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Abstract
Recent years have witnessed remarkable development in the field of nanotechnology and it has been affirmed that carbon-
based nanomaterials have wide applications in agriculture, industrial, biomedical and environmental sectors. Due to dis-
tinctive physicochemical properties of the carbon nanotubes (CNTs), they have been extensively utilized in plant science as 
a growth promoter, and thus, could be a boon for biomass production of agricultural products. Studies suggest that CNTs 
help increase the plant’s ability to absorb water and essential nutrients, thereby increasing growth. Apart from this, CNTs 
have been scrutinized for their utilization in genetic engineering for the delivery of genes, proteins or drugs. However, the 
literature discloses mixed effects of CNTs exposure on plants like in inducing oxidative stress by generating reactive oxygen 
species (ROS). Moreover, studies concerning CNTs interaction with plant system is at a nascent stage and needs further 
investigations to explore the mechanisms influencing the growth and toxicity in plants. Therefore, this review attempts to 
highlight the current literature on CNTs (including both single walled and multi walled) exposure on plants. It also explores 
unresolved challenges, as well as recommendations to ensure sustainable development of CNTs while minimizing any pos-
sible adverse health impacts.
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1 Introduction

Nanotechnology, a new emerging field of science, permits 
advanced research in several areas. The use of nanoscience 
for the production of engineered nanomaterials like CNTs is 
a scientific breakthrough and could open up novel applica-
tions in the field of biotechnology, agriculture and others [1]. 
CNTs are hollow cylinders of carbon atoms that appear like 
rolled tubes of graphite formed in large bundles of single 
or multiple sheets of graphene to give single-walled carbon 
nanotubes (SWCNTs) and multi-walled carbon nanotubes 
(MWCNTs), respectively. It is a honeycomb lattice rolled 
on to itself, with lengths ranging from several hundred 
nanometers to several micrometers and diameters of a few 

nanometers (SWCNTs) to dozens of nanometers (MWCNTs) 
[2]. They are a large group of carbon-based, tube-like nano-
materials, which not only differ in length and the number of 
layers they consist of but also vary in types of impurity, con-
tents and surface modification. CNTs have become increas-
ingly popular due to unique features such as dimension, 
structure and topology. They have become one of the most 
studied and exploited engineered nanomaterials due to their 
outstanding electronic, mechanical, optical and structural 
properties. The applications of CNTs include biomedicine, 
nanoelectronics, bioengineering and mechanical engineer-
ing. Currently, the use of CNTs has been further extended 
to health care and agriculture to improve the quality of life. 
It can also be used in solving the environmental problems 
such as air, water and soil pollution where remediation tech-
nologies are limited [3, 4]. Some scientists observed that 
the L‐cysteine moiety in L‐glutathione is responsible for the 
susceptibility to oxidation by metallic impurities present in 
the carbon nanotubes. Their results These results assessed 
the toxicity of carbon‐nanotube materials [5].

Research and development in the field of agriculture is 
very essential because most of the living beings depend 
on it. Currently, there is tremendous research interest in 
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nanotechnology-based enhancement of agricultural products 
[6]. Carbon nanotubes can act as regulators of seed germina-
tion and plant growth. Report on MWCNTs has the ability 
to enhance the growth of tobacco cell culture (55–64%). 
They found that a correlation between the activation of 
cells growth exposed to MWCNTs [7]. Major emphasis of 
these studies is to enhance agricultural outputs, detection 
of diseases and their remediation processes [8]. Although 
researchers are keen to develop new techniques that could 
be suitable for plants to boost their native functions, they are 
also trying to increase the efficiency of plants to uptake more 
nutrients from the soil. This will ultimately lead to enhance-
ment in the overall increase of biomass and fruitition of the 
plants. In the agricultural sector, CNTs might have proper-
ties that are effective to crops which aids in, controlling the 
release of chemical fertilizers and support the nutrients that 
regulate plant growth which may enhance target activity [6, 
9]. In this respect, CNTs have a large potential to provide an 
opportunity for researchers of plant science and other field, 
to develop new tools for incorporation into plants that could 
augment existing functions and include new ones.

