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Abstract
Landslides are one of the most common geohazards occurring in the Western Ghats region of Kerala, causing substantial 
loss of life and property. The present study aims to demarcate the landslide susceptible zones in the Western Ghats region of 
Thiruvananthapuram district using GIS techniques. The analytical hierarchy process (AHP) and fuzzy-analytical hierarchy 
process (F-AHP) methods are used to derive the weights. Eleven causative factors, viz. slope angle, elevation, aspect, road 
buffer, land use/land cover types, sediment transport index, stream power index, drainage buffer, lithology, soil texture, and 
lineament buffer have been considered for the mapping process. The area of the susceptibility maps was categorized into five 
zones: very low, low, moderate, high, and very high. This study confirmed that the majority of landslides occurred due to 
anthropogenic reasons (road cuttings). Finally, the receiver operating characteristic (ROC) curve method was used to validate 
the landslide susceptibility maps. The area under the ROC curve (AUC) value was above 0.70 for both the AHP (0.71) and 
F-AHP (0.76) methods. Hence, it is confirmed that the F-AHP model is more effective in demarcating landslide susceptible 
zones. As per the landslide susceptibility map created using the F-AHP model, 10.97% of the study area is categorized as very 
high susceptible. The result of the study will help policy makers and planners to implement effective mitigation measures to 
prevent landslides along the road cuttings in other areas with similar geomorphological characteristics.
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Introduction

Landslides, the most common type of geohazard in moun-
tainous terrain, are caused by both intrinsic and extrinsic 
factors (Bachri et al. 2021). The intrinsic (internal) fac-
tors include bedrock geology, geomorphology, soil depth, 
soil type, slope gradient, slope aspect, slope curvature, 

elevation, land use pattern, drainage pattern, etc. (Dahal 
et al. 2012), whereas the extrinsic/external (triggering) 
factors are rainfall, seismicity, and anthropogenic activi-
ties (Getachew and Meten 2021). The intrinsic factors rep-
resent the inherent characteristics of the ground that make 
the slopes susceptible to landslides (Getachew and Meten 
2021). Landslides can result in loss of human life, property 
damage, and economic crisis (Youssef and Pourghasemi 
2021). It can adversely affect the topography, character and 
quality of rivers and streams, and groundwater flow, for-
ests, and wildlife habitat (Geertsema et al. 2009). Accord-
ing to the NDMA (2019), the Western Ghats region in 
states such as Maharashtra, Karnataka, Goa, and Kerala 
are vulnerable to landslides. This region is characterized 
by rugged hills with steep slopes, wherein loose soil and 
earth materials lie above Precambrian crystalline rocks 
(Sajinkumar et al. 2011). In this region, activities such 
as deforestation, obstructing ephemeral streams, and the 
cultivation of crops deficient in the ability to provide root 
cohesiveness to steep slopes have been speeding up the 
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processes leading to landslides (Kuriakose et al. 2009). 
Hence, the demarcation of landslide susceptible zones in 
this region will help in preventing or reducing the adverse 
effects and loss of life and property due to landslides.

Many researchers used geospatial tools to delineate the 
landslide susceptible zones in the Western Ghats region of 
Kerala (Prasannakumar and Vijith 2012; Vijith et al. 2014; 
Feby et al. 2020). The various methods used in landslide 
susceptibility zonation include AHP (Hasekioğulları and 
Ercanoglu 2012; Kayastha et al. 2013b; El Jazouli et al. 

2019; Basu and Pal 2020), frequency ratio (Vijith and 
Madhu 2007; Jana et al. 2019; Pal and Chowdhuri 2019; 
Zhang et al. 2020; Shano et al. 2021), fuzzy logic (Kayastha 
2012; Kayastha et al. 2013a; Rostami et al. 2016; Fatemi 
Aghda et al. 2018), F-AHP (Mokarram and Zarei 2018; Sur 
et al. 2020; Zhou et al. 2020), artificial neural network (Lee 
et al. 2006; Tsangaratos and Benardos 2014; Harmouzi 
et  al. 2019; Zeng and Chen 2021), analytical network 
process (Sujatha and Sridhar 2017; Sujatha 2020; Swetha 
and Gopinath 2020), logistic regression (Chauhan et al. 

