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Abstract
An investigation of the performance of recently synthesized pyridine-2-amine derivative namely, N-(5-methoxy-2-hydroxy-
benzylidene)pyridine-2-amine (N5MHP) as inhibitor of N80 steel corrosion in 1 M HCl environment was carried out using 
surface analysis, electrochemical impedance, polarization and weight loss method. Results obtained reveal that N5MHP 
performed well in protecting the steel surface, achieving an inhibition efficiency of 97.0% at 303 K with 1.0 mM concentra-
tion from weight loss method. Increasing temperature depreciated the corrosion inhibition efficiency of N5MHP but increase 
in concentration enhanced the protection performance of the inhibitor. Electrochemical tests results agreed with weight 
loss results. Langmuir isotherm was obeyed by N5MHP in its adsorption on the steel surface. Polarization studies revealed 
that N5MHP acted as mixed-type inhibitor. Surface morphology characterized using scanning electron microscopy (SEM) 
displayed a more protected surface of the X60 steel in the presence of N5MHP in the acid media. Theoretical calculations 
were performed by employing Density Functional Theory (DFT).

Keywords  Pyridine-2-amine · N80 steel · Electrochemical impedance · Langmuir isotherm · Corrosion inhibition · DFT 
calculations

Introduction

Corrosion creates different serious problems in various 
industries due to its precarious and damaging effect on 
metals. It is one of the main causes of structural deterioration 
in offshore and marine structures (Anwar et al. 2019, 2021). 
Cleaning of pipework steel in order to remove undesirable 
rust and scale is usually done with acid solutions like 
hydrochloric acid which subjects the steel to corrosion 
(Abd-Elaal et al. 2013). In acid solutions, apart from metal 
dissolution (anodic process) corrosion is usually accompanied 
by cathodic processes which predominantly involve hydrogen 
gas evolution. The study of steel corrosion in acid media has 
been of interest to researchers due to increased applications 
of acid solution. Pipework steel protection with corrosion 

inhibitors has greatly been investigated and found to be one of 
the most desirable corrosion prevention methods (Njoku et al. 
2021; Iroha and Nnanna 2021; Kousar et al. 2021). These 
inhibitors are chemicals usually added in small quantity to the 
corrosive environments to slowdown the corrosion rate (Iroha 
and James 2019). Several organic compounds (Arrousse et al. 
2021; Kacimi et al. 2017; Poojary et al. 2021; Iroha et al. 
2005) have been applied as inhibitors for steel corrosion 
in acidic media and found to be effective in reducing the 
corrosion rate. These compounds exert inhibitive action by 
adsorption of their molecules onto the steel surface, thereby 
creating a protective barrier to attack of the corrodant. Based 
on extensive study, the organic compounds are able to adsorb 
effectively on the metal surface most likely because of the 
presence of multiple bonds, aromatic rings, heterocyclic and, 
N, O, S and P atoms present in their molecules. These atoms 
contain electron lone pairs which are available to the iron 
empty d-orbital to form a dative bond.

Schiff bases with general formula RC = NR� have in their 
structure, features that make them potent as corrosion inhibi-
tors. Schiff bases are compounds produced by the condensa-
tion of amines and a carbonyl compound. The ease of syn-
thesis of these compounds from affordable materials is one 
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the great advantages of Schiff bases in their use as corrosion 
inhibitors. Recent reports have shown the effectiveness of 
Schiff bases as inhibitors of steel corrosion in acid media 
(Yurt et al. 2014; Okey et al. 2020). Literature survey has 
also revealed the use of Schiff bases derived from pyridine 
as corrosion inhibitors (Ansari et al. 2015; Iroha et al. 2021). 
This synthesized pyridine derivative is a non-toxic organic 
compound which is also useful and important intermediate 
in various medicinal compounds preparations (Cocco et al. 
2003; Hughes et al. 2008). This type of Schiff base contains 
heterocyclic compounds with nitrogen atoms which can be 
protonated easily in acidic environment to display effective 
inhibition of metals corrosion in acid solution.

