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Abstract
Carbon xerogels (CXs) with three-dimensional (3D) structure, unusual surface, physical, electrical and mechanical proper-
ties and their electrically conductive polymer polypyrrole (PPy) composites were synthesized as electrode materials for 
supercapacitors. The effect of different resorcinol/formaldehyde (R/C) ratios, whether solvent exchange with or without 
acetone and polypyrrole addition on the physicochemical (FTIR, XRD, BET, SEM and TGA) and electrochemical proper-
ties (CV, 1000 cycles) of the synthesized materials were investigated. It was observed that the R/C ratio and the solvent 
exchange process prior to drying affect the specific surface areas and the pore size distributions, thereby positively affecting 
the specific capacitance. PPy film thickness was observed to be effective in the specific capacitance of the electrode in PPy 
composite synthesis. Among the synthesized materials, the highest specific capacitance values belong to polypyrrole/carbon 
xerogel composites. As a result of the analysis and calculations, it was found that the highest specific capacitance belongs 
to CX2/PPy composite with 599 Fg−1 at 5 mVs−1. CX2/PPy composite has been found to have a capacitance retention rate 
of 80.30% at the end of 1000 cycles.

Keywords  Carbon xerogel · Polypyrrole composites · Ambient drying · Solvent exchange · Specific capacitance · 
Supercapacitor

1  Introduction

Rapid population growth and technological developments in 
recent years cause the depletion of the energy resources used 
and the increase of environmental pollution. Therefore, the 
importance of effective, efficient and reliable use of energy 
is increasing day by day in energy technologies and sustain-
able energy systems. This increases the importance of using 
and developing energy storage systems. In order for the elec-
trochemical energy storage to be at maximum levels, impor-
tance is given to studies on subject such as higher energy 
density, lower cost, longer life and improved material sus-
tainability. Supercapacitors (also known as electrochemical 

capacitors or ultra-capacitors) represent a class of energy 
storage devices that can store electrical energy converted 
from various energy sources [1, 2].

The performance of a supercapacitor is largely deter-
mined by the electrode performance. Supercapacitors are 
examined in three groups according to the electrode mate-
rial used. The electrodes used are, carbon materials, transi-
tion metal oxides [3, 4] and conductive polymers [5] and 
utilization of both [6, 7]. The electrode materials of EDLC 
have been widely used as carbon materials with high electri-
cal conductivity, high surface area, with controlled surface 
morphology, good corrosion resistance and thermal stability, 
good processability, abundance and low cost of production 
[8]. Carbon-based materials make easy capacitive double-
layer formation and also provide a high surface area skeleton 
that enhances contact between the accumulated pseudoca-
pacitive materials and the electrolyte. Recently, researchers 
combined physical (non-faradaic reaction) and chemical 
(faradaic reaction) charge storage mechanisms into a single 
electrode by combining carbonaceous materials with con-
ductive polymers (CP) [9, 10] and metal oxides [11, 12] by 
synthesizing composite electrodes (hybrid capacitors).
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Electrically CP electrodes, for electrochemical super-
capacitors, such as polyaniline (PANI) [13], polypyrrole 
(PPy) [14], polythiophene (PTh) [15], polyethenedioxy-
thiophene (PEDOT) [16] and derivatives have been studied 
by researchers (pseudocapacitors) due to the presence of 
various oxidation structures (doped state), high capacitive 
energy density and low material cost materials. Among the 
conductive polymers, PPy is a commonly used one and there 
are large number of researches for the application of PPy as 
supercapacitor material in recent years. Because PPy has 
high electrical conductivity in the doped state, high specific 
capacitance (easy up to 100 Fg−1) and good chemical and 
thermal stability, particularly easy synthesis and environ-
mental friendliness [17].

By combining polypyrrole with graphene oxide [18], with 
carbon nanotubes [19], polyaniline with carbon aerogel [20], 
PEDOT with graphene and polythiophene with graphene 
[21], polyaniline with graphene oxide [22] and 3D reduced 
graphene oxide with polyaniline [23], the researchers have 
synthesized composite electrodes for the utilization in 
supercapacitors.

Carbon aerogels (supercritical drying) [24], carbon cryo-
gels (freeze drying) [25] and carbon xerogels (ambient dry-
ing), which are three-dimensional form of carbon materi-
als, have advantageous properties such as high surface area, 
low thermal conductivity, high acoustic resistivity. These 
open cell foam structures are obtained from wet gels. This 
is generally prepared by the sol–gel method [26]. In super-
critical drying and freeze drying processes, it is aimed to 
minimize surface tensions and pore shrinkage rates caused 
by capillary forces applied to the pores at the liquid–vapor 
interface during drying. However, both supercritical dry-
ing and freeze-drying are time-consuming, costly and hard 
to use. In this instance, solvent exchange is used to reduce 
capillary forces causative for collapse of the pore wall. In 
ambient conditions, solvent is exchanged with a liquid with 
low surface tension before drying. Indeed, 3D carbonaceous 
materials can be obtained by direct drying and pyrolysis of 
aqueous resorcinol–formaldehyde (RF) gels, provided that 
the synthesis parameters are chosen correctly [27, 28]. Some 
researchers have shown in their studies that the structure of 
the RF wet gel can be protected with minimal shrinkage at 
ambient pressure [29]. Li et al. found that the specific capac-
itance of xerogel obtained as a result of drying under ambi-
ent conditions was 110.06 Fg−1 [30]. Lee and colleagues 
found that the specific capacitance of synthesized carbon 
xerogel was 81 Fg−1 [31].