Fig. 1   The study area

182 Safety in Extreme Environments (2021) 3:181–202



1 3

2010; Ramani et al. 2011; Talaei 2014; Mandal and Mandal 
2018), index of entropy (Constantin et al. 2011; Mondal 
and Mandal 2019), support vector machine (Pourghasemi 
et al. 2013; Du et al. 2016; Wu et al. 2016; Lee et al. 2017), 
random forest (Taalab et al. 2018; Rahmati et al. 2021), etc. 
Researchers like Demir et al. (2013), Pham et al. (2016), 
Aditian et al. (2018), Nhu et al. (2020), Ali et al. (2021), 
and Youssef and Pourghasemi (2021) used two or more 
different methods to compare the efficacy of those methods 
in landslide susceptibility zonation. In previous studies, 
different statistical and machine learning methods have 
been used. In this research, we used a semi-quantitative 
method (AHP) and an ensemble of AHP and Fuzzy logic 
methods (Fuzzy-AHP), which are still not applied in the 
present study area. AHP simplifies complex problems 
into multiple simple, hierarchically linked problems, and 
the factors are ranked after the hierarchical formation 
utilizing pair comparisons (Gompf et al. 2021). The paired 
comparison helps the decision-maker to prioritize only 
two options under comparison, regardless of other options 
(Gompf et al. 2021). The Fuzzy logic theory was integrated 

into the AHP method to develop the Fuzzy-AHP method 
(Putra et al. 2018). AHP method's inability to address the 
imprecision and subjectivity in the judgements will be 
rectified by utilizing fuzzy AHP (Carnero 2017).

The objectives of this study are to demarcate the 
landslide susceptible zone of the Western Ghats region 
in Thiruvananthapuram district using AHP and F-AHP 
methods, to assess the influence of each causative factor 
on the initiation of landslides, to compare the efficacy of 
both AHP and F-AHP methods, and to ascertain whether 
the integration of Fuzzy logic and AHP methods provide 
better result than the AHP method.

Materials and methods

Study area

The study area lies between latitudes of 8°25ʹ–8°55ʹ N and 
longitudes of 77°0ʹ–77°20ʹ E. This area spans an area of 
524.38 km2 in the southern Western Ghats (Fig. 1). This 

Fig. 2   Flowchart of the landslide susceptibility modelling
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portion of the Western Ghats has been affected by landslides 
in the past, and a devastating landslide occurred in Amboori 
on 9 November 2001, resulting in the death of 38 people 
(Naidu et al. 2018).

Data used

The study area lies on the Survey of India (SoI) topographic 
maps numbered 58 H/1, 58 H/2, 58 H/3, and 58 H/6 at 
1:50,000 scale. The data used for this study includes the 
Landsat 8 OLI satellite images, the Shuttle Radar Topog-
raphy Mission (SRTM) digital elevation model (DEM), the 
geological map prepared by the Geological Survey of India 
(GSI), soil data collected from the Kerala State Land Use 

Board (KSLUB), SoI topographic maps, and Google Earth 
Pro data. The ArcGIS 10.8 and ERDAS Imagine 8.4 software 
tools have been used to create the thematic layers of factors 
such as slope angle, elevation, aspect, road buffer, land use/
land cover (LULC), sediment transport index (STI), stream 
power index (SPI), stream buffer, lithology, soil texture, and 
lineament buffer. The thematic layers of factors such as slope, 
elevation, STI, and SPI were classified using the natural 
breaks (Jenks) classification method included with the Arc-
GIS software. All thematic layers were resampled to a spatial 
resolution of 30 m. After assigning the weights determined 
by the AHP and F-AHP methods, the thematic layers of the 
selected factors were combined using the raster calculator 
tool in the ArcGIS software to generate landslide-susceptible 

Fig. 3   Slope
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zone maps. The landslide incidence data from the Bhukosh 
portal (https://​bhuko​sh.​gsi.​gov.​in/) of the GSI was used to 
validate the prepared landslide susceptible zone maps. The 
RStudio software has been used for ROC curve analysis and 
to estimate the AUC values. The flowchart of the landslide 
susceptibility modelling is depicted in Fig. 2.

Causative factors

Slope angle The chance of landslides increases with an 
increase in slope angle (Nachappa et al. 2020; Youssef and 
Pourghasemi 2021). The slope was derived from the SRTM 

DEM at 30 m spatial resolution using ArcGIS spatial analyst 
tools. The slope of this area ranges between 0° and 77.53° 
and is grouped into five classes (Fig. 3).

Elevation The SRTM DEM was used to derive the eleva-
tion of the study area. The elevation of the study area ranges 
from 54 to 1828 (Fig. 4) and is grouped into 5 classes. A 
study by Nakileza and Nedala (2020) found that the number 
of landslides will be high in areas with an elevation ranging 
from 1500 to 1800 m.

