

This short review introduces the general aspects of 
radiation processing, with emphasis on e-beam irradia-
tion, the key parameters of e-beam irradiation, and our 
recent study, in which e-beam irradiation was applied to 
fabricate low-cost CFs and improve the mechanical and 
thermal properties of CFRTPs.

2 � Radiation processing technology

Radiation processing technology is used to treat materials 
(conventionally, via cross-linking/grafting/curing) in an 
energy- and cost-efficient manner [17, 18]. It is widely 
applied in several industries, such as automobile, aero-
space, construction, and healthcare. The radiation type 
typically used in this technology is ionizing radiation, 
such as high-energy electrons and photons [19, 20]. The 
characteristics, advantages, and disadvantages of each type 
of radiation are summarized in Table 1.

2.1 � Electron

The high-energy e-beam used for radiation processing is 
generated using an electron accelerator. Accelerated elec-
trons are irradiated to the object and then transferred by 
a conveyer system. To uniformly irradiate large objects, 
the e-beam is typically scanned using a scan magnet and 
spread through the scan horn equipped with an extraction 
window, which resembles a curtain of an electron shower 
spanning the conveyer width (Fig. 1). During irradiation, 
high-energy electrons enter the object, transfer a small 
portion of their energy (absorbed by the object) on pene-
trating the object, and finally exit the object with a reduced 
energy compared with the initial energy. The object is 
repeatedly irradiated to attain the required absorbed dose 
(energy absorbed per unit mass of material) by increas-
ing the number of passes in the irradiation area. Higher 
initial electron energies allow a higher level of penetra-
tion through materials; however, the linear energy transfer 
(energy transferred to the material per unit length of radia-
tion penetration) is lower. Therefore, the higher penetra-
tion of radiation results in lower energy transfer to the 
material (hence, a lower absorbed dose rate). To treat the 
surface of materials, low-energy (a few tens to a few hun-
dreds of kiloelectron volts) e-beams are preferred, whereas 
to treat the bulk of thick materials, higher energies (a few 
megaelectron volts) are preferred. In regard to high-den-
sity materials, the penetration of e-beams might be limited 
because the penetration depth is inversely proportional to 
the material density. Furthermore, the absorbed dose rate 
of the e-beam (units: kGy/s) is much higher than that of 
photons (units: kGy/h); therefore, e-beams require a much 
shorter irradiation duration to achieve the same absorbed 
dose.

2.2 � Photon (γ‑ and X‑rays)

Typically, high-energy photons (γ-rays) for irradiation are 
generated from the spontaneous decay of radioisotopes, 
such as Co-60 and Cs-137. Co-60 is widely used in radia-
tion processing. It emits two γ-rays (1.17 and 1.33 MeV) 
per decay, and it is often approximated as two 1.25 MeV 
γ-rays emitted per decay for convenience. The most promi-
nent advantage of γ-rays is their high penetration through 
materials, which enables high-density materials to be 
treated. However, the low-energy transfer to the material 
(therefore, a low absorbed dose rate) requires prolonged 
irradiation to achieve the desirable absorbed dose, and the 
strengthening of regulations associated with the usage of 
artificial radioisotopes (e.g., Co-60 and Cs-137) promoted 
the utilization of e-beams. As an alternative photon source, 

Table 1   Comparison between ionizing radiation types frequently 
used in radiation processing technology

Electron (e−) Photon (γ- or X-ray)

Source Accelerators Radioisotopes or accel-
erators

Charge of particle Negative Neutral
Interaction with matter Directly 

(Coulomb 
force)

Indirectly

Penetration in material Low High
Energy absorption in 

material (absorbed dose 
rate)

High Low

Irradiation duration Short Long
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high-energy X-rays for irradiation have been adopted 
more frequently owing to the development of high-power 
electron accelerators. High-energy X-rays are generated 
by converting high-energy electrons to bremsstrahlung 
X-rays. The development of electron accelerators with 
high beam currents has enabled high-intensity X-rays for 
irradiation, which can provide sufficiently high absorbed 
dose rates. The irradiation process using photons is similar 
to that using an e-beam, in which objects are exposed to 
γ- or X-rays until the required absorbed dose by increasing 
the irradiation duration.