In this study, carbon xerogels (CX) were synthesized by 
polycondensation of resorcinol (R) and formaldehyde (F) by 
changing two different reactant concentrations. The prepara-
tion of carbon xerogels was followed by two routes after the 
sol–gel process; (1) solvent exchange with acetone (2) with-
out solvent exchange followed. This processes were followed 

by atmospheric drying and pyrolysis for both routes. In the 
second stage, PPy/carbon xerogel composite structures were 
synthesized by in-situ oxidative chemical polymerization of 
pyrrole over carbon xerogels. By adding polypyrrole to these 
four different xerogels synthesized, the superior properties of 
carbon xerogels and conductive polymers have been tried to 
be combined. Changes in the physicochemical (FTIR, XRD, 
BET, SEM, TGA) and electrochemical (CV) results of the 
composite electrodes were examined.

2 � Experimental

2.1 � Preparation of resorcinol–formaldehyde wet 
gels

Sol gel solutions were prepared by using base catalyst. 
Parameters such as solution pH, monomer concentrations 
and catalyst affect the density, surface area, particle size and 
pore size distribution of the materials [32]. Molar ratios of 
the reactants for resorcinol–formaldehyde xerogels (RFXs) 
synthesis are given in Table 1.The molar ratios of resorcinol 
(99%, Sigma-Aldrich) to sodium carbonate (Sigma-Aldrich) 
(R/C) and resorcinol to water (R/W) were changed and res-
orcinol to formaldehyde (37%, Sigma-Aldrich), (R/F) ratio 
was set to a fixed value of 0.5. The Na2CO3 catalyst (C) 
was used to control the pore size and distribution of the 
wet gels. Using the catalyst, a material having a fine porous 
structure and a high specific surface area is obtained. There-
fore, the R/C ratio in the wet gel is important [30]. First of 
all, the precursor materials were mixed in the proportions 
in Table 1. The first pH of the solution was measured to be 
between 7–7.5. This pH value is a suitable range for gelling 
to take place [33]. Subsequently, this mixture was cured for 
24 h at room temperature. This was followed by gelation at 
50 °C for 24 h and at 90 °C for 72 h [34].

Solvent exchanges were carried out in two routes for RF 
wet gels. In the first route, after the gelation, the samples 
were left to dry directly at ambient conditions and no solvent 
exchange is applied. In the second route, after the gelation, 
the samples were left in acetone (99.5%, Sigma-Aldrich) for 
24 h and then again left to dry directly at ambient conditions 
(Fig. 1a). So that two types of RF wet gels were obtained.

Table 1   Reactant concentrations in the synthesis of carbon xerogels

Sample Resorcinol/ for-
maldehyde (R/F) 
molar ratio

Resorcinol/water 
(R/W) molar 
ratio

Resorcinol/cata-
lyst (R/C) molar 
ratio

CX1, CXA1 0.5 0.08 100
CX2, CXA2 0.5 0.02 200
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Acetone is intended to minimize the contraction dur-
ing the drying of RF wet gels at ambient conditions by 
providing displacement of acetone with water in the pores 
due to its low surface tension (20.66 dyne cm−1) and low 
boiling point (56.5 °C). The surface tension of acetone is 
approximately one-fourth of the surface tension of water 
(72.8 dyne cm−1, 20 °C) [35]. As a result of these pro-
cesses, we can observe how the solvent exchange process 
using acetone will have an effect on the properties of the 
synthesized materials.

2.2 � Synthesis of carbon xerogel

To obtain carbon xerogels (CX, without solvent exchange or 
CXA, with solvent exchange in acetone) from RF wet gels, 
wet gels were pyrolised at 1000 °C under nitrogen atmos-
phere for 4 h with a heating rate of 15 °Cmin−1. The carbon-
ized RF carbon xerogel was cooled to room temperature in 
flowing N2 (Fig. 1a). As a result of the carbonization pro-
cess, a highly porous carbon network structure is obtained 
by removing excess solvent and volatile components from 
the structure.

2.3 � Preparation of polypyrrole (PPy) composites 
with carbon xerogel (CX, CXA)

The two main methods of synthesis of conductive polymers 
are chemical and electrochemical polymerization. The 
chemical polymerization method, when compared to the 
electropolymerization method, exhibits an easier and more 
homogeneous structure [36]. In this study, the synthesis of 
polypyrrole was made by in situ chemical oxidative polym-
erization. The composites were prepared as given elsewhere 
[37]. Briefly, CX or CXA to pyrrole (w/w %98-Aldrich) 
and ammonium persulfate (98%, Sigma-Aldrich) (APS) to 
pyrrole ratios were set to 1:2 and 1:1, respectively. Sodium 
dodecyl sulfate (Sigma-Aldrich, sigmaultra 99%, SDS) was 
used as the surfactant. 0.1 g corresponding carbon xerogel 
was mixed in distilled water including SDS, and ultrasoni-
cated for 10 min. Then, stirred for about 2 h below 20 °C. 
Subsequently, after 5-min refrigeration, pyrrole was added 
into this solution. Then APS as the oxidant was dissolved in 
distilled water and then mixed with this solution in order to 
begin the polymerization reaction and stirred for 2 h under 
20 °C. The resulting carbon xerogel/PPy composites were 
filtered and washed with water and ethanol several times. 
Finally, obtained composites were dried in vacuum at 50 °C 
for 12 h (Fig. 1b).