Aspect The aspect determines the slope’s exposure to 
sunlight and prevailing winds, and this influences the soil 
moisture on the slopes (Xiao et al. 2019). In the northern 

Fig. 4   Elevation
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hemisphere, south-facing and west-facing slopes are exposed 
to intense solar radiation (Setiawan et al. 2004). The aspect 
was also derived from the SRTM DEM using ArcGIS spatial 
analyst tools. The slope aspect of this area is categorized into 
nine classes: Flat, North, Northeast, East, Southeast, South, 
Southwest, West, Northwest (Fig. 5).

Road buffer The road is one of the most important 
anthropogenic factors influencing the occurrence of land-
slides (Nachappa et al. 2020). Construction of roads along 
hills or mountains can increase the instability of slopes 
(Wang et al. 2016) by introducing seepage conditions that 
may lead to further breakdown of the slope (Aditian et al. 

2018). Engineering activities like cutting and excavat-
ing of slopes can weaken the natural support of slopes 
(Youssef and Pourghasemi 2021). The road networks were 
digitized from the SoI topographic maps and Google Earth 
Pro. The proximity tool in ArcGIS software was used to 
create the 100 m buffer road data and is depicted in Fig. 6.

Land use/land cover types Land cover reduces the pos-
sibility of soil erosion and landslides (Reis et al. 2012), 
whereas land use and landscape changes in hilly areas 
decrease slope stability and thus promote sliding (Feby 
et al. 2020). The Landsat 8 OLI satellite image was used 
to extract land use and land cover types. The maximum 

Fig. 5   Aspect
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likelihood classification approach available with the 
ERDAS Imagine software was used for classifying the 
various land use/land cover types present in this area. 
The land use/land cover types present in the study area 
include agricultural land, built-up areas, barren land, 
scrubland, deciduous forest, evergreen forest, and water 
bodies (Fig. 7).

Sediment transport index STI reflects the erosive power of 
the overland flow (Pourghasemi et al. 2012). STI was derived 
from the SRTM DEM using ArcGIS spatial analyst tools and 
Eq. 1 (Moore et al. 1993).

where α is the area of the catchment (m2) and β (radians) is 
the slope gradient.

The STI of this area ranges from 0 to 322.47 (Fig. 8) and 
is grouped into 5 classes (0–2.52, 2.52–13.91, 13.91–36.67, 
36.67–87.25, and 87.25–322.47). The chance of landslides is 
high in areas with higher STI.

Stream power index The stream power index (SPI) is a 
measure of the erosive capacity of flowing water (Nhu et al. 
2020). The chance of sliding is greater in areas with higher 

(1)STI =
(

�

22.13

)0.6
(

sin�

0.0896

)1.3

Fig. 6   Road buffer
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SPI. The SPI was derived from the SRTM DEM using ArcGIS 
spatial analyst tools and Eq. 2 (Moore et al. 1991).

where α is the specific catchment area and β is the local 
slope.

The SPI of the study area ranges from 0 to 9.23 and is 
grouped into five classes as depicted in Fig. 9.

Stream buffer Streams may adversely affect stability by 
eroding or by saturating the lower parts of the slopes (Bagh-
erzadeh and Daneshvar 2013). The stream networks were 

(2)SPI = �tan�

extracted from the SoI topographic maps, and the stream 
buffer layer was created using the ArcGIS proximity tool. 
The 100 m buffer streams of the study area are shown in 
Fig. 10.

Lithology The strength and permeability of rocks may 
vary depending on the type of lithological units, and slid-
ing usually occurs along a rock type with lower strength 
and permeability (Nachappa et al. 2020). In comparison to 
the weaker rocks, the stronger rocks give more resistance 
to the driving forces (Bagherzadeh and Daneshvar 2013). 
The rock types were digitized from the geological map of 
GSI (at 1:50,000 scale) using ArcGIS tools. The rock types 

Fig. 7   Land use/land cover 
types
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present in the study area include: charnockite, garnetifer-
ous biotite, and garnet-biotite gneiss (Fig. 11).

Soil texture Soils with a high proportion of clay content 
are resistant to detachment (Sharma et al. 2012). Also, the 
rate of soil erosion will be very high in areas with sandy 
soils (Sharma et al. 2012). The soil data (shape file) at 
1:250,000 was collected from the KSLUB. The soil types 
present in the study area are clay, gravelly clay, gravelly 
loam, and loam (Fig. 12). The chance of sliding is higher 
in areas with loam and gravelly loam.