In an attempt to contribute to this research area which 
is growing and solving industry problems, we have in our 
laboratory, synthesized and used some Schiff bases (Dueke 
Eze et al. 2022; Iroha and Dueke-Eze 2021) which have 
performed well as corrosion inhibitors. This present work 
is aimed at studying the inhibitory performance of Schiff 
base N5MHP on the corrosion of N80 steel in 1 M HCl 
environment using electrochemical and weight loss tech-
niques. This compound was chosen on the basis of molecular 
structure, while considering the active centers and the kind 
of substituents. To correlate the inhibition performance of 
N5MHP with its structure, quantum chemical calculations 
were performed.

Experimental

Preparation of metal specimen and corrosion 
medium

The metal specimens (N80 steel) used for the study con-
tained; 0.92% Mn, 0.01% P, 0.31% C, 0.008% S, 0.19% Si, 
0.2% Cr and the remainder Fe. The steel specimens were 
first cut into 2 × 4 cm2 dimensions for both weight loss and 
electrochemical measurements and then abraded with emery 
papers (grades 400–1200). The specimens were thereafter 
rinsed with distilled water, dried in an oven after degreasing 
with acetone and then utilize for the experiment. Exposed 
area of 1 cm2 for the samples was utilized in electrochemical 
studies. The blank corrosion medium consists of 1 M HCl 
solution prepared from analytical grade 37% HCl (Merck) 
by diluting with distilled water.

Synthesis of N5MHP

5-methoxy-2-hydroxybenzaldehyde solution (24.5 mg, 0.20 
mmol) in 10 mL of ethanol and formic acid (two drops) 
were mixed with 2-aminopyridine solution (18.8 mg, 0.20 
mmol) in 10 mL of ethanol and stirred. For 6 h the mixture 
was refluxed and the precipitate formed was filtered and then 

recrystallized to yield N-(5-methoxy-2-hydroxybenzylidene)
pyridine-2-amine (N5MHP). Detailed characterization by 
NMR and IR has been earlier reported (Dueke-Eze et al. 
2013). The molecular structure of N5MHP is shown in 
Fig. 1.

Electrochemical measurements

Electrochemical measurements were perform by utilizing 
the conventional three-electrode electrolytic cell with N80 
steel as working electrode, platinum foil as counter electrode 
and saturated calomel electrode (SCE) [Hg/Hg2Cl2/KClsat] 
as reference electrode. All measurements were performed 
using Gamry framework at 30 °C. Samples were mounted 
in epoxy resin with an exposed area of 1 cm2 to the test 
solution. The experiment proceeded by first letting the work-
ing electrode attain a steady state via immersion in the test 
solution for 30 min at open circuit potential (OCP). The 
electrochemical impedance spectroscopy (EIS) measurement 
performed on the N80 steel electrode at OCP proceeded by 
applying a signal amplitude of 10 mV within the range of 
frequency 100 kHz to 0.01 Hz. Fitting and analyses of the 
EIS data were done with Echem Analyst software version 
5.50. The polarization measurement were performed from 
potential (cathodic) of -0.25 V vs. OCP to potential (anodic) 
of + 0.25 V vs. OCP at a scan rate 1 mVs− 1. Results repro-
ducibility was tested by repeating the measurements three 
times.

Weight loss measurement

The weight loss measurements were conducted using ASTM 
G31-72 standard (ASTM 2004). In this measurement, the 
N80 steel specimens were weighed and suspended in solu-
tions containing 100 mL bare 1 M HCl and different con-
centrations of N5MHP for 6 h immersion time at 30 °C, 40 
and 50 °C temperatures unstirred. The N80 steel specimens 
were retrieved washed, dried and accurately re-weighed. The 
average of three weight loss measurements was recorded. 
The corrosion rate (CR), surface coverage ( � ) and inhibition 
efficiency (IEWL %) for N5MHP were respectively computed 
using Eqs. 1, 2 and 3:

HC

OH

H3CO
NN

Fig. 1   Molecular structure of N5MHP
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 where ∆W represents mean weight loss (mg), t and S stand 
for immersion time (s) and surface area (cm2) respectively.

 where CR and CR(i) are corrosion rate values of X60 steel 
without and with the inhibitors respectively.