3 � Characterization

3.1 � Physical characterization

FTIR (Perkin Elmer Spectrum One FT-IR spectrometer) 
device was used to determine the surface functional groups. 
Determination of the structural properties of the synthesized 
samples were obtained by nitrogen adsorption/desorption 
isotherm analysis with Brunauer, Emmett and Teller (BET) 
method. Micromeritics 3 Flex 3-port BET surface area and 
micropore size measuring device were used for surface 
area. SEM images of prepared carbon xerogels were taken 
with Zeiss Sigma 300 Instrument and SEM images of PPy 
composites were taken with Quanta FET 200 Instrument. 

Fig. 1   a Synthesis steps of carbon xerogels (CX, CXA), b synthesis 
steps of PPy/carbon xerogels (CX, CXA)



1290	 Carbon Letters (2021) 31:1287–1308

1 3

X-ray diffractometer (Rigaku Miniflex X-ray diffractom-
eter CuK∞, λ = 15406 Å) was used to analyse the crystal 
structure in between 5° ≤ 2θ  ≥ 70°. Thermal behavior of 
the materials were analysed by thermogravimetric analyzer 
(TGA, Netzch STA 400 PC Luxx Thermal analyzer) at a 
temperature range of 25–1300 °C with a heating rate of 10 
°C min−1 in an air atmosphere at a flow rate of 60 mlmin−1.

3.2 � Electrochemical characterization

Standard three-electrode electrochemical cell system (Pine 
instrument) connected with a potentiostat (Versastat 3) were 
used to determine the specific capacitances. Cyclic voltam-
mograms (CVs) were obtained using glassy carbon (GC) 
electrode, Pt wire and Ag/AgCl electrode as working, coun-
ter and reference electrodes, respectively, in 1M sulfuric acid 
(Merck) electrolyte. An ink composed of water, 1,2-propan-
ediol (Sigma-Aldrich) and 165 μl of Nafion solution (20%, 
Ion Power, Inc 1.5% wt) were used to prepare the working 
electrode. The amount of carbon xerogel or carbon xero-
gel/PPy composite on the electrode was 28 μgcm−2. Fresh 
and aged electrodes were used for CV experiments. Higher 
cycles that occur in supercapacitor systems (the continu-
ous charge–discharge state and, therefore, the temperature 
increase) will cause irreversible undesirable reactions and 
aging processes on the electrode surface. Fresh and aged 
electrodes are used in electrochemical tests to study these 
processes (aging mechanisms) and to improve and enhance 
the long-term stability of the electrode [38]. Fresh electrode 
data were recorded after 50 cycles at a scan rate of 50 mVs−1 
in the potential range of − 0.28–1 V and the aged ones were 
obtained by cycling the electrode for 1000 cycles. The poten-
tial range was changed in between − 0.28 to 0.3, − 0.28 to 
0.5, − 0.28 to 0.7, and − 0.28 to 0.9 V potential ranges at a 
constant scan rate of 50 mV s−1. The scan rate was changed 
as 5, 20, 50, 100 and 500 mVs−1. Electrochemical imped-
ance spectroscopy (EIS) were used to examine the capacitive 
and resistive behavior of the carbon xerogels via a potentio-
stat at 0.4, 0.65 and 0.9 V potentials in 1M H2SO4 (Merc) 
electrolyte at the frequencies in between 0.001 and 100 kHz 
and got the Nyquist plots for fresh and aged electrodes.

The specific capacitances were calculated from CV 
curves. The specific capacitances were calculated by the 
following equation:

where CS was the specific capacitance, I was the current, 
V was the potential window, ʋ was the scan rate, m was the 
mass of carbon xerogel or corresponding composite active 
material used in the working electrode [37].

(1)C
s
=

(

∫ (Idv)∕(�mΔV)

)

4 � Results and discussion

Table 2 shows the volumetric shrinkage and mass loss per-
centages of the synthesized materials. Volumetric shrinkage 
rates of cylindrical carbon xerogels as a result of ambient 
drying and pyrolysis were obtained by measuring the nar-
rowing of the diameter by the digital caliper. The mass loss 
rate before and after pyrolysis of the carbon xerogels were 
calculated by weighing with precision scales. During drying 
under ambient conditions, carbon xerogels with an R/C ratio 
of 100 have less volumetric shrinkage than carbon xerogels 
with an R/C ratio of 200. The increase in the R/C ratio, in 
other words, the decrease in the catalyst ratio resulted in an 
increase in the carbon particle size [39]. In this case, the 
diameter of the pores also increases. This also explains the 
decrease in the volume of the micropores and the increase 
in the volume of the mesopores. This situation is shown in 
the pore size distribution graphs given in Fig. 4. Since the 
mesopore walls are wider than the micropore walls, there 
will be much more precipitation in the mesopores during 
the drying process due to the surface tension of the solvents 
in the pore [26, 40, 41]. As a result of these collapses, volu-
metric shrinkage was higher in CX2 and CXA2 materials 
during ambient drying. The same volumetric shrinkage 
occurred in CX1 and CX2 materials during the pyrolysis. 
On the other hand, CXA1 and CXA2 materials have more 
volumetric shrinkage than CX1 and CX2. This difference is 
due to acetone remaining in the pores during the drying after 
solvent change. In the study of Jun et al. (different R/C, same 
R/F ratio), the results given in Table 2 were reached as aver-
age [42]. The same R/F ratio carbon xerogels after pyrolysis 
almost gave similar volume shrinkage and mass loss values.