In recent years, CNTs have gained interest due to their 
possible applications in regulating plant growth [10]. Some 
researchers have investigated the effects of CNTs on plants 
and achieved significantly higher germination rates for 
seeds that contain CNTs [11]. It is suggested that CNTs 
help increase the plant’s ability to uptake water, which 
abets wholesome growth of the plant, including the roots 
and shoots, and proliferates branching. Plants have pro-
duced two times more flowers and fruits when grown in soil 
supplemented with CNTs [12]. Studies propose that CNTs 
can enhance the growth of plants and have an effect on the 
expression of genes that are essential for cell division and 
plant development [13]. These studies highlight the potential 
to use CNTs, and nanomaterials to enhance plant functions.

On the contrary, inhibitory effects of CNTs were also 
reported in a few literatures [14, 15]. The effect of CNTs 
on plants is mainly influenced by different plant species, 
their growth stage and the nature of the CNTs used. Also, 
their property to penetrate the cell wall and their interactions 
with intracellular structures owing to their small size and 
high surface area contribute to potential cellular and genetic 
toxicity by the induction of oxidative stress. Studies on the 
cytotoxicity of CNTs include a decrease in cell viability, 
potential cytotoxicity in Arabidopsis, delayed flowering, 
reduction in yield and cell death due to apoptosis in rice, 
reduction in root length in lettuce, wilting and curling of 
leaves, and pigment loss in red spinach [15]. Cell aggrega-
tion, condensation of chromatins, plasma membrane deposi-
tion, generation of ROS and DNA damage are some other 
cellular changes among them.

Several works also highlighted the effects of CNTs on the 
microbial diversity and their threat to the useful microbial 

population [16]. Under high concentrations, CNTs signifi-
cantly affect nutrient retention, decrease enzyme activity 
and microbial biomass, and degrade enzymes which are 
responsible for microbial biomass [17]. In a study [18], it 
was reported that CNTs may exhibit antimicrobial activity 
when they come in direct contact with bacterial cells, which 
leads to membrane mutilation and generation of oxidative 
stress.

Although the major objective of the use of CNTs is to 
increase agricultural productivity, concerns about possible 
side effects in ecosystems, human health, and agricultural 
industries need to be addressed.

2  Classification and characterization 
of carbon nanotubes

2.1  Classification

On the basis of structural composition, CNTs are mainly 
classified into three groups: stacked-cup carbon nanotubes 
(SCCNTs), MWCNTs and SWCNTs [19]. Jackson et al., 
[20] classified carbon nanotubes into three categories: 
MWCNTs, double-walled carbon nanotubes (DWCNTs) 
and SWCNTs. Their functional character changes with the 
change in structure and symmetry. Structures of carbon 
nanotubes are unique; they are hollow cylinders of graphite 
and possess hexagonally arranged carbon rings. Their end 
contains hexavalent arched structure while they are capped 
with the pentavalent ring [21]. They possess high tensile 
strength which resembles the property of graphene. As 
reported, CNTs remains stable even at very high tempera-
tures and maximize vibrational entropy [22].

SWCNTs have a diameter in the range of 0.4–3 nm and 
their length ranges in micrometer [23]. They are hexago-
nally arranged in a bundle and form crystal-like structures 
[23, 24]. They can be differentiated into different forms in 
accordance with the type of wrapping, chirality, zigzag, and 
armchair nature [23]. Properties of SWCNTs are almost the 
same when compared with MWCNTs except for its high 
tensile strength [25].

