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Abstract
In this study, graphene was rapidly grown by chemical vapor deposition using a liquid cell for supplying methanol as a car-
bon source of graphene. To realize the rapid growth, methanol which is carbon-contained organic solvent was used instead 
of methane gas, a widely used carbon source for graphene growth. The graphene grown with the growth time as a variable 
was transferred to a SiO2/Si substrate with an oxide thickness of 300 nm to confirm whether it was grown with full coverage 
with an optical microscope. The results confirmed a full coverage in 0.5 min of growth. The Raman spectra also confirmed 
the G-peak position at 1585.0 cm−1 and an intensity ratio of 2D/G at 2.3 or higher. Concerning electrical transport charac-
teristics, at an induced carrier density of 1 × 1012 cm−2, the hole (µh) and electron (µe) mobilities were 1524 cm2 V−1 s−1 and 
1528 cm2 V−1 s−1, respectively. Thus, our study confirmed that high-quality, large-area graphene can be grown within 0.5 min.
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1  Introduction

At the first derivation of the characteristics of graphene by 
separation from graphite [1], its remarkable electrical [2–4], 
thermal [5], optical [6, 7], and mechanical properties [8, 9] 
were investigated globally. In addition, many efforts have 
been made to industrialize high-quality graphene for using 
its superb properties [10–12]. The chemical vapor deposition 
(CVD) method is one of the potential methods for mass pro-
duction of graphene [13–17], and it is easy to fabricate large-
scale graphene for transparent electrodes [13, 18, 19], solar 
cells [20, 21], and in other applications [15, 22]. In addition 

to experimental studies, theoretical studies involving DFT 
simulated the phenomenon occurring at the atomic level 
during the growth of graphene or the formation of doped 
graphene in CVD [23, 24]. It has the advantage of being able 
to understand the growth of graphene with various charac-
teristics by perturbation of growth conditions. According 
to Liu [25], to achieve industrialization, graphene’s thick-
ness uniformity, lateral size, low defect density, yield, and 
low cost are required. In the case of CVD graphene, there 
are two challenges. One is the yield, and the other is the 
cost. Concerning cost, the constant consumption of catalytic 
metal, which disappears in the transfer process and high-
power consumption by heating the catalytic metal to almost 
1000 °C to the synthesis of high-quality graphene, must be 
solved. The consumption of catalytic metal can be solved by 
adopting the electro-delamination transfer process in which 
catalytic metal and graphene are separated without any dam-
age to the catalytic metal [26–28]. Furthermore, batch-to-
batch (B2B) or roll-to-roll (R2R) structure represent one 
step further to the mass production [19, 29]. In the case of 
the consumption of power, there are two options. One is to 
lower the growth temperature [30], and the other is to reduce 
the synthesis time [29].

To improve the productivity of CVD graphene, we used 
methanol, which has a chemical formula similar to that of 
methane gas commonly used in chemical vapor deposition of 
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graphene, but a different phase, which is an organic solvent 
as a precursor. As a result, we succeeded in synthesizing 
the graphene growth rate over ten times faster than that of 
methane gas [31, 32].

2 � Experimental

2.1 � Graphene growth

Graphene was grown via thermal–chemical vapor deposi-
tion (T-CVD) using a copper foil as a catalytic substrate. 
18-µm-thick single-side-polished copper foil was selected 
for this experimental. As shown in Fig. 1b, graphene growth 
was segmented into four sections. First, T-CVD was heated 
to 1000 °C for 30 min with 100 sccm argon as a carrier gas. 
Before supplying the carbon source for growing graphene, 
hydrogen gas was flowed at 50 sccm for 10 min to acti-
vate the copper foil surface by eliminating the copper oxide 
and other contaminants. The graphene growth condition is 
changed by controlling the growth time. Methanol was sup-
plied for 0.5 min, 1 min, and 5 min using the liquid cell and 
the gradient of partial pressure between the liquid cell and 
the main chamber, as shown in Fig. 1a. During this process, 
the vacuum condition in the T-CVD chamber was main-
tained at 140 mTorr, which implies that the same amount of 
methanol was supplied with the methane supply case [31]. 
The catalytic copper foil was rapidly cooled by removing 

the heating element after finishing the graphene growth to 
prevent the dewing of additional carbon.

2.2 � Graphene transfer

To transfer graphene onto the SiO2/Si substrate, graphene/
Cu foil after backside etching was coated by poly(methyl 
methacrylate) 950 K C4 from MicroChem using a spin-coat-
ing technique. The PMMA/graphene/Cu foil was placed in 
0.15 M ammonium persulfate (APS) solution to etch the Cu 
foil from the sample. The separated PMMA/graphene film 
was moved onto the SiO2/Si substrate after rinsing several 
times on DI-water to prevent contamination of etched copper 
and residual etchant. Finally, the PMMA on the graphene 
was eliminated by acetone.