SEM analysis

SEM micrographs of the N80 steel specimen immersed in 
blank 1 M HCl and inhibited with 1 × 10− 2 M N5MHP were 
examined utilizing Ziess Evo 50 XVP model of scanning 
electron microscope. The SEM operating at 20 kV recorded 
the topography of the surface with resolution of electron 
microscope of 1.5 nm. The SEM images were taken at 
2000× magnification. After 6 h immersion at 30 °C, the 
specimens were retrieved from the test solutions, washed 
properly with distilled water and dried in air before SEM 
analysis.

Quantum Chemical Calculations

The quantum chemical calculations were performed using 
Spartan 14.0 software. The calculations and geometrical 
optimization of N5MHP inhibitor were carried out utiliz-
ing the B3LYP model of density functional theory (DFT) in 
combination with the 6-311G (d, p) basis sets. The HOMO 
energy (EHOMO), LUMO energy (ELUMO) and the energy gap 
( �E = ELUMO − EHOMO ) were calculated to determine the 
inhibition behavior of N5MHP. The calculated EHOMO and 
ELUMO were used to calculate some important parameters 
like electron affinity ( EA = −ELUMO ), ionization potential 
( IP = −EHOMO ) and other such as electronegativity (χ), 
global hardness (η) and global softness (σ) as shown in 
Eqs. (4)–(6) (Zhang et al. 2015; Iroha et al. 2022a):

(1)CR =
�W

S.t

(2)� =
CR − CR(i)

CR

(3)IEWL% =
CR − CR(i)

CR

× 100

(4)χ =
IE + EA

2

(5)η =
IP − EA

2

(6)σ =
1

η

The change in the number of transported electrons (ΔN) 
from the inhibitors to the Fe surface was calculated by Eq. 
(7) (Xia et al. 2015; Maduelosi and Iroha 2020):

 where χFe and χinh are the electronegativity of Fe and inhib-
itor molecules, while ηFe and ηinh are the global hardness of 
Fe and inhibitor molecules. From Pearson’s electronegativity 
scale, the theoretical values of ηFe and χFe are 0 eV and 7 eV 
(Zhang et al. 2019).

Results and discussion

Potentiodynamic polarization measurements (PDP)

A potentiodynamic polarization test was carried out to gain 
insight into the kinetics of the anodic and cathodic reactions. 
The anodic reaction involves N80 steel dissolution through 
oxidation process as earlier described (Hamani et al. 2014; 
Iroha et al. 2022b):

While on the contrary, the cathodic reaction has to do 
with the hydrogen evolution through reduction process as 
follows described (Hamani et al. 2014; Iroha et al. 2022b):

The polarization curves without and with various concen-
trations of N5MHP in 1 M HCl media are depicted in Fig. 2. 
Figure 2 shows that both the anodic and branch cathodic 
reactions were influenced by the addition of N5MHP, which 
reduced both the cathodic hydrogen evolution and the anodic 
N80 steel dissolution (Mobin and Rizvi 2017; James and 
Iroha 2021). This indicates that N5MHP behaved as a mixed-
type inhibitor. The electrochemical polarization parameters 
like corrosion current density (icorr), corrosion potential 
(Ecorr), inhibition efficiency (IEPDP, %), anodic branch slope 
(βa) and cathodic branch slope (βc) were deduced by means 

(7)�N =
χFe − χinh

2(�Fe + �inh)

(8)Fe + Cl− ⇌ (FeCl−)ads

(9)(FeCl−)ads ⇌ (FeCl)ads + e−

(10)(FeCl)ads → (FeCl)+ + e−

(11)(FeCl)+ ⇌ Fe2+ + Cl−

(12)Fe + H+
⇌ (FeH+)ads

(13)(FeH+)ads + e− → (FeH)ads

(14)(FeH)ads + H+ + e− → Fe + H2
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of Tafel extrapolation and listed in Table 1. The IEPDP was 
calculated as follows:

 where I0
corr

 and Ii
corr

 are the corrosion current densities with-
out and with N5MHP inhibitor respectively. The results as 
shown in Table 1 indicate that the presence of various con-
centrations of N5MHP cause a significant decrease in the icorr 
values. The observed decrease of the icorr values was due to 
the inhibitor adsorption on the N80 steel/HCl interface (Obot 
et al. 2015; Iroha and Akaranta 2020). Maximum inhibition 
efficiency was obtained at the concentration of 1.00 mM of 
N5MHP. Generally, a shift in Ecorr above 85 mV, categorizes 
the inhibitor as cathodic or anodic and a shift lower than 85 
mV (as seen in this study) suggest that the inhibitor is mixed-
type (Olasunkanmi et al. 2017; Abeng et al. 2023; Iroha and 
Ukpe 2020). The Tafel slopes (βa and βc) decrease with an 
increase in N5MHP concentration, which further suggests 
the suppression of both cathodic and anodic partial reactions.