MWCNTs contain many concentric hollow cylinders with 
an interlayer spacing of 0.34–0.39 nm [23, 26]. The decrease 
in inner wall diameter depends on wall layers, that is inner 
wall varies from 0.4 mm to a few nm, while the outer one 
ranges from 2 to 30 nm [23]. The endings of MWCNTs are 
closed with dome-shaped half fullerene capping. They are 
arranged in a way that one carbon nanotube lies another. The 
diameter of the inner carbon nanotubes is generally smaller 
than the outer one. This arrangement is also known as a 
Russian doll arrangement. Yet another arrangement is Parch-
ment, in which one CNT is surrounded or rolled by multiple 
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copies of CNT. Findings also suggest that the outer wall 
protects the inner wall from chemical reactions [23].

2.2  Characterization

The synthesis procedures available for CNTs are chemical 
vapour deposition (CVD) [27], arc discharge (AD) [28] and 
laser ablation (LA) [29] of which CVD is the most popular 
technique because of well-aligned structure and the desired 
orientation of the layers [30]. Other synthesis methods for 
CNTs are also described in the literature [31–33]. The pro-
duced CNTs are impure due to the presence of different 
undesired byproducts (fullerenes, carbonaceous residues, 
amorphous carbon and catalyst impurities). This led to the 
intensification of research on the purification of the syn-
thesized CNTs [34–39]. Conversely, in this modern era of 
highly innovative technology driven processes, it remains a 
challenge to synthesize high purity CNTs specific in length 
and diameter.

Since the available synthesis procedures for CNTs do not 
ensure the homogeneity of the product in reference to their 
length and diameter, numerous efforts have been made to 
characterize CNTs obtained from different synthesis proce-
dures. It should be noted that the toxicity of nanoparticles 
significantly depends on their morphology [40]. Due to the 
very small size of the CNTs highly sophisticated techniques 
are employed to assess their characteristics and morphology. 
Moreover, their bundle and aggregate structure make their 
use difficult. For application purposes, it must be dispersed 
either in water or in any another solvent to enhance its prop-
erty. This can be achieved through the process of oxidation, 
sonication, centrifugation and ultrasonication combined 
with dispersing agents. As the concentration of CNTs in the 
initial phase is altered during the disaggregation processes 
and the final concentration in the liquid phase is lower than 
that initially used for preparation. It is important to study 
the characterization to determine the concentration of the 
dispersed CNTs in water. The techniques used to achieve the 
goal are outlined in Table 1, that can be broadly classified 

into four categories: microscopic and diffraction, spectro-
scopic, thermal, and separation techniques (Table 2; Fig. 1). 

2.3  Role of CNTs in plant growth

Interaction of CNTs with plants is a complex phenom-
enon which causes several physiological and morphologi-
cal changes in the plant species [58]. These changes are 
influenced by the size, concentration, type of CNTs as well 
as type of plant species and life stages. Several research-
ers attempted to study the uptake and translocation of the 
CNTs in plants and put forward a strategy dependent on the 
ratio of the size of the CNTs to the pore size of the cell wall. 
Methods like ultrasonic-assisted chemical oxidative cutting, 
the introduction of carboxylic groups on CNTs, to make it 
more soluble, are also used to increase the uptake by plants 
(Figs. 2, 3). 

2.4  Effect of single‑walled carbon nanotubes 
(SWCNTs)

In recent studies, increasing evidences suggest that SWC-
NTs increase plant growth and development. According to 
Yan et al. [59] SWCNTs have the ability to accelerate the 
seminal root growth in maize plants by influencing the gene 
expression. Similar studies on rice seedlings revealed that 
SWCNTs promoted growth by upregulating the expression 
of genes related to root growth [60]. Results also suggested a 
direct correlation between leaf development and the expres-
sion of the related genes in response to the CNTs. The posi-
tive effects of CNTs were also observed on the vegetative 
growth of the plant including increased leaf growth, chlo-
rophyll contents and enhanced photosynthetic rates. Canas 
et al. [61] studied the effect of exposure of functionalized 
and non-functionalized SWCNTs on root elongation of 
six crop species that included cabbage, carrot, cucumber, 
lettuce, onion and tomato. Enhanced root elongation and 
increase in root number were reported in onion and cucum-
ber plants.