2.3 � Characterization

To determine the role of growth time, graphene was char-
acterized using an optical microscope. Through the optical 
microscope image, the coverage of graphene was investi-
gated. Raman spectra were measured at ten points for each 
sample using a Renishaw inVia Raman spectroscope with 
a 514 nm laser source. The electrical properties of gra-
phene were determined via a graphene-field effect transis-
tor (G-FET). The source–drain channel of the G-FET was 
3.5 µm × 3.0 µm, and a back-gate was chosen with a 300-nm 
SiO2 gate oxide by electron beam lithography. The electron 
and hole mobilities of graphene depending on the growth 

Fig. 1   Schematic illustration of 
T-CVD setup and conditions for 
graphene growth using metha-
nol. a Scheme of T-CVD with 
gas supply using a liquid cell, b 
temperature profile and supply-
ing gas as a function of time
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time were calculated from the G-FET’s operating current 
response of the gate voltage change measured using Keithley 
236 and 237 source-measure units in the vacuum probe sta-
tion below 10–5 Torr.

3 � Results and discussion

First, to confirm the growth state of graphene, graphene 
transferred to a 300 nm SiO2/Si substrate, which is the easi-
est to optically distinguish graphene, was confirmed using 
an optical microscope [33]. Figure 2a shows the graphene 
grown on the catalytic copper foil before transfer and Fig. 2b 
the transferred graphene coverage on the SiO2/Si substrate. 
The minimum time required for full-covered graphene 
growth was confirmed by the transferred image in Fig. 2a, 
as graphene was synthesized on the entire surface of the 
substrate within 0.5 min of the growth time.

The quality of the graphene samples according to the 
growth time was evaluated by measuring the position and 
shape of the G and 2D peaks using Raman spectroscopy. 
Figure 3c shows representative Raman spectra, which are 
normalized by the G peak intensity according to the growth 
time of the graphene grown by methanol. All graphene sam-
ples had a distinctive G-peak at approximately 1584 cm−1 
and a 2D peak at approximately 2680 cm−1, confirming that 
typical CVD graphene grew well [34, 35].

To further evaluate the quality of the graphene sam-
ples according to the growth time, a closer analysis of 
the Raman spectra was performed by Lorentz fitting of 
each peak. As shown in Fig. 3a and b, the G-peak posi-
tions were 1585.0 cm−1, 1584.6 cm−1, and 1586.4 cm−1 at 
growth times of 0.5 min, 1 min, and 5 min, respectively. 
Considering that the G peak position of CVD graphene 
appeared at approximately 1583 cm−1 [34–36], the dis-
turbance occurred in phonon vibration due to oxygen- or 
hydroxyl-related components present in methanol used as 
a carbon source, causing blue-shift assumed to have hap-
pened. This result is in line with the electrical transport 
result, which will be described later.

As shown in Fig.  3a and b, the 2D peak positions 
of each graphene were 2679.6 cm−1, 2677.6 cm−1, and 
2681.6 cm−1 at 0.5 min, 1 min, and 5 min, respectively. 
As shown in Fig. 3b and d, the value of the full-width at 
half-maximum (FWHM) of the 2D peaks [37, 38] is 34.1, 
33.9, and 34.0, around 2677 cm−1 of the CVD graphene 
in a preliminary study grown with methane [31]. It was 
confirmed that graphene was well synthesized with metha-
nol as a source by having a value similar to that of the 2D 
peak position near 2700 cm–1 and the FWHM value of 
approximately 31. The intensity of 2D/G (I2D/G) according 
to the growth time was 2.3 at 0.5 min and 2.2 at 1 min, 
which was higher than 2.0; however, it was shown at 1.7 
at 5 min. As the growth time was extended to the methanol 

Fig. 2   Optical microscopic images of as-grown and transferred graphene. The growth times of a–c are 0.5 min, 1 min, and 5 min, respectively
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supply, the growth of monolayered graphene reflected in 
I2D/G slightly decreased.