2.3 � Key parameters for e‑beam irradiation

2.3.1 � Energy and current

The energy of the electrons determines the penetration depth 
of the object subjected to irradiation. A typical depth–dose 
profile of e-beam irradiation is shown in Fig.  2. The 
absorbed dose of the material increases gradually below the 
surface, maximizes at a certain depth, and decreases further. 
The gradual increase in absorbed dose below the surface and 
the further decrease after the maximum dose is attained are 
due to backscattered electrons generated from the interaction 
between the e-beam and material (the electrons of the atom), 
as well as the limited penetration of the e-beam, which loses 
energy as it penetrates through the material. For higher 
e-beam energies, the penetration depth and depth position 
at the maximum dose are higher. Therefore, low-energy (a 
few tens to a few hundreds of keV) is preferred for treating 

the surface, whereas a high energy (few MeV) is preferred 
for treating the bulk of thick materials, as mentioned above.

The e-beam current indicates the number of electrons 
irradiating the object per unit time. A 1 mA of beam cur-
rent corresponds to 6.25 × 1015 electrons traveling per 
second in the beam. Therefore, numerous electrons enter 
the material, and this phenomenon is referred to as an 
electron shower. The amount and rate of irradiation (as 
explained in Sect. 2.3.3) can be controlled by changing 
the beam current. Typical industrial irradiators operate at 

Fig. 1   Illustration of typical e-beam irradiation facility. The yellow arrow indicates the entrance and exit of the irradiated object on the conveyor. 
The object enters the irradiation zone, passes under the extraction window to be irradiated, and finally exits the irradiation zone
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a beam current of a few to several hundreds of milliam-
peres, and the maximum beam current is typically higher 
for a lower beam energy of the electron accelerator.

2.3.2 � Conveyor speed

The object (or samples) can be irradiated via one of two 
methods: the stationary or conveying method. In the for-
mer, samples are fixed on a stationary stage (which might 
be water cooled) under the extraction window, and the 
amount of irradiation (typically the absorbed dose) is var-
ied by controlling the irradiation duration. However, most 
industrial irradiators are equipped with a conveyor sys-
tem, where samples are loaded onto trays, and these trays 
are transferred to the irradiation zone by operating the 
conveyor. The sample-loaded trays are passed under the 
extraction window at a designated speed, and the amount 
of irradiation is varied by controlling the conveyor speed 
and accumulated number of passes under the extraction 
window. The conveyor speed under the extraction window 
is typically set to 1–15 m/min.

2.3.3 � Absorbed dose and dose rate

The amount of irradiation required for radiation process-
ing is typically quantified by estimating the absorbed 
dose of the sample. The absorbed dose is defined as the 
“energy absorbed in matter per unit mass,” for which the 
units “Gy (J/kg)” are widely used [21]. The absorbed dose 
of irradiated samples can be measured using a dosim-
eter or evaluated via simulation-based calculations. At a 
specified e-beam energy, the desired absorbed dose for 
the samples can be obtained by controlling the beam cur-
rent, conveyor speed, and number of passes. In general, 
the absorbed dose is directly proportional to the beam 
current and number of passes. By contrast, it is inversely 
proportional to the conveyor speed, as shown in Fig. 3.

2.3.4 � Atmosphere and temperature

For general industrial irradiators, e-beam irradiation is con-
ducted in an air atmosphere. This allows the irradiated sam-
ples to be in contact with oxygen in the air during and after 
irradiation. Therefore, the irradiated samples can be further 
oxidized by the reactive radical species formed, which sub-
sequently react with oxygen. To prevent oxidation, the sam-
ples should be contained in a sealed container in an inert 
atmosphere or vacuum during and after irradiation. Oxida-
tion might be beneficial or detrimental depending on the 
purpose of irradiation and the application of the irradiated 
material.