In Fig. 2, FTIR results of the synthesized materials are 
given. As can be seen from Fig. 2, it is seen that there is no 
significant change in stretching vibration due to two changes 
in the R/C ratios. The peaks corresponding to -N bonds were 
formed with the addition of pyrrole to carbon xerogels which 
confirmed the successful synthesis of PPy composites due to 
the polypyrrole originated -N bonds. Peaks between 500 and 
1000 cm−1 wave numbers indicate the presence of polymer-
ized pyrrole [43]. C–N stretch is available at 1183 cm−1. 

Table 2   Shrinkage and mass loss percentages during drying and 
pyrolysis

Sample Volumetric shrink-
age after drying 
(%)

Volumetric shrink-
age after pyrolysis 
(%)

Mass loss dur-
ing pyrolysis 
(%)

CX1 28 22 51.5
CXA1 25 26.5 47
CX2 45 23 51.5
CXA2 44 29 56
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Bending of N–H occurred in the wavenumbers of 1705 cm−1 
and 1730 cm−1. Figure 3a, b shows the peak OH- stretching 
vibration at 3000 cm−1 and 3054 cm−1, respectively. These 
bonds indicate the presence of hydrogen bonds and adsorbed 
water in the pores of the carbon xerogels. The absorption 
peaks of methylene–ether (CH2–O–CH2) (it occurs due to 
polycondensation) were observed at a few peaks between 
approximately 1000 cm−1 and 1300 cm−1 (1050 cm−1, 1298 

cm−1, 1368 cm−1). 1482 cm−1, 1500 cm−1 wave numbers 
denote the CH2- and CH3- vibration [30, 44]. C = O and 
C = C were stretched at around 1690 cm−1 and 1725 cm−1 
[45]. FTIR graphs confirmed that hydroxymethyl derivatives 
of resorcinol are formed and these derivatives are condensed 
as methylene bridges. This situation shows that carbon xero-
gel synthesis takes place with the sol–gel method.

Fig. 2   FTIR graphs of a CXA1, CX1 and their polypyrrole composites, b CXA2, CX2 and their polypyrrole composites

Fig. 3   XRD results of a CXA1, CX1 and their polypyrrole composites, b CXA2, CX2 and their polypyrrole composites
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XRD analysis was carried out to examine the crystal 
structures of the synthesized materials. XRD graphs of 
the materials are given in Fig. 3. XRD results showed that 
carbon xerogels and composites were amorphous. Carbon 
xerogels show two diffraction peaks at approximately 23.50° 
and 43.80°, respectively, strong C (002) and weak C (101) 
at 2θ (Cu K) [30]. The peak located at around 22–23.5° cor-
responds to C (002) graphitized carbon. The intensity of the 
peak located at 43.8° shows weak graphitization of C (101). 
Especially for CXA1 and CXA2 C (101), the peaks are also 
quite wider. Wide peaks represent irregular carbon struc-
tures [18, 46, 47]. Polypyrrole composites give two peaks 
at approximately 22° and 26°, respectively, corresponding 
to (002) and (100) peaks [48]. Graphite-like carbon xerogel 
structures become less prominent by the addition of polypyr-
role when forming composites [18].

The pore size distributions, pore volume and N2 adsorp-
tion/desorption isotherms of carbon xerogels and their 
polypyrrole composites are shown in Fig. 4. According to 
the International Classification of Pure and Applied Chem-
istry (IUPAC), isotherms of carbon xerogels exhibit type-IV 
characteristics, indicating that carbon xerogels are typical 
mesoporous materials [49]. It shows a hysteresis show-
ing typical H2 characteristics. H2-type hysteresis is also a 
characteristic of spherical agglomerated systems, but such 
hysterisating solids do not have to a regular pore size distri-
bution and pore shapes. Polypyrrole composites of carbon 
xerogels also exhibit type II isotherm characteristics, indicat-
ing that carbon xerogels are also mesoporous materials. The 
hysteresis type also shows a hysteresis showing typical H1 
properties representing cylindrical pores [27].

The structural properties of the synthesized materials 
were determined by BET method. Surface areas, average 
pore diameters and pore volumes were obtained and given 
in Table 3. As the R/C ratio increases from 100 to 200, it 
appears to increase the specific surface area. The highest 
BET surface area belongs to CXA2 material with 312.3 m2 
g−1. When we look at Table 3, the surface area of the carbon 
xerogels with solvent exchange with acetone is higher than 
the carbon xerogels without solvent exchange. In this case, it 
is seen that precipitation occurs on the pore walls of the car-
bon xerogels obtained by drying under ambient conditions 
without acetone (without solvent exchange) under the effect 
of capillary forces (surface tension of water) [26]. In litera-
ture studies, different solvents are used for solvent exchange 
process. Kraiwattanawong et al. synthesized carbon xerogels 
with different R/C ratios using ethanol, T-butanol, toluene, 
water and acetone solvents. They examined the BET sur-
face areas of these synthesized xerogels [50]. By adding 
polypyrrole to carbon xerogels, the specific surface area 
of the composites was greatly reduced. This resulted in an 
increase in average pore diameters. This is due to the fact 

that polypyrrole covers the pores of the carbon xerogel struc-
ture as a thin film [36].