Table 1  Characterization of carbon nanotubes using different analytical techniques

Characterization Technique Goal

Microscopy and Diffraction Tech-
niques [41–44]

Morphological analysis of internal structure (diameter, number of layers and distance between them),
Morphological analysis of bulk samples

Spectroscopic Techniques [45–51] Purity and presence of by-products, diameter distribution, (nm) chirality,
Purity, functionalization by attaching functional groups to the sidewall,
Dispersion efficiency, diameter and length distribution, purity, Size, dispersion efficiency, (n, m) chirality,
Elemental composition, functionalization (covalent and non-covalent)

Thermal Techniques [52–54] Purity and presence of by-products, quality control of synthesis and manufacture processes
Separation Techniques [55–57] Purification, separation by size (length, diameter and cross-section)

Fractionation by size (length)
Separation by chirality, electronic type, length and enantiomeric identity
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Table 2  Effects of MWCNTs on different plant species

Plant species Concentration Effect References

Wheat, maize, peanut and garlic 50 μg/mL Increase in root and shoot length
Increase in biomass
However, low concentrations of oxidized MWCNTs were more effective

[7]

Maize 20 mg/L Enhanced germination rate at low concentrations; Improved water absorption, 
nutrient uptake (essential nutrients like Ca and Fe) and biomass of plant

[6]

Tomato 40 μg/mL Increased growth, biomass, and uptake of nutrient elements (K, Ca, Fe, Mn and 
Zn)

[75]

Barley, soybean and corn 50–200 mg/L Increased seed germination and growth, hence overall biomass of the plant; 
increased root length

[74]

Rice 5–20 mg/L Penetrates cell wall and cell membrane, promotes seedling growth, and increases 
endogenous level of phytohormone

[60]

Mustard 2.3–46 mg/mL Increased moisture content of seeds and water absorption [76]
Common gram 6 mg/L Increases root and shoot length and water uptake [73]
Cabbage 10–60 mg/L Increased growth under salt stress conditions; Enhanced aquaporin transduction [71]
Date palm 0.05–0.1 mg/L Increased callus fresh weight; increased germination rate, shoot length, leaf 

numbers, root number and length; Enhanced mineral uptake
[77]

Tobacco 0.1–500 mg/L Increased growth rate and facilitate water transport [65]

Fig. 1  Schematic diagram 
showing CNTs; their characteri-
zation and applications in plant 
system

Fig. 2  Schematic diagram 
showing the role of CNTs in the 
plant at various stages
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A study on seed germination and seedling growth of sal-
via, pepper and tall fescue revealed that SWCNTs increased 
seed germination rates in the plants and the best SWCNT 
concentrations for seed germination and seedling growth for 
salvia and tall fescue were at 30 mg/L of SWCNT and at 
10 mg/L for pepper [62]. The outcome of yet another study 
confirmed, that the CNTs (10–40 mg/L) improved the ger-
mination rate of tomato and onion seedlings. Further, there 
was increase in the dry weight of tomato and radish shoots. 
This study also revealed that the effectiveness of CNTs may 
depend on the concentration of CNTs and particular plant 
species [63].

Similar studies [64] on Rubus adenotrichos, using SWC-
NTs-COOH and SWCNTs-Fe resulted in elongation of roots 
and shoots, and enhanced cell metabolism. Khodakovskaya 
et al., [65] confirmed the increase in biomass in tobacco 
plants when treated with SWCNTs. In a separate study 
Mohammad et al., [66] used SWCNTs functionalized with 
quantum dots (QDs) on tomato seeds and found that addition 
of CNTs helped in increasing the chlorophyll content, and 
the total weight and height of the root/shoot system.

The SWCNTs also influences the reproductive growth in 
plants which are highlighted by the study on tomato plants 
by significantly increasing the flower and fruit formation. 
Other effects were increased in plant height, chlorophyll 
content and the total weight of the root system [12].