Most irradiation processes are performed at room tem-
perature, whereas some are performed under cryogenic 
or elevated temperatures for specific purposes. Irradiation 
inevitably increases the temperature of the material because 
a portion of the absorbed dose dissipates as heat. The tem-
perature increase by irradiation depends on the specific heat 
of the material and the absorbed dose/dose rate (which are 
inversely and approximately proportional to the specific heat 
and absorbed dose/dose rate, respectively). The tempera-
ture increase in the material can be suppressed by cooling 
the sample during irradiation or by decreasing the absorbed 
dose/dose rate.

3 � Irradiation for preparation of PAN‑based 
CFs

3.1 � Special PAN fiber‑based CF

More than 90% of commercially available CFs are PAN-
based CFs synthesized using special PAN fibers as pre-
cursors. Structural changes in PAN fibers during typical 
stabilization and carbonization processes have been widely 
investigated [22–24]. The report by Hirt et al. showed that 
radicals such as alkyl and its peroxide were formed via the 
irradiation of PAN [25]. Thereafter, changes in various 

Fig. 3   Relationship between 
absorbed dose and each of a 
beam current and b conveyor 
speed (based on 5 MeV energy 
and one pass under e-beam 
irradiation)
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properties (physical, thermal, mechanical, and chemical 
properties) of PAN caused by irradiation have been exten-
sively investigated [26], as summarized in Table 2.

The results of these studies show that various radicals 
were formed by irradiation, and that they mitigated the 
exothermal reaction of the subsequent heat treatment 
(stabilization process). In the typical CF production pro-
cess, the exothermal reaction during stabilization should 
be carefully controlled to prevent the fibers from burning 
out. Therefore, the mitigation of this exothermal reaction 
using irradiated PAN fibers for the stabilization process 
offers significant benefits. This can be verified by perform-
ing a differential scanning calorimetry (DSC) analysis 
on the irradiated PAN fibers (Fig. 4). By increasing the 
absorbed dose, the onset temperature of the exothermal 
peak decreased, and peak broadening became prominent. 
Therefore, heat release during stabilization can be initiated 
at a lower temperature and proceeded in a wider tempera-
ture range, thereby rendering it easier to prevent abrupt 
temperature increases in the fibers during stabilization.

Another benefit of irradiating the special PAN fibers is 
that the duration of thermal stabilization is reduced. Vari-
ous studies have shown that irradiation can generate free 
radicals in PAN, which can cause cross-linking and cycli-
zation reactions (Table 2). These reactions are necessary 
to convert the PAN polymer into a ladder structure suitable 
for subsequent thermal treatment (carbonization). In our 
study, various radicals formed by the e-beam irradiation of 
special PAN fibers (Sinosteel Jilin Carbon Co., Ltd.) were 
analyzed via ESR spectroscopy (Fig. 5). These radicals 
(alkyl, allyl, and polyenyl) gradually transformed into per-
oxy radicals upon heating in air and promoted cyclization 
during thermal stabilization. Consequently, the total dura-
tion required for stabilization was reduced to one-fourth 
that of the conventional process by irradiating the PAN 
fibers prior to thermal stabilization [40].   

Several research groups have attempted to fabricate 
CFs based on irradiated special PAN fibers and subse-
quent heat treatment (stabilization and carbonization), as 
summarized in Table 3. The most typical approach is the 
irradiation (primarily e-beams and γ-rays) of PAN fibers 
as a pretreatment, where stabilization is conducted on the 
irradiated PAN fibers, followed by carbonization to yield 
CFs [41]. In our study, CFs were fabricated by carbonizing 
the irradiated PAN fibers after stabilization at 1200 °C in 
a nitrogen atmosphere. The mechanical properties of CFs 
fabricated from irradiated PAN fibers were comparable to 
those from the conventional approach, considering that 
the entire process was batch-wise conducted in a labora-
tory. Our results indicated that 200 kGy was sufficient to 
fabricate CFs with a TS, a YM, and an elongation of 2.3 
GPa, 216 GPa, and 1.2%, respectively (Fig. 6).