Surface morphology information of the synthesized mate-
rials was determined by SEM images. SEM images of four 
different carbon xerogel and their PPy composites synthe-
sized according to two different R/C ratios and the presence 
or absence of solvent exchange with acetone are given in 
Fig. 5. When we look at the zoomed images of the carbon 
xerogels, it is observed that the xerogels are in harmony 
with the BET surface areas. While the CX1, CXA1 and CX2 
xerogels have a denser morphology, the 3D porous spherical 
structure of the CXA2 xerogel is slightly more pronounced. 
When we look at the studies conducted, xerogel structures 
tend to be agglomerated as the R/C ratio decreases, and give 
a more spherical porous structure as the R/C ratio increases 
[27, 31, 51]. It is clear that PPy loading has taken place on 
the carbon xerogels. The increase in the R/C ratio increased 
the density of the PPy spheres on the xerogel surface. Sol-
vent replacement with acetone increased PPy loading in 
xerogels with the same R/C ratio. BET analysis results also 
support the morphological structure of the composite sur-
faces. With the loading of PPy to CXA2 (312.3 m2 g−1), 
which has the highest BET surface area, it is seen that there 
is a more complex network structure of PPy at the surface. 
It is clear that especially the diameter of PPy spheres coated 
on CXA2/PPy surface is considerably smaller compared to 
other PPy composites. This situation shows that the PPy film 
coating on the surface is more dense than other composites. 
Since the specific surface areas of xerogels other than CXA2 
are close to each other, the morphological images of PPy 
composites of these xerogels are similar. According to these 
images, the material with the smallest loading is for CX1/
PPy. This situation is explained by the TGA analysis results 
given in Fig. 6. In addition, some studies have been carried 
out on the effect of the textural differences of the surface 
on the structure of the PPy film coating. Babazadeh et al. 
synthesized PPy/TiO2 composites using different amounts of 
TiO2 by one-step in situ chemical oxidative polymerization 
method. They have shown that different TiO2 additives are 
highly effective on the morphology and textural structure 
of PPy and PPy/TiO2 composites. They observed that as 
the amount of TiO2 nanoparticles in composites increased, 
it turned into a nanoparticle-shaped shell in the PPy film 
coating [52]. Zhu et al. synthesized composites with easy 
surface-initiated polymerization (SIP) method using PPy 
and different carbon nanostructures. Depending on the struc-
tural properties of carbon nanomaterials, PPy reveals that it 
has been successfully coated in different forms (roughly or 
smooth) [53].

Thermogravimetric profiles of carbon xerogels and their 
PPy composites are given in Fig. 6. In general, little loss 
of mass was observed in all materials due to moisture loss 
at low temperatures and removal of organics [18]. Carbon 
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Fig. 4   N2 adsorption/desorption isotherms and pore size distributions of carbon xerogels and their polypyrrole composites, a CXA1, b CX1, c 
CXA1/PPy, d CX1/PPy, e CXA2, f CX2, g CXA2/PPy, h CX2/PPy
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xerogel structures exhibited thermal stability up to about 450 
°C and negligible mass loss was observed (5%). Mass loss 
was observed more rapidly and linearly in the temperature 
range of 450–1190 °C. It was observed that the thermal  as 

the surface area increases. The material with the highest 
thermal durability is CX1 (52.7 m2g−1) and the lowest one 
is CXA2 (312.3 m2 g−1). CX1 and CXA2 xerogels were 
completely combusted at 1190 °C and 875 °C, respectively. 
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Fig. 4   (continued)

Table 3   Structural properties of synthesized materials

Sample BET surface 
area (m2 
g−1)

Average pore 
diameter 
(nm)

Langmuir 
surface area 
(m2 g−1)

t-Plot exter-
nal surface 
area (m2 
g−1)

Average 
particle size 
(nm)

BJH surface 
area (m2 
g−1)

D-H surface 
area (m2g−1)

BJH pore 
volume (cm3 
g−1)

D-H pore 
volume (cm3 
g−1)

CXA1 83.9 3.471 197.676 65.282 71.532 52.977 51.434 0.054 0.053
CX1 52.7 3.537 132.839 46.263 113.791 33.257 32.302 0.035 0.034
CXA1/PPy 4.6 13.461 281.678 6.389 1315.650 7.757 8.588 0.040 0.043
CX1/PPy 10.9 7.621 97.464 15.114 550.603 11.313 13.772 0.046 0.049
CXA2 312.3 3.363 705.156 159.386 19.213 175.647 173.395 0.182 0.179
CX2 98.9 3.013 210.247 59.619 60.650 48.808 47.491 0.046 0.030
CXA2/PPy 26.0 7.782 298.420 37.618 230.570 40.777 60.736 0.075 0.091
CX2/PPy 13.1 5.616 154.430 21.467 459.334 14.690 18.062 0.024 0.028
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Fig. 5   SEM images of a CX1, 
b CXA1, c CX1/PPy, d CXA1/
PPy, e CX2, f CXA2, g CX2/
PPy, h CXA2/PPy
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The situation is different for PPy/carbon xerogel composites. 
PPy is a material that degrades at lower temperatures (at an 
average temperature of 450 °C) than carbonaceous materi-
als [54]. Therefore, the addition of PPy to carbon xerogel 
structures caused a decrease in thermal stability. In general, 
a negligible mass loss to PPy composites 230–260 °C (5%) 
was observed due to removal of the oxygen-containing func-
tional groups. Decomposition of the polymer took place in 
the 230–600 °C temperature range. The amount of PPy in 
the composites may differ between each other due to the 
different pore size distributions of carbon xerogels as shown 
in Fig. 4 and the BJH pore volume values given in Table 3. 
Pore size distributions and open pores affect the coating rate 
of PPy on xerogel surfaces. The increase in mesopore den-
sity increased the amount of coating PPy on the xerogel sur-
face. This is supported by the SEM images. At 600 °C, PPy 
is completely consumed in composites. The mass loss ratios 
at 600 °C of CX1/PPy, CXA1/PPy, CX2/PPy and CXA2/
PPy composites were 27%, 53%, 45% and 50%, respectively.