Electrochemical impedance measurement

The impedance study was carried out to elucidate the kinet-
ics and characteristics of the metal/solution interface and 

(15)IEPDP =
I0
corr

− Ii
corr

I0
corr

× 100

how N5MHP obstructed the reaction. The Nyquist plots 
of N80 steel in 1 M HCl medium without and with vari-
ous concentrations of N5MHP is depicted in Fig. 3. The 
figure clearly shows a depressed semicircular shape for all 
the impedance spectra. Slight deviations of the shape from 
a perfectly circle suggest interfacial impedance frequency 
dispersion (Da-Rocha et al. 2010; Pavithra et al. 2010). The 
equivalent circuit used in modeling the N80 steel/HCl solu-
tion interface is depicted as an insert in Fig. 3, where Rs 
denotes solution resistance, Rct stands for charge transfer 
resistance and CPE is the constant phase element used to 
replace double layer capacitance (Cdl). The CPE impedance 
is expressed as:

 where Y0 denotes CPE constant, � is angular frequency, j2 
= -1 is imaginary number and n is the CPE exponent which 
presents information on the degree of surface inhomogeneity 
resulting from inhibitor adsorption, surface roughness and 
formation of porous layer (Abdel-Gaber et al. 2009). The Cdl 
values are computed from CPE utilizing Eq. 17:

(16)ZCPE =
1

Yo
(j�)−n

(17)Cdl = Y0(�max)
n−1

-0.7

-0.6

-0.5

-0.4

-0.3

-7 -6 -5 -4 -3 -2
log i (Acm-2)

E
)

E
C

S
sv

V(

 Blank
 0.50 mM N5MHP
 0.75 mM N5MHP
 1.00 mM N5MHP

Fig. 2   Potentiodynamic polarization curves of N80 steel in 1 M HCl 
solutions without and with various concentrations of N5MHP of 
N5B2HP at 30 °C

Table 1   Potentiodynamic 
polarization data of N80 steel 
in 1 M HCl without and with 
various concentrations of 
N5MHP at 30 °C

Conc. (mM) icorr (µA cm-2) Ecorr (mV/SCE) βa (mV dec-1) βc (mV dec-1) �
PDP

(%)

Blank 796.3 -569.1 117.4 166.9 -
0.50 233.7 -502.8 102.5 142.8 70.7
0.75 139.9 -488.0 113.9 137.2 82.4
1.00 52.6 -477.6 115.8 124.3 93.4
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Fig. 3   Nyquist plot of N80 steel in 1 M HCl without and with various 
concentrations of N5MHP (insert: equivalent circuit)
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Where, �max denotes the frequency at which the 
impedance imaginary part has attain maximum value. 
The impedance parameters such as Rct, Cdl and inhibition 
efficiency (IEEIS, %), are listed in Table 2. The IEEIS was 
computed as follows:

 where R0
ct

 and Rct are the charge transfer resistances without 
and with N5MHP inhibitor respectively. It is obvious that Rct 
values increase with increasing N5MHP concentrations. This 
indicates a decrease in corrosion rate in the inhibitor presence 
and an increase in IEEIS. On the other hand, the Cdl values 
were found to decrease on adding N5MHP inhibitor, which 
indicates a decrease in local dielectric constant and/or an 
increase in the electrical double layer thickness, suggesting 
that N5MHP function by protective layer formation on the 
N80 steel surface (Ostovari et al. 2009; Iroha et al. 2023a, b).