A study investigated, the role of SWCNTs under drought 
stress on Hyoscyamus niger seeds and it was found that 
SWCNTs helped in providing resistance against drought 
stress by enhancing water uptake and activating the plant 

defense system [67]. Another study on SWCNTs treated soy-
bean seeds showed increased tolerance of seeds to drought 
stress. Apart from this, there was increase in the activity 
of catalase, superoxide dismutase etc. which may play an 
important role under stress conditions [68].

Due to the unique properties of SWCNTs, it can easily 
penetrate the cell wall and deliver chemicals to cells. This 
aspect was further explored to facilitate the delivery of DNA 
to the cells. Experiments performed by Corredor et al. [69] 
in Tobacco and Catharanthus cells evidenced that the SWC-
NTs translocate through the cell wall and the cell membrane. 
Wu et al., [70] investigated the cellular delivery of DNA 
by SWCNTs and observed that they were protected from 
enzymatic cleavage. They targeted a specific mRNA, which 
increased the capability of self-delivery and intracellular 
biostability when compared to free DNA probes.

2.5  Effect of multi‑walled carbon nanotubes 
(MWCNTs)

Research on MWCNTs role in the increase of plant growth, 
seed germination, biomass etc. has been underway since the 
last decade. Even the role of CNTs in stress conditions was 
explored highlighting the fact that MWCNTs can enter into 
the seeds of broccoli and facilitate water uptake in plants 
thereby increasing the growth [71]. Further, it was observed 
that MWCNTs induced changes in lipid composition, rigid-
ity and permeability of the root plasma membranes and ulti-
mately, increased aquaporin transduction under salt-stressed 
conditions [72]. Furthermore, a study revealed the non-toxic 
nature of water-soluble CNTs that helped in enhancing the 
growth of roots, shoots and branching in gram plant (Cicer 
arietinum) [73]. This property of the CNTs may prove useful 
in optimum utilization of water in areas face water scarcity.

Research was also carried out on the effects of MWCNTs 
on seed germination, growth and the development of three 
important crops (barley, soybean, corn). Reverse transcrip-
tion polymerase chain reaction (RT-PCR) analysis revealed 
that the expression of genes encoding water channel pro-
teins increased in soybean, corn, and barley seeds coated 
with MWCNTs compared with control [74]. A similar study 
on wheat, maize, peanut and garlic depicted the beneficial 
effects of functionalized MWCNTs (in a dose-dependent 
manner) on root and shoot growth, biomass and number of 
leaves in all the plant species [7]. The ability of MWCNTs 
to penetrate the seat coat by forming new pores helped in 
water uptake resulting in the increase of the germination 
rate. Additionally, it has been also observed that CNTs have 
the capacity to penetrate plant seed coat [11]. The germina-
tion rate and plant growth were found to be significantly 
higher for seeds that germinated on medium containing 
CNTs (1040 g/mL) compared to control.

Fig. 3  Implications of CNTs in the plant system
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Tiwari et al., [75] investigated the effect of MWCNTs 
on tomato seedlings and found that at the concentration 
of 40 μg/mL, absorption of essential nutrient elements 
increased, which resulted in enhanced growth and biomass 
of the plant. In another study on tomato, it was found that 
the production of flowers and fruits were twice as compared 
to control [12]. Study on maize plant [3], demonstrated the 
effect of pristine MWCNTs which includes enhanced uptake 
of water and essential nutrients leading to increase in bio-
mass of the plant. This property of the CNTs may prove to 
be beneficial for plants growing in nutrient-deficient soil.

Uptake and accumulation of MWCNTs can alter the mor-
phology and biochemical characteristics of Onobrychis are-
naria seedlings. Effect of the engineered nanomaterial con-
taining MWCNTs (concentration 100 μg/mL and 1000 μg/
mL), on the growth of O. arenaria seedlings suggested that 
MWCNTs have a capacity to penetrate the cell walls as they 
accumulate in roots and translocate to the leaves [78].