Lineament buffer Lineaments, the mapable linear 
geological features such as joints, shear zones, faults, 
and fold axis (Ram et al. 2020), act as potential weak 
planes which could reduce bulk-rock strength and further 

facilitate the process of slope failure (Wu et al. 2020). 
The lineaments were digitized from the GSI geological 
map, and the lineament buffer layer was derived using 
the ArcGIS proximity tool. Figure 13 depicts the 100 m 
buffer lineaments of this area.

AHP modelling

AHP is a multi-criteria decision-making technique devel-
oped by Thomas Saaty (Saaty 1980). This method works 
on the principal of deconstructing complex issues into a 
hierarchy and finding a solution that best fits the objec-
tive (Qazi and Abushammala 2020). The major steps 
include construction of a matrix for pair-wise comparison, 

Fig. 8   Sediment transport index
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calculation of the eigen vector and weighting coefficient 
(Table 1), and consistency ratio (Table 2).

where Slp. is the slope angle, Ele. is the elevation, Asp. 
is the aspect, RB is the road buffer, LULC is the land use/
land cover types, STI is the sediment transport index, SPI 
is the stream power index, SB is the stream buffer, Litho. 
is the lithology, and LB is the lineament buffer.

The eigen vector (Vp), and weighting coefficient (Cp) 
were calculated using Eqs. 3 and 4 as follows:

where k is the number of factors, and W is the ratings of the 
factors.

(3)Vp =
k
√
W1x…Wk

The matrix was normalized by dividing each element 
by the sum of the columns. By averaging each row, the 
priority vector [C] was calculated. The overall priority 
[D] was computed by multiplying each column of the 
matrix by the respective priority vector. The rational pri-
ority [E] was calculated by dividing each overall priority 
by the priority.

The eigen value (λmax), consistency index (CI), and 
consistency ratio (CR) were computed using Eqs. 5, 6, 
and 7 as follows:

(4)Cp =
Vp

Vp1 +…Vpk

Fig. 9   Stream power index
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where RI is the random index (Table 3).
According to Saaty (1980), CR of less than 0.1 is accept-

able. If the CR is above 0.1, the exercises should be repeated 

(5)�max =
[E]

k

(6)CI = (�max−k)∕(k − 1)

(7)CR =
CI

RI

until a CR of acceptable consistency is achieved. In this 
AHP modeling, a CR of acceptable consistency (0.047) was 
achieved. Hence, the judgments are consistent.

The final weights obtained using the AHP method is 
shown in Eq. 8.

(8)

LSZ =(0.276 × Slp.) + (0.209 × Ele.) + (0.153 × Asp.)

+ (0.111 × RB) + (0.079 × LULC) + (0.056 × STI)

+ (0.040 × SPI) + (0.029 × SB) + (0.021 × Litho.)

+ (0.015 × Soil) + (0.011 × LB)

Fig. 10   Stream buffer
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Fuzzy‑AHP modelling

In this model, a combination of AHP and fuzzy sets is used 
to weight the effective contributing factors (Eskandari and 
Miesel 2017). The F-AHP model can be used as a deci-
sion‐making analysis tool since it handles uncertain and 
imprecise data (Perçin 2008). The present study adopted 
the approach of Buckley (1985), which compared fuzzy 
ratios described by triangular membership functions. 
The major processes involved are construction of pair-
wise comparison (Table 4), calculation of the geometric 
mean of fuzzy comparison values (Table 5), calculation 

of relative fuzzy weights of each parameter (Table 6), and 
calculation of averaged and normalized relative weights 
(Table 7). The various steps involved are as follows:

Step 1: Comparison of the criteria or alternatives by 
decision makers

For example: When the decision maker states that 
parameter 1 (P1) is weakly significant than parameter 2 
(P2), then the fuzzy triangular scale will be (2, 3, 4). For 
the pair wise contribution matrix, the fuzzy triangular 
scale will be (1/4, 1/3, 1/2) (Ayhan 2013).

The pair-wise contribution matrix is demonstrated in 
Eq. 9.

Fig. 11   Lithology
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whered̃k
ij
 indicates the kth decision maker’s preference of 

ith parameter over jth parameter, by the way of fuzzy trian-
gular numbers (Ayhan 2013).

Step 2: The preferences ( ̃dk
ij
 ) were averaged, and ( d̃ij ) was 

calculated using Eq. 10.