3.2 � Textile‑grade PAN‑fiber‑based CF

Several studies pertaining to the fabrication of low-cost 
CFs using textile-grade PAN fibers as precursors were 
conducted [47, 48]. Owing to the exothermic reactions of 
PAN fibers during thermal stabilization, the temperature of 
the PAN fibers increases inevitably. In textile-grade PAN 
fibers, high contents of co-monomers lower the melting 
point of PAN, and the absence of co-monomers such as 
itaconic acid limits the exothermic reactions in a narrow 
temperature range. Consequently, the heat generated by the 
intense exothermic reaction melts the surface of the PAN 
fiber and induces superficial fusion between filaments, as 
shown in Fig. 7a and c. Therefore, difficulty in achieving 
precise temperature control when fabricating CFs using 
textile-grade PAN fibers has hindered further relevant 
investigations. In this study, we attempted many combi-
nations of heating programs based on commercial textile-
grade PAN fibers provided by Taekwang Industry Co., 
Ltd. (Ulsan, Republic of Korea); nonetheless, we failed to 
fabricate CFs without superficial fusion between filaments.

To avoid superficial fusion between filaments, e-beam 
irradiation was applied to fabricate monofilament CFs 
using textile-grade PAN fibers (Figs. 7b, d, and 8). Com-
pared with our previous study based on special PAN fibers, 
the textile-grade PAN fibers used in this study required a 
higher absorbed dose (1000 or 1500 kGy) to fabricate CFs 
with sufficient mechanical properties. It was demonstrated 
that the cross-linking and cyclization of PAN molecules 
initiated at lower temperatures prevented superficial fusion 
by suppressing surface melting, as verified via DSC and 
dynamic mechanical analysis (DMA) (Fig. 9). Further-
more, the mitigation of the exothermal reaction and short-
ening of the stabilization duration were observed.

CFs were fabricated by carbonizing irradiated textile-
grade PAN fibers after thermal stabilization. To improve 
the mechanical properties, the textile-grade PAN fibers 
were hot stretched. Finally, the maximum TS, YM, and 
STF of the fabricated CFs were measured to be 1.83 ± 0.23 
GPa, 147.44 ± 4.55 GPa, and 1.30 ± 0.15%, respec-
tively  (Fig. 10). Based on our results, we believe that 
e-beam irradiation is an efficient technique for fabricating 
CFs in an energy- and cost-efficient manner, regardless of 
the grade of the precursor PAN fiber. Our study was con-
ducted in a batch-wise manner; therefore, the mechanical 
properties of CFs fabricated from irradiated PAN fibers 
can be further improved by fabricating them continuously. 
In fact, several recent studies have demonstrated the con-
tinuous fabrication of CFs using e-beam irradiation and 
heat treatment [43].
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4 � Irradiation for preparation of CFRTPs

4.1 � Thermoset‑matrix‑based CFRPs

In the early development stages of CFRPs, thermoset resin 
was predominantly used as a matrix material (Fig. 11) [8, 49]. 
The advantages of thermoset-based CFRPs compared with 
conventional structural materials such as steel are their high 
specific strength, specific modulus, and chemical and ther-
mal resistances; however, their applications are limited owing 
to their high cost, low productivity, difficulty in recycling, 
and weakness toward impact. Irradiation for curing thermo-
set resins of CFRPs have been conducted by several studies 
(Fig. 12a) [50–53]. Meanwhile, the surface of CFs was treated 
via irradiation to improve the interfacial properties of CF and 
resin [54–56]. In these studies, various functional groups were 
formed on the surface of CFs, which improved the adhesion of 
the CFs to the matrix resin.

4.2 � CFRTPs

Recently, CFRTPs have been developed to overcome the 
above-mentioned disadvantages of thermoset-based CFRPs. 
Well-established thermoplastic processing technologies 
can be adopted for CFRTPs and are expected to enhance 
their productivity and recyclability [57–59]. However, a 
few challenges must be solved: the mechanical properties 
(except impact strength) of CFRTPs are low because of the 
inferior interfacial adhesion between CFs and the thermo-
plastic matrix. Furthermore, the intrinsic characteristics 
of thermoplastics limit the application of CFRTPs at high 
temperatures.