Weight loss method

Effect of concentration

The variation of weight loss parameters with the concentra-
tions of N5MHP is depicted in Fig. 4. It is observed that 
N5MHP protected N80 steel corrosion in the HCl solution 
at all studied concentrations i.e. 0.50 to 1.00 mM, with CR 
decreasing with an increase in the inhibitors concentration 
while the reverse was the case for IEWL %. However, the 

(15)IEEIS =
Rct − R0

ct

Rct

× 100

Schiff base pyridine-2-amine derivative showed maximum 
protection at 303 K with 1.00 mM concentration. The results 
in Fig. 1b reveal that N5MHP performed well in protecting 
the steel surface, achieving an inhibition efficiency of 97.0% 
at 303 K with 1.0 mM concentration. The corrosion rate on 
the other hand, decreased from 8.465 mg/cm2/h to 0.452 mg/
cm2/h in the presence of 1.00 mM N5MHP at 303 K. This 
observed result is related to increased adsorption of inhibitor 
species leading to hydrophobic thin film formation on the 
acid-substrate interface (Iroha et al. 2015).

Impact of temperature

The impact of temperature on N80 steel corrosion behaviour 
in inhibited and uninhibited test solutions was studied. The 
observed variation of CR and IEWL% with temperature 
ranging from 303 to 323 K are displayed in Table 3. The 
table reveals that CR of X60 steel in both inhibited and 
uninhibited solutions increased with increase in temperature 
while IEWL % for N5MHP at constant concentration, 
decreased with temperature rise. This observation could 
be due to desorption of adsorbed inhibitor species caused 
by elevated temperature (Fragoza-Mar et al. 2012; Mourya 
et al. 2016).

Activation and thermodynamic parameters were con-
sidered to help in the understanding of the adsorption and 
inhibition mechanism. The CR is observed to depend on tem-
perature and this dependency on temperature is expressed 

Table 2   Electrochemical impedance parameters for N80 steel in 1 M 
HCl without and with various concentrations of N5MHP at 30 °C

Conc. (mM) Rs (Ω cm2) Rct (Ω cm2) Cdl (µF cm-2) n �
EIS

(%)

Blank 0.864 123.8 20.67 0.838 -
0.50 0.886 495.2 16.51 0.849 75.0
0.75 0.903 661.0 8.91 0.864 81.3
1.00 0.975 2189.6 3.11 0.882 94.3

Fig. 4   Variation of a CR and 
b IEWL with N5MHP concentra-
tion for N80 steel at different 
temperatures
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Table 3   Variation of CR and IEWL with temperature without and with 
1.00 mM N5MHP in 1 M HCl

��

(

����−2�−1
)

����(%)  

T (K) Blank N5MHP N5MHP

303 8.465 0.254 97.0
313 12.160 0.746 93.9
323 16.090 1.694 89.5
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utilizing the Arrhenius equation (Verma et al. 2016; Chokor 
et al. 2022):

Where Ea is denotes activation energ, T is the absolute 
temperature, R stands for gas constant, and A denotes pre-
exponential factor. Plot of log CR against 1/T (Arrhenius 
plot) for N80 steel dissolution without and with different 
concentrations of N5MHP is displayed in Fig. 5a. The Ea values 
deduced from the Arrhenius plot slope are listed in Table 4. 
The data in Table 4 clearly shows that Ea values in presence of 
N5MHP were higher when compared with the values without 
N5MHP. This observation indicates that N5MHP retards the 
dissolution N80 steel by causing an increase in the energy 
barrier involved in corrosion (Krishnegowda et al. 2013). An 
alternative formula for the Arrhenius equation is the Eyring’s 
transition state equation given as:

 where 𝑁 is Avogadro’s number, ℎ denotes Planck’s con-
stant, Δ𝑆∗ stands for activation entropy, Δ𝐻∗ denotes acti-
vation enthalpy. From the slope (-ΔH*/2.303R) of the plot 
of log CR/T against 1/T (Transition state plot) depicted in 
Fig. 5b, ΔH* values were computed. The ΔS* values were 
deduced from the intercept, [log (R/Nh) + (ΔS*/2.303R)] of 
the same plot. These values are listed in Table 4. The posi-
tive Δ𝐻∗ values obtained shows the endothermic nature of 
the N80 steel dissolution in the presence of N5MHP. The 
values ΔS* in the presence of N5MHP and its absence are 
both negative with less negative values in the presence 
of N5MHP. This suggests that the activation complex in 
the rate determining step denotes association instead of 

(16)log CR =
−Ea

2.303RT
+ log A

(17)log
CR

T
= log

(

R

Nh

)

+
(

�S∗

2.303R

)

−
(

�H∗

2.303RT

)

dissolution step, which implies decreased disorderliness on 
going from reactants to activated complex. The negative ΔS* 
values also shows the non-spontaneous nature of the N80 
steel dissolution by adding N5MHP (Ikeuba et al. 2015).