Larue et al. [79] studied the impact of CNTs on seed ger-
mination, root elongation, plant biomass, evapotranspiration, 
chlorophyll in wheat and rapeseeds. It was observed that 
less than 0.005% of the applied MWCNT dose is taken up 
by plant roots and translocated to the leaves. Further, there 
was no observed effect on photosynthetic activity or oxida-
tive stress in plant.

A study on the effect of MWCNTs on germination and 
seedling growth of Cichorium intybus L inferred that even 
though, there was no observed effect on seed germination or 
plant growth, there was increase in weight of seeds treated 
with MWCNTs [80].

2.6  Implications in plant system due to use of CNTs

The toxicity of CNTs in plants has been highlighted in sev-
eral studies. However, few researchers reported that inter-
action of CNTs with plants manifested toxicity effects, 
although other studies pointed at the positive correlation or 
no effect in plants.

Several studies revealed various factors viz. concentra-
tion of CNTs, particle size (surface area), plant type, growth 
stage, growth media etc. that may contribute to toxicity in 
plants [81, 82]. Further, characterizing CNTs is an essential 
component of ecotoxicity testing and can include evaluat-
ing the starting materials, its characteristics during ecotox-
icity tests and the extent to which the CNTs altered during 
the test. Investigations comparing the toxicity of CNTs to 
bulk hard carbons should consider potential differences in 
surface area as a possible variable to explain differences in 
toxicity. CNT is transpiring novel nano-carbon fertilizer in 
the agricultural field, but at the same time it can cause del-
eterious effect on soil microbial density, composition, and 
population.

A study involving the MWCNT and cotton cellulose 
nanofibers toxicological effects on freshwater green microal-
gae Chlorella vulgaris was conducted [83]. It was observed 
that the uptake of MWCNT and cotton CNF by C. vulgaris 
led to reductions on algal growth and cell viability [84–86].

Wang et al. [87] observed that the carboxylated multi-
walled carbon nanotubes cause biochemical and subcellular 
damages in leaves of broad bean (Vicia faba L.) seedlings 
under combined stress of lead and cadmium. The study 
mentioned the deleterious effects i.e. oxidative damage in 
the leaves due to combined use of MWCNTs-COOH with 
Pb and Cd while no such effect was observed in the leaves 
treated with MWCNTs-COOH or Pb and Cd individually. 
This study concluded that the combination of MWCNTs-
COOH with heavy metals may cause phytotoxicity and 
hence, health risks among individuals.

The application of SWCNTs to rice resulted in the 
delayed flowering and decreased yield of this essential crop 
[88] whereas, a study presented a genotoxic potential in 
Arabidopsis [15] protoplasts relative to their concentration 
and size. Other cellular changes observed due to SWCNTs 
application were cell aggregation, condensation of chro-
matins, plasma membrane deposition and  H2O2 accumula-
tion in rice and Arabidopsis. A similar study was also car-
ried out in Arabidopsis using MWCNTs which resulted in 
reduced cell viabilities and dry weight decreased cell chlo-
rophyll content, and superoxide dismutase activities.

Upon their (MWCNTs) treatment to Amaranthus tricolor, 
several morphological and physiological changes were 
observed in the treated leaves like removal in red pigment 
of leaf, necrosis, curling, and wilting. The effects were not 
only limited to leaves there was concentration-dependent 
reduction in root-shoot height, root-shoot weight, and leaf 
numbers. Also, cell function was impaired due to enhanced 
electrolytic damage, generation of ROS and increased 
apoptosis [14]. Researchers reported reduced germination 
percentage in Cichorium intybus [80], reduced biomass in 
Zucchini [89] decrease in root lengths in lettuce plants [90] 
and DNA damage in Allium cepa [91].