These results can be confirmed by evaluating the electri-
cal transport characteristics of the graphene field-effect tran-
sistor (G-FET) made of graphene ribbon (3.5 µm × 3.0 µm) 
as a channel [4, 39]. Figure 4a shows the back-gated G-FET 
for electrical transport measurements. It was measured by 
source-drain electrodes at both the right and left ends, and 
heavily P-doped Si with a gate insulator (300 nm SiO2) was 
used as the gate electrode. Figure 4b represents a graph of 
the current between the source and drain electrodes accord-
ing to the gate voltage of the G-FET made of graphene 
according to each growth time. Because of the hydroxyl in 
ethanol, all graphene exhibited P-doped properties, and the 
slope of the current over voltage had a similar slope in gra-
phene grown at 0.5 min and 1 min but tended to decrease 
rapidly in samples grown at 5 min. More specifically, it was 

confirmed that 0.5 min and 1 min grown graphene materi-
als have a high current density and Dirac points (VDirac) of 
53.5 V and 79.5 V, respectively [39]

Meanwhile, graphene grown for 5 min had a Dirac point 
of 45 V. The carrier mobility of each sample was calculated 
using Eq. (1) according to the Drude model from the meas-
ured source–drain current (channel current) as a function of 
gate voltage.

In Eq. (1), 11.5102 nF/cm2 was applied to Cox as a capaci-
tance of 300 nm SiO2.

When the induced car r ier concentration was 
1 × 1012  cm−2, the graphene grown for 0.5  min was 
1528  cm2  V−1  s−1 for electron mobility (µe), and 
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Fig. 3   Raman spectra of graphene depend on the growth time. a 
G-peak (left Y-axis) and 2D-peak (right Y-axis) position variance 
with increasing growth time. b Summary of main peak positions for 
each growth time of 0.5  min, 1  min, and 5  min. c Typical Raman 

spectra of 0.5 min, 1 min, and 5 min growth graphene. Whole peaks 
are normalized by each G-peak intensity. d FWHM of 2D-peak (left 
Y-axis) and intensity ratio of 2D/G (right Y-axis)
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1524 cm2 V−1 s−1 for hole mobility (µh), 1 min growth 
graphene was measured to be 1697 and 1590 cm2 V−1 s−1, 
respectively [3, 40, 41]. In the 5 min growth of graphene, 
µe and µh were measured as 794 and 718 cm2 V−1 s−1, 
respectively. As confirmed in the Raman spectra, to 
decrease I2D/G as the growth time was extended, the car-
rier mobilities were lowered by extending the growth time 
due to the relatively increased defect site as the growth 
time increased. The 0.5 min and 1 min growth graphene 
materials have a similar level of carrier mobility; thus, it 
was confirmed that the quality of the graphene grown at 
that time was similarly grown at high quality, as shown 
as Raman spectra. Electrical transport characteristics 
were measured at room temperature after heat treatment 
at approximately 180 °C for 5 h in a vacuum to eliminate 
the influence of moisture and oxygen from the graphene, 
as much as possible. The grown graphene was hole-doped 
with VDirac of 53.5 V, 79.5 V, and 45 V.

4 � Conclusion

In this study, graphene was grown using the CVD method. 
Synthesis of large-area graphene was rapidly achieved 
within 0.5 min of growth time using hydroxyl-bonded 
methanol instead of methane, which is commonly used in 
CVD graphene growth. Raman spectrum analysis was con-
ducted, and it revealed that similar high-quality graphene 
was formed through comparison with graphene grown for 
10 min with methane having a G peak of approximately 
1585 cm−1 and intensity of 2D/G of 2.3 or more. The char-
acteristics of graphene, according to the growth time, were 
confirmed by the relative comparison between the G, 2D, 
and D-peaks in the Raman spectra. Through the growth 
of graphene by the methanol precursor, within 1 min of 
growth time under conditions identical to those of pris-
tine graphene by methane, which has the same carbon 

Fig. 4   G-FET image and characteristics of electrical properties. a 
SEM image of the fabricated G-FET structure, b source–drain cur-
rent of the G-FET as a function of gate voltage at Vds of 50  mV, c 

mobility of electron and hole in G-FET at induced carrier density of 
nind = 1 × 1012 cm−2, and d mobility of the G-FET depending on the 
induced carrier density
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precursor partial pressure, the same number of carbon 
atoms supplied on the catalytic substrate was enough. The 
electrical transport characteristics of graphene confirmed 
that 1 min is enough growth time. Positive values of Dirac 
points were confirmed for all graphene growth times; at 
0.5, 1, and 5 min, they were VDirac = 53.5 V, 79.5 V, and 
45 V, respectively. Based on the induced carrier concen-
tration of 1 × 1012 cm−2, graphene grown for 1 min using 
a methanol precursor has a hole and electron mobil-
ity comparable to that of pristine graphene by methane, 
which was shown to be over 1500 cm2 V−1 s−1 in hole and 
electron mobility. It is expected that graphene grown by 
methanol can be used as a mass production method for 
graphene, which has a throughput ten times higher than 
that of graphene by methane. It can also be used in high-
performance electronic devices based on its p-type char-
acteristics, which can be adopted in the field of diodes, 
BJT (bipolar junction transistor), CMOS (Complementary 
metal–oxide–semiconductor), and solder cell electrodes.
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