(9)Ãk =

⎡
⎢⎢⎢⎣

d̃k
11

d̃k
12

... d̃k
1n

d̃k
21

... ... d̃k
2n

... ... ... ...

d̃k
n1

d̃k
n2

... d̃k
mn

⎤⎥⎥⎥⎦

(10)d̃ij =

∑K

k=1
d̃k
ij

K

Step 3: Modification of the pair-wise comparison matrix 
based on the averaged preferences using Eq. 11.

Step 4: Calculation of the geometric average of fuzzy 
comparative values for each parameter using Eq. 12  (Buck-
ley 1985).

(11)Ã =

⎡⎢⎢⎣

d̃11 ⋯ d̃1n
⋮ ⋱ ⋮

d̃n1 ⋯ d̃nn

⎤⎥⎥⎦

(12)r̃i =

(
n∏
j=1

d̃ij

)1∕n

, i = 1, 2, ...., n

Fig. 12   Soil texture
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Fig. 13   Lineament buffer

Table 1   Pairwise comparison 
matrix

Slp Ele Asp. RB LULC STI SPI SB Litho Soil LB Vp Cp

Slp 1 2 3 4 5 6 7 8 9 10 11 4.909 0.276
Ele 1/2 1 2 3 4 5 6 7 8 9 10 3.707 0.209
Asp. 1/3 1/2 1 2 3 4 5 6 7 8 9 2.721 0.153
RB 1/4 1/3 1/2 1 2 3 4 5 6 7 8 1.964 0.111
LULC 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7 1.405 0.079
STI 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 1.000 0.056
SPI 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 0.712 0.040
SB 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 0.509 0.029
Litho 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 0.368 0.021
Soil 1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 0.270 0.015
LB 1/11 1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 0.204 0.011
∑ 3.02 4.93 7.83 11.72 16.59 22.45 29.28 37.08 45.83 55.50 66.00 17.77 1.00
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where r̃i still depicts the triangular values.
Step 5: From the next 3 sub steps (5a, 5b, and 5c), the 

fuzzy weight of each parameter was computed.
Step 5a: Calculation of vector summation of each r̃i
Step 5b: The (− 1) power of summation vector was cal-

culated, followed by replacement of the fuzzy triangular 
number to convert it into an increasing order.

Step 5c: To compute the fuzzy weight of parameters 
i(w̃i)i , each r̃i was multiplied with the reverse vector (Eq. 13).

Step 6: De-fuzzification of the fuzzy weights using 
Eq. 14 (Chou and Chang 2008).

Step 7: The standardization of Mi using Eq. 15.

The final weights obtained using the F-AHP method is 
shown in Eq. 16.

(13)w̃i = r̃i ⊗ (r̃1 ⊕ r̃2 ⊕ ...⊕ r̃n)
−1 (lwi,mwi, uwi)

(14)Mi =
lwi,mwi, uwi

3

(15)Ni =
Mi∑n

i=1
Mi

(16)

LSZ =(0.265 × Slp.) + (0.208 × Ele.)

+ (0.155 × Asp.) + (0.113 × RB) + (0.082 × LULC)

+ (0.058 × STI) + (0.041 × SPI) + (0.030 × SB)

+ (0.021 × Litho.) + (0.015 × Soil) + (0.011 × LB)

Validation using the ROC curve method

The ROC curve method has been used to validate the 
results. The ROC curve is a plot of test sensitivity as the y 
coordinate versus its 1-specificity or false positive rate as 
the x coordinate (Park et al. 2004). AUC is a measure of a 
test's ability to identify whether a specific condition is pre-
sent or not (Hoo et al. 2017). To plot the ROC curve and to 
estimate the AUC values, the RStudio software was used. 
The AUC value is considered excellent for values between 
0.9 and 1.0, good between 0.8 and 0.9, fair between 0.7 
and 0.8, poor between 0.6 and 0.7, and failed between 0.5 
and 0.6 (Battolla et al. 2017).

Results and discussion

The landslide susceptible zone maps were prepared by con-
sidering eleven causative factors, such as slope angle, eleva-
tion, aspect, proximity to roads (road buffer), land use/land 
cover types, STI, SPI, proximity to streams (stream buffer), 
lithology, soil texture, and proximity to lineaments (linea-
ment buffer). The area of the prepared maps is grouped into 
five susceptible zones: very low, low, moderate, high, and 
very high (Tables 8, 9). The prepared maps were validated 