Several significant negative effects related to translo-
cation and uptake were reported in different plant species 
when treated with MWCNTs. Reduction in growth, uptake 
and translocation was observed in the soybean plants when 
treated with MWCNTs, 10–50 mg/L [92]. In a study the 
impact of MWCNTs and accumulation behavior of contam-
inants in mustard plants were observed. The study found 
that the permeability and transportability of MWCNTs were 
intact in mature mustard plants while there was an enhance-
ment in contaminant accumulation [93]. Miralles et al., 
[94] explained the toxicity and uptake of industrial-grade 
MWCNTs and their impurities in Alfalfa and Wheat. They 
found phytotoxicity in both seed germination and seedling 
growth. Similar studies highlighted the fact that CNTs were 
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acting as contaminant carriers and eventually, translocating 
the contaminants within edible parts of the crops.

In a study [95], suspension rice cells were used with 
MWCNTs (Size:10–30 nm and concentration: 20,40 mg/L) 
that led to several negative effects like condensed chromatin, 
detachment of cell membrane from cell wall, generation of 
ROS and decreased cell viability and leading to cell death. 
In yet, another study the toxic effects of MWCNTs on rice 
cells were reported [96]. Scanning electron microscope 
results revealed that cell density decreased with increase in 
MWCNT concentration. It was concluded that the MWCNTs 
have direct contact with rice cells and produce an unfavour-
able effect on rice growth.

Stampoulis et al. [89] focused on the assay-dependent 
phytotoxicity of nanoparticles on plants. The study investi-
gated the application of nanomaterials viz. MWCNTs, Ag, 
Cu, ZnO, Si and their response towards seed germination, 
root elongation, biomass, etc. The hydroponic assay trial 
showed that after 15 days, the biomass of plants exposed to 
MWCNTs was reduced to 60–70%.

In addition to this, no observed growth effects on seed 
germination were reported by few researchers in several 
plant species like Alfalfa, wheat [94], mustard, black lentil 
[97], barley, maize, soybean [74] and lettuce [98]. Another, 
study confirmed that there was no effect of MWCNTs on 
seed germination on different plant species (rape, radish, 
ryegrass, lettuce, corn and cucumber) [90]. Others empha-
sized the accumulation of CNTs in various parts of the plant, 
changes in gene expression and their involvement in various 
biochemical changes as discussed earlier.

Therefore, with the development and application of CNTs 
in the plant system the potential hazards related to this is 
receiving greater attention [40]. However, this field needs to 
be explored further prior to arriving at any conclusions about 
the effects of CNTs. Currently, studies are sparsely related to 
the mechanisms of CNTs toxicity in plants and hence, more 
focused approach is needed.

3  Conclusion and future prospects

This review explored recent developments in plant science 
that focuses on the role of CNTs in plant growth and devel-
opment and also on plant mechanism. Nanomaterials, like 
CNTs, due to several advantageous properties i.e. small 
size, high surface area, ability to penetrate cell wall etc. 
provide promising possibilities for future studies. On the 
one hand, they show a great potential to enhance seed ger-
mination, plant development and various plant physiological 
processes. On the other hand, several studies also reported 
the deleterious effects of CNTs in the plant system. Cur-
rently, studies concerning CNTs interaction with plant sys-
tem is at a nascent stage and needs further investigations to 

explore the mechanisms influencing the growth and toxicity 
in plants. There are several gaps in our present knowledge 
about CNTs than there are certainties and more research is 
needed in the following proposed areas:

• Investigations concerning internal mechanisms (toxicity 
and genotoxicity) in plant system.

• Outcome of CNTs in the plant system and their role in 
the food chain.

• Identification of target plants and detailed analysis of 
cytotoxicity: toxicity study covering the life cycle of the 
plant.

• Toxicity studies related to soil media and microbial popu-
lation.

• Need to explore other toxicity indicators in plants for 
instance biological markers etc.

• At the genetic level, extensive study related to the expres-
sion of genes.

• Thorough risk assessment of all nanomaterial-integrated 
products.

• Phytoremediation.
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