Adsorption isotherm

Adsorption isotherm was studied to better understand the 
interaction between the N80 steel surface and N5MHP 
in 1 M HCl environment. Among the various adsorption 
isotherms tested, Langmuir isotherm gave the best fit. The 
Langmuir isotherm is given as:

 where Cinh denotes N5MHP concentration and Kads stands 
for adsorption equilibrium constant. A plot of Cinh/θ against 
Cinh as depicted in Fig. 6, gives a straight line with the values 
of regression coefficient (R2) and slope very close to unity 
suggesting that N5MHP adsorption on the N80 steel surface 
in test solution obeys the Langmuir adsorption isotherms 
(Iroha et al. 2012). The Kads is related to the adsorption free 
energy ( �G0

ads
 ) as follows:

(17)
Cinh

�
=

1

Kads

+ Cinh
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Fig. 5   a Arrhenius plots and b Transition state plots for N80 steel in the absence and presence of different concentrations of N5MHP

Table 4   Activation parameters for the dissolution of N80 steel in the 
absence and presence of various concentrations of N5MHP.

Conc(mM) E
a
(kJ∕mol) �H∗(kJ∕mol) �S∗(J∕mol∕K)

Blank 31.63 27.51 -159.31
0.50 38.19 33.86 -144.64
0.75 42.75 39.01 -138.99
1.00 50.46 42.68 -122.53
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 where R denotes the gas constant and T stands for absolute 
temperature. The value, 55.5 is the molar concentration of 
water in solution. The computed values of Kads and �G0

ads
 are 

presented in Table 5. The values of the Langmuir isotherm 
slopes show deviations from unity expected for ideal an ideal 
Langmuir isotherm equation. The deviation from 1 could be 
as a result of interactions between the adsorbed molecules on 

(18)�Go
ads

= −RTln
(

55.5Kads

)

the X60 steel surface. The observed negative �G0
ads

 values 
show that the adsorption process is spontaneous. General, 
�G0

ads
 values of within − 20 kJmol− 1 are associated with 

physisorption while values more negative than − 40 kJmol− 1 
are compatible with chemisorption (Yadav et al. 2015a). The 
computed �G0

ads
 values for N5MHP are between − 31.46 to 

-33.41 kJmol− 1 which are within the threshold values for 
physisorption and chemisorption, suggesting that the adsorp-
tion process of N5MHP on N80 steel surface involves both 
chemical and physical adsorption (Yadav et al. 2015b).

SEM analysis

The surface morphology of uninhibited and inhibited N80 
steel samples after immersion period of 6 h are depicted in 
Fig. 7. The SEM image of the specimen immersed in unin-
hibited 1 M HCl environment (Fig. 7a) is porous and rough 
due to aggressive and fast acid corrosion reaction. Moreo-
ver, the SEM images of the N80 steel specimen in presence 
of N5MHP (Fig. 7b) is less damaged, indicating a retarda-
tion of the corrosion attack and protective film formation of 
N5MHP on the steel surface.

Quantum chemical calculation

The frontier molecular orbitals (FMOs) are very important 
tool in determining the chemical reactivity of the inhibitor 
adsorbed onto metal surfaces (Daoud et  al. 2015). 
Figure 8 shows graphical representations of the HOMO 
and LUMO density distribution of N5MHP. The depiction 
in Fig.  8 shows that the HOMO and LUMO orbitals’ 
sites of distribution are mainly the azomethine group, 
π-electrons, including the heteroatoms of oxygen and 
nitrogen. The quantum chemical properties of the neutral 
and protonated forms of N5MHP are listed in Table 6. The 
EHOMO values are generally related to the ability of the 
inhibitor molecules to donate electron to the unoccupied 
metal surface’s d-orbital. Higher values of EHOMO imply 
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Fig. 6   Langmuir isotherm for the adsorption of N5MHP on N80 steel 
surface using weight loss method

Table 5   Thermodynamic parameters for the adsorption of N5MHP 
on N80 steel in 1 M HCl at various temperature

Temp. (K) R2 Slope Intercept Kads (M− 1) ΔG0

ads
 (kJ/mol)

303 0.9851 0.8318 0.2095 4773 -31.46
313 0.9953 0.8512 0.2198 4550 -32.37
323 0.9988 0.9013 0.2192 4562 -33.41

Fig. 7   SEM images for N80 
steel a exposed to 1 M HCl 
b exposed to 1 M HCl contain-
ing 1.00 mM N5MHP.