To address the above-mentioned issues, e-beam irradia-
tion was applied to CFRTPs. Nishi et al. extensively investi-
gated the effect of using homogeneous low-voltage electron-
beam irradiation on various CFRTPs [60–65]. Low-energy 
(0.1 MeV) e-beam irradiation was conducted by repetitively 

Fig. 4   DSC curves of irradiated 
PAN fibers measured under a 
nitrogen and b air atmosphere. 
Reprinted from [40],  Copyright 
2016, with permission from 
Springer Nature

Fig. 5   a ESR spectra of PAN 
fibers irradiated for different 
absorbed doses. Reprinted from 
[40],  Copyright 2016, with per-
mission from Springer Nature. 
b Alkyl, allyl, and polyenyl 
radicals of irradiated PAN fibers
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conveying the samples under the irradiation zone in a nitro-
gen atmosphere. They explained that irradiation-induced 
surface activation via charging and compressive stresses at 

the interface via dangling bond formation in the polymer. 
Hence, the enhanced mechanical properties of the irradiated 
CFRTPs originated from the frictional force between the CF 

Fig. 6   TS, YM, and elongation of CFs fabricated from irradiated 
PAN fibers. Absorbed dose varied as 200, 500, 100, and 1500 kGy. 
Thermal stabilization and carbonization conducted at 230  °C for 

30  min and 1200  °C, respectively. Reprinted from [40],  Copyright 
2016, with permission from Springer Nature

Fig. 7   SEM images of textile-
grade PAN fibers heated at 
200 °C for 1 h a without e-beam 
irradiation and b after e-beam 
irradiation at 1500 kGy. Dotted 
red circles show regions where 
superficial fusion occurred 
between filaments under condi-
tion (a). Scale bar corresponds 
to a, b 25 μm and c, d 5 μm. 
Reprinted from [46],  Copyright 
2017, with permission from 
Elsevier

Fig. 8   Photograph of textile-
grade PAN fibers after a irradia-
tion and b thermal stabilization
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Fig. 9   a DSC and b DMA curves under dynamic stress of irradiated textile-grade PAN fibers at different doses. Reproduced and reprinted from 
[46],  Copyright 2017, with permission from Elsevier

Fig. 10   a, b TS, c, d YM, and 
e, f STF of CFs fabricated based 
on different e-beam irradia-
tion and subsequent thermal 
stabilization conditions. a, c, 
e Different doses and subse-
quent thermal stabilization 
under P1 condition. b, d, f 
Dose at 1000 kGy and different 
subsequent thermal stabilization 
conditions. Reprinted from [46], 
Copyright 2017, with permis-
sion from Elsevier
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surface and the dangling bond of the polymer. Several inves-
tigations are reported to improve the properties of CFRTPs 
via irradiation [66–68].

In our study, two typical thermoplastics, polyethylene 
(PE) and polypropylene (PP), were investigated as matri-
ces of CFRTPs for high-energy e-beam irradiation. The 
dominant response upon irradiation differed significantly 
between PE (cross-linking) and PP (scission); therefore, the 
properties of CFRTPs are expected to be affected. First, the 
TS improved when the absorbed dose for high-density PE 
(HDPE)-based CFRTPs increased [69] (Fig. 13). 

To determine the origin of this improvement, tensile test-
ing and various measurements were performed on each com-
ponent of the CFRTP (CF and HPDE). It was observed that 
the TS change of the CF was insignificant, whereas that of 
the HDPE increased slightly as the absorbed dose increased 

gradually. The major role of the matrix was load transfer to 
the CFs; therefore, the slight increase in the TS of the HDPE 
might be beneficial yet insufficient to explain the TS incre-
ment of the irradiated CFRTPs. As verified via spectroscopic 
analysis, various oxygen-containing functional groups were 
formed on the CFs and HDPE by irradiation, and we believe 
that strong attractive interactions occurred among these 
functional groups at the interface of the CFs and HDPE, 
which contributed significantly to the TS increase in the irra-
diated CFRTPs. The increased interfacial shear stress (IFSS) 
between the irradiated CFs and HDPE was confirmed via 
a fiber full-out test (Fig. 14). Furthermore, the irradiation-
induced cross-linking of HDPE significantly enhanced the 
thermal stability of the CFRTPs. As shown in Fig. 15, the 
gel content reached ~ 90%, and the heat distortion tempera-
ture exceeded 300 °C for absorbed doses above 1200 kGy. 