CX, CXA and their PPy composites were electrochemi-
cally characterized and capacitive properties were investi-
gated. Cyclic voltammograms (CV) of carbon xerogels and 
their polypyrrole composites in different potential ranges 
(0.3, 0.5, 0.7 and 0.9 V upper potential, 50 mVs−1 scan 
rate and H2SO4 environment) are given in Fig. 7 as before 
and after 1000 cycles. Looking at the CV curves of carbon 
xerogels before 1000 cycles, it can be seen that it exhibits a 
typical rectangular shape indicating ideal electrical double 
layer capacitive behavior. CXA2 xerogel exhibited the most 
distinctive rectangular structure due to its enhanced surface 
area properties (312.3 m2 g−1). In contrast, when we look at 
CV curves of carbon xerogels after 1000 cycles, it shows the 
presence of hydroquinone molecules (hydroquinone ↔ qui-
none + 2H+  + 2e−) adsorbed on the xerogel surface due to 
the carbon corrosion of the peak in the range of 0.5–0.7 V. 

This shows the coexistence of both electrical double layer 
capacitance and pseudocapacitance. With the addition of 
polypyrrole, CV curves have a more rectangular shape com-
pared to xerogels. This indicates that the pseudo-capacitive 
effect is more dominant in composite xerogel structures. 
This shows that the counter ions can easily penetrate and 
reach the inner surface of the polymer matrix and that the 
polypyrrole occurs in redox reactions other than ion migra-
tion due to its structure. These reactions occur with the pres-
ence of electrochemically active regions in the structure due 
to the N (nitrogen) source of polypyrrole [55]. Therefore, the 
supercapacitor combines two types of energy storage at the 
same time. One is pure electrostatic attraction (non-faradic 
reactions) between the ions and the charged electrode sur-
face, and the other is pseudocapacity (faradayic reactions) 
as a result of redox reactions caused by PPy [56]. Polypyr-
role may form channels between the mesopores that allow 
electrolyte access. These channels may become clogged if 
they form a thicker film on the carbon xerogel surface of 
the polypyrrole. In this case, there may also be reductions 
in the specific capacitance of the composite structures [57]. 
It was observed that the higher the potential upper limit, 
the higher the specific capacitance. This shows that ion dif-
fusion is higher with the decrease in resistance due to the 
potential increase in the electrolyte in the network structure 
of carbon xerogel.

Figure 8 shows the CV curves of the synthesized materi-
als at various scan rates from 5 to 500 mVs−1. Anodic cur-
rent peak and cathodic current peak are very weak at low 
scanning speeds. The peak potential difference increased 
with increasing scanning speed. It is observed that the 
peaks of composites are more prominent after 1000 cycles. 
In carbon xerogels, the specific capacitance is observed to be 
diffusion controlled. In PPy composites, it is observed that 
internal resistance is more effective with increasing scanning 

Fig. 6   TGA analysis of a CXA1, CX1 and their polypyrrole composites, b CXA2, CX2 and their polypyrrole composites
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Fig. 7   The cycling voltammograms of the synthesized materials at the different potential range (at a potential limit of 0.3, 0.5, 0.7 and 0.9 V, the 
scan rate of 50 mV s−1 and in the 1M H2SO4 medium)
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Fig. 7   (continued)
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Fig. 8   The cycling voltammograms of the synthesized materials at the different scan rates (5, 20, 50, 100, 500 mV s−1 and 1M H2SO4 medium)
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Fig. 8   (continued)
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speed. This may be because the concentration of ions at the 
electrode/electrolyte interface increases rapidly, and conse-
quently the diffusion rate is not sufficient for electrochemical 
reactions [22].

Specific capacitance values of materials synthesized 
using cyclic voltammograms at different scanning speeds (5, 
20, 50, 100, 500 mVs−1) and before–after 1000 cycles were 
calculated from the CV results and are shown in Table 4. 
Very small increases in specific capacitance of carbon xero-
gels occurred after 1000 cycles. The reason for this is the 
carbon corrosion that we explained in Fig. 7 [58]. It is seen 
that the three-dimensional structure of carbon xerogels and 
the polypyrrole conductive polymer interact very well (with 
the presence of electrochemical active areas as N source). As 
a result of this interaction, a composite structure that com-
bines the superior properties of carbon xerogel and polypyr-
role has been obtained. The conductive polymer matrix 
evenly covered the surface of the carbon xerogel, allowing 
rapid entry and exit of the ion, resulting in an increase in 
specific capacitance overall.