Corrosion products

20 µm

a b

20 µm
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that the electron donating ability including the inhibition 
efficiencies of the inhibitor would be high. However, ELUMO 
values are related to the ability of the inhibitor molecule 
to accept electron from the metal. Therefore, the electron 
accepting properties including the inhibition efficiency 
increases with reduced ELUMO values (Verma et al. 2016). 
As observed in Table 6, the high EHOMO of neutral N5MHP 
is stabilized in N5MHP-H+ (protonated form) which 
suggests lower electron-donating ability of N5MHP-H+. 
The energy band gap (∆E) relates the stability and 
chemical reactivity of the inhibitor molecules. Lower 
values of ∆E facilitate and increase the adsorption of the 
inhibitor molecule on the metal surface through donor-
acceptor process (Boughoues et al. 2020). In the present 
study, ΔE of N5MHP-H+ is lower than that of N5MHP, 
which promotes its adsorption to the N80 steel surface and 
enhances its efficiency. The hardness (η) and softness (σ) 
are other properties that are related to molecular reactivity 
and stability. A hard molecule has higher ∆E between the 
ELUMO and EHOMO and is related to lower reactivity and 
inhibition efficiency. On the other hand, a soft molecule 
has a lower ∆E between the ELUMO and EHOMO and is 
related to larger reactivity and inhibition efficiency 
(Mohamed et  al. 2021). The fraction of transferred 
electrons (∆N) from our study are less than 3.6 for 
N5MHP and N5MHP-H+ molecules, suggesting transfer 
of electrons from the molecules to N80 steel leading to 
formation of dative bonds. This promotes protective layer 
formation against corrosion.

Conclusion

The present study has shown that the synthesized 
N-(5-methoxy-2-hydroxybenzylidene)pyr idine-2-
amine (N5MHP) can function as an effective corrosion 
inhibitor for N80 pipeline steel in 1  M HCl solution 

and the inhibition efficiency increases with increasing 
concentration of the inhibitor. The corrosion process was 
inhibited by adsorption of the Schiff base molecules on 
N80 steel surface leading to the formation of a protective 
film on the metal/acid solution interface, decreasing the 
dissolution of the steel. Results from Potentiodynamic 
polarization showed that the studied inhibitor exhibit 
mixed-type inhibition activity. The results of the EIS 
reveal that there is a decrease in the charge transfer 
resistance in the presence of N5MHP. The impact of 
temperature on the inhibition performance of N5MHP 
was investigated using weight loss measurements and the 
results indicated that the inhibition efficiency of N5MHP 
decreases with increase in temperature. Adsorption 
of the studied inhibitor obeys Langmuir adsorption 
isotherm. The results obtained from EIS, weight loss and 
polarization techniques are in good agreement. Surface 
analysis by SEM confirms the adsorption performance of 
the inhibitor and the development of a protective film on 
the steel surface. Additionally, the results obtained by the 
DFT-based quantum chemical calculations supported the 
experimental findings.

Fig. 8   Frontier molecular 
orbitals HOMO and LUMO of 
neutral and protonated N5MHP
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Table 6   Calculated quantum chemical parameters for N5MHP and 
N5MHP-H+ molecules

Theoretical parameters N5MHP N5MHP-H+

EHOMO (eV) -4.34 -8.33
ELUMO (eV) -2.21 -6.85
∆E (ELUMO – EHOMO) (eV) 2.13 1.48
Ionization energy (I) 4.34 8.33
Electron affinity (A) 2.21 6.85
Electronegativity (χ) 3.28 7.59
Global hardness (η) 1.07 0.74
Global softness (σ) 0.93 1.35
Fraction of transferred electrons (∆N) 1.74 -0.40
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