Fig. 11   Illustration of CFRP. 
CFs used as reinforcement sur-
rounded in the polymer matrix. 
Thermoset or thermoplastic 
resin can be used as matrix 
material

Fig. 12   Strategies to utilize 
e-beam irradiation for CFRPs. 
a In thermoset-resin-based 
CFRPs, curing via irradiation 
was investigated. b Surface 
modification of CFs via irradia-
tion was investigated to improve 
interfacial properties of CF and 
resin. c CFRTPs were irradiated 
as post-treatment to improve 
their mechanical properties in 
our studies
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Finally, it was concluded that e-beam irradiation exhib-
ited two main effects: the cross-linking of the HDPE matrix 
facilitated the load transfer from the resin to the CF, and the 
formation of polar functional groups on the surface of the 
CF and HDPE provided attractive interactions at the inter-
face between the CF and matrix (Fig. 16).

The effect of the absorbed dose rate on the TS and YM 
of the HDPE-based CFRTPs was further investigated at a 
fixed absorbed dose of 400 kGy (Fig. 17). Despite the same 

absorbed dose, the chemical composition differed depend-
ing on the absorbed dose rates, as shown in Table 4. By 
increasing the absorbed dose rates, the irradiation duration 
decreased, resulting in lower oxygen contents of the irradi-
ated CFRTPs. Meanwhile, the TS of the CFs increased at 
higher absorbed dose rates. Consequently, these beneficial 
and detrimental effects maximized the TS of the irradiated 
CFRTPs at a certain absorbed dose rate (6.8 kGy/s) [70] 
(Fig. 18).

Fig. 13   a Stress–strain curve 
and b TS of HDPE-based 
CFRTPs irradiated for various 
absorbed doses. Reprinted from 
[69],  Copyright 2020, with 
permission from Springer

Fig. 14   a Force–strain curve 
and b IFSS for single CF–
HDPE resin pull-out test 
for various absorbed doses. 
Reprinted from [69],  Copyright 
2020, with permission from 
Springer

Fig. 15   a Gel contents and b 
heat distortion temperature of 
HDPE-based CFRTP for vari-
ous absorbed doses. Reproduced 
from [69],  Copyright 2020, 
with permission from Springer
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For the PP-based CFRTPs, changes in the TS and YM 
for various absorbed doses are shown in Fig. 19 [71]. With-
out the addition of a radiation cross-linker, the mechanical 
properties improved at low absorbed doses, whereas they 
deteriorated as the absorbed dose was further increased. As 
mentioned earlier, PP is a typical polymer that undergoes 

scission by irradiation; therefore, the efficient load transfer 
from PP to CFs was disrupted in the irradiated PP-based 
CFRTPs at high absorbed doses. The increase in the TS 
and YM at relatively low absorbed doses were attributed 
to the enhanced adhesion between PP and CF, similar to 
the case for the HDPE-based CFRTPs (Fig. 20). Therefore, 

Fig. 16   Speculated intermolecu-
lar interaction between CF and 
HDPE of irradiated CFRTPs. 
Green characters represent 
functional groups formed by 
irradiation. Reprinted from [69],  
Copyright 2020, with permis-
sion from Springer

Fig. 17   a TS and b YM of 
CFRTP, HDPE, and CF irradi-
ated at various absorbed dose 
rates. Reprinted from [70],  
Copyright 2020, with permis-
sion from MDPI

Table 4   Atomic percentage and 
C/O ratio of CFRTP, HDPE, 
and CF irradiated at various 
absorbed dose rates. Reprinted 
from [70],  Copyright 2020, 
with permission from MDPI