The specific capacitance values of carbon xerogel and 
polypyrrole composites with an R/C ratio of 100 increased 
with the effect of solvent exchange process with acetone. 
This situation showed that the solvent exchange process with 
acetone positively affect the BET surface areas and pore 
size distributions. SEM images also support this situation. 
Solvent exchange with acetone provided a more intense and 
homogeneous spread of the PPy film layer on the xerogel 
surface. In materials with an R/C ratio of 100, the highest 
specific capacitance belongs to CXA1/PPy material with 
440 Fg−1 at 5 mVs−1 and 1000 cycles.

Increasing the R/C ratio from 100 to 200 positively affects 
the specific capacitances of materials other than CXA2/
PPy. The specific capacitance of carbon xerogel subjected 
to solvent exchange treatment with acetone is twice that of 
carbon xerogel without solvent exchange. This is explained 
by the fact that the BET surface areas of the xerogels with 

an R/C ratio of 200 significantly increased with the effect 
of solvent exchange with acetone (CX2, 98.8 m2 g−1, 222 
Fg−1; CXA2, 312.3 m2 g−1, 442 Fg−1). Among PPy com-
posites, the highest specific capacitance value belongs to 
CX2/PPy composite. The specific capacitance of CX2/PPy 
composite reached to 599 Fg−1 at 5 mVs−1. Only the specific 
capacitance value of the CXA2/PPy composite unexpectedly 
decreased. This result is related to the film thickness of PPy 
coated on the surface of the CXA2 xerogel. Low or high PPy 
film thickness affects the capacitance negatively [36]. Apart 
from this, a decrease in the specific capacitance of PPy com-
posite structures was measured at the end of 1000 cycles. 
This shows that composites have poor mechanical strength.

There are some studies on carbonaceous materials and 
conductive polymers forming composites. Chen et  al. 
increased the specific capacitance from 92 to 180 Fg−1 by 
adding polyaniline to pure carbon [59]. You et al. increased 
the specific capacitance to 180 Fg−1 by adding pyrrole as 
a nitrogen source of graphene-carbon nanotube composite 
[55]. Lee et al., combining carbon nano spheres with mela-
mine as the N source, reached 191.91 Fg−1 specific capaci-
tance [60]. Samancı et al. increased the specific capacitance 
from 147 to 231 Fg−1 by adding polypyrrole to carbon aero-
gel structures [37].

Specific capacitance retention percentages of PPy com-
posites (CXA1/PPy, CX1/PPy, CXA2/PPy and CX2/PPy) 
at the end of 1000 cycles are shown in Table 5. Capaci-
tance retention values were realized at the highest 500 
mVs−1 and the lowest at 5 mVs−1. The material with the 
highest capacitance retention percentage at 5 mVs−1 is 
CXA2/PPy with 95.94%. The material with the lowest per-
centage of capacitance retention at 5 mVs−1 is for CX1/
PPy material as 75.78%. The capacitance retention per-
centage resulted in inversely proportional to the thickness 
of the PPy film coated in the composite. This situation can 
be explained by physicochemical analysis (BET, SEM and 
TGA). To obtain a high and stable specific capacitance in 

Table 4   The specific 
capacitance values of the 
synthesized materials at 
different scan rates for before 
and after 1000 cycles

Sample Specific capacitance (Fg−1)

Before 1000 cycles After 1000 cycles

scan rates (mVs−1) scan rates (mVs−1)

5 20 50 100 500 5 20 50 100 500

CX1 137 89 65 50 31 179 108 75 57 35
CX1/PPy 417 270 183 129 60 316 177 113 84 50
CXA1 203 130 94 73 43 207 146 101 79 55
CXA1/PPy 440 286 188 129 61 366 199 128 97 59
CX2 222 157 119 95 59 265 174 136 115 80
CX2/PPy 599 360 214 131 47 481 257 143 95 47
CXA2 442 378 335 304 243 577 477 426 392 300
CXA2/PPy 271 175 115 80 37 260 142 91 67 35
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composite xerogels, the specific surface area, pore char-
acteristics and film thickness (film microstructure) of the 
electroactive regions should be better controlled. The 
change in the microstructure of the polypyrrole film affects 
the penetration of the electrolyte into the pores and the ion 
mobility within the conductive polymer [57]. The thick-
ness of the PPy film should be at optimum values. Thin 
film causes easy deformation of PPy. Thick film, on the 
other hand, cuts the connection between PPy and carbon 
structure and causes an increase in internal resistance. In 
these two cases, the specific capacitance decreases.

There are many studies in the literature on polypyrrole 
composites made with different carbonaceous materials. 
Table 6 summarizes some of the studies on this subject. 
It was observed that PPy composites with carbon materi-
als generally have 80% and above capacitance retention 
for an average of 1000 cycles. Studies have shown that 
in long-term charging and discharging conditions, volu-
metric changes in the structure of PPy and consequently, 
decreases in electrical conductivity as a result of deteriora-
tion in the bond structure of PPy. The carbon xerogel and 
their PPy composites synthesized in this study show very 
good capacitance values compared to the studies in the 

literature. At the end of 1000 cycles, an average value of 
capacitance retention was measured.

Electrochemical impedance spectroscopy (EIS) is a 
widely used method of analysis to investigate the redox 
processes of electrode materials (about the capacitive and 
resistive behavior of the samples studied) and to evaluate 
their electronic and ionic conductivity. The power output 
capacity of the supercapacitor depends not only on the ionic 
mass transport speeds, but also on the series resistance (R) 
(depending on the frequency, that is to say, the rate of the 
process). R contains both electronic and ionic resistance [19, 
67]. Resistant behavior of the synthesized materials was 
determined by EIS experiments by applying 0.4, 0.65 and 
0.9 V potentials. Nyquist plots of CXA1, CX, CX2, CXA2 
and polypyrrole composites before and after aging are shown 
in Figs. 9, 10. As can be seen from Figs. 9, 10, there is 
not much change in the resistances after aging. There is not 
much change in the internal resistances of CX1A, CX, CX2, 
CXA2 and polypyrrole composites according to the change 
in the potentials. It was observed that carbon xerogel materi-
als responds to an impedance close to the ideal capacitor and 
it deviates from the ideal state with the addition of polypyr-
role and its internal resistance is increased [67]. Different 
tendencies were observed for different materials before and 
after aging. It was observed that both the structural proper-
ties of the material and the applied potential affect the inter-
nal resistances. Since the pore size distribution of xerogels 
applied with solvent change is better controlled, they have an 
improved surface area. The most important parameter affect-
ing performance in supercapacitors is the specific surface 
area of the material. In xerogels with suitable pore size, the 
resistance becomes even less, since the ion entry and exit 
into the pore is easier. It is seen that due to the increase in the 
potential ratio, both the increase of the ion input–output and 
the increase in the redox reactions into the composite struc-
ture, it is seen that there is a deterioration in the polymer 

Table 5   Specific capacitance retention percentages of materials syn-
thesized at different scanning rates at the end of 1000 cycles

Sample Capacitance retention (%)

scan rates (mVs−1)

5 20 50 100 500

CX1/PPy 75.78 65.55 61.75 65.12 83.33
CXA1/PPy 83.18 69.58 68.09 75.19 96.72
CX2/PPy 80.30 71.38 66.82 72.52 100
CXA2/PPy 95.94 81.14 79.13 83.75 94.59

Table 6   Some literature 
studies on the composites 
of polypyrrole made with 
carbonaceous materials

Sample Specific 
capacitance 
(Fg−1)

Electrolyte Scan rates 
(mVs−1)

Cycles Capacitance 
retention (%)

Ref.

3DOM CNT/PPy 472 1-M KCl 5 1000 89.9 [61]
PPy/F-MWNTs 240 2-M KCl 10 1000 93.49 [62]
PPY–MWCNT 310 0.5-M Na2SO4 2 1000 85 [63]
CNF@G/PPy 386 0.5-M Na2SO4 2 1000 84 [64]
PPy/CA 433 6-M KOH 1 500 – [43]
GO/CNF/PPy films 144.6 1-M H2SO4 10 5000 89 [65]
PPy/C ∼395 0.5-M Na2SO4 100 ∼500 100 [66]
RGO/PPy 424 1-M H2SO4 100 – – [56]
PPy/CA1 231 1-M H2SO4 50 1000 51 [37]
CX2/PPy 599 1-M H2SO4 5 1000 80.30 Our work
CXA1/PPy 440 1-M H2SO4 5 1000 83.18 Our work
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Fig. 9   Nyquist plots obtained at different potentials before and after aging of CX1, CXA1, CX2, CXA2 and composites with polypyrrole (at 0.4, 
0.65 and 0.9 V potentials in 1M H2SO4 solution)
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matrix. To obtain a high and stable specific capacitance in 
composites of carbon xerogels, the specific surface area, 
pore characteristics and film thickness (film microstructure) 
of the electroactive regions should be better controlled. The 
change in the microstructure of the polypyrrole film affects 
the penetration of the electrolyte into the pores and the ion 
mobility within the conductive polymer. 

5 � Conclusions

In recent years, carbonaceous materials are widely used, 
especially in energy storage systems such as supercapacitors. 
In addition, researchers are synthesizing composites with 
conductive polymers or transition metal oxides to improve 
the performance of carbonaceous materials. In this study, 
carbon xerogel structures, which are three-dimensional 

carbon materials, and their composites with conductive 
polymer polypyrrole were synthesized. Thus, the perfor-
mance of carbon xerogel and the mechanical strength of PPy 
were tried to be increased. Carbon xerogels were prepared 
using the sol–gel technique by drying under ambient condi-
tions. With this drying technique, it is carried out by drying 
under ambient conditions that are easy, low cost and safe. 
Polypyrrole/carbon xerogel composites were synthesized 
using chemical polymerization technique. As parameters in 
synthesized materials, R/C ratios, solvent exchange or not, 
and the effects of doping of polypyrrole on the structure and 
specific capacitance were investigated. In PPy composite 
synthesis, it has been observed that PPy film thickness is 
effective in the specific capacitance of the electrode. Among 
the synthesized materials, the highest specific capacitance 
values belong to polypyrrole/carbon xerogel composites. As 
a result of the analysis and calculations, it was found that the 

Fig. 10   Nyquist plots obtained at 0.9 V before and after aging of CX1, CXA1, CX2, CXA2 and their composites with polypyrrole
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highest specific capacitance belongs to CX2/PPy composite 
with 599 Fg−1 at 5 mVs−1. CX2/PPy composite has been 
found to have a capacitance retention rate of 80.30% at the 
end of 1000 cycles.
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