Absorbed dose rate 
(kGy/s)

At%

C1s O1s Na1s N1s Si2p C/O ratio

CFRTP 3.4 89.3 7.25 1.23 1.12 1.09 12.31
6.8 93.33 4.18 1.02 0.71 0.76 22.34
13.5 94.38 3.83 0.68 0.63 0.47 24.62
27 96.41 3.21 0.02 0.17 0.19 30.04

HDPE 3.4 84.51 10.28 1.7 2.2 1.3 8.22
6.8 83.35 11.91 1.34 2.03 1.38 7
13.5 91.22 5.77 0.66 1.52 0.82 15.82
27 92.74 6.48 0 0.77 0 14.3

CF 3.4 78.51 16.92 – 2.01 2.56 4.64
6.8 80.48 17.29 – – 2.23 4.66
13.5 80.1 15.09 – 2.31 2.5 5.31
27 80.51 16.31 – 1.35 1.83 4.94
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Fig. 18   Relationships of CFRTP 
TS vs. HDPE TS, CF TS, and 
CF–HDPE hydrogen bonding 
as a function of absorbed dose 
rates. Reprinted from [70],  
Copyright 2020, with permis-
sion from MDPI

Fig. 19   a TS and b YM of 
PP-based CFRTPs irradiated for 
various absorbed doses. TAIC 
was added as radiation cross-
linker. Reprinted from [71],  
Copyright 2020, with permis-
sion from Elsevier

Fig. 20   SEM images of fracture surface of (a–d) CFRTP_0 wt% TAIC and (e–h) CFRTP_6 wt% TAIC dog-bone specimens after e-beam irradia-
tion. Absorbed doses were a, e 0, b, f 100, c, g 200, and d, h 400 kGy. Reprinted from [71],  Copyright 2020, with permission from Elsevier
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a radiation cross-linker (triallyl isocyanurate, TAIC) was 
added to further enhance the mechanical properties of the 
irradiated PP-based CFRTPs. By optimizing the amount of 
TAIC added (6 wt%), the TS and YM increased significantly, 
as shown in Fig. 19. The introduction of TAIC contributed 
to the cross-linking of PP and the bonding between the CF 
and PP in the irradiated PP-based CFRTPs. Furthermore, 
the thermal properties were evaluated via thermogravimetric 
(TG) and derivative TG (DTG) analysis, which indicated 
the enhanced thermal stability of the irradiated PP-based 
CFRTPs containing TAIC (Table 5). Hence, we conclude 
that the mechanical and thermal properties of the PP-based 
CFRTP-containing TAIC can be improved via two irradia-
tion effects: the cross-linking of PP and enhancement in the 
fiber–matrix interaction.   

5 � Conclusion

In this short review, the general aspects of radiation process-
ing were explained. Compared with γ- or X-rays, e-beam 
has great advantage owing to its higher energy transfer rate 
that renders shorter irradiation duration. The key parameters 
of e-beam irradiation (energy, current, conveyor speed) and 
their relationship with penetration depth, absorbed dose, and 
dose rate were explained. Meanwhile, our studies related to 
the utilization of e-beam irradiation for preparing carbon 
fibers and improving properties of carbon-fiber-reinforced 
thermoplastics were reviewed. Based on our studies, e-beam 
irradiation was applied to fabricate low-cost CFs by short-
ening the conventional thermal stabilization process and 
using textile-grade PAN fibers as precursor. Furthermore, 
the mechanical and thermal properties of CFRTPs were 
improved via e-beam irradiation. Efficient load transfer from 
cross-linked thermoplastic matrix to CFs and the interfa-
cial adhesion between CF and matrix were improved by 
irradiating CFRTPs. The thermal properties CFRTPs were 
enhanced by cross-linking the matrix via irradiation which 
overcame the intrinsic drawback of thermoplastics in high-
temperature applications. As a result, we believe e-beam 

irradiation as a powerful, energy and cost-efficient tool to 
fabricate and improve carbon based advanced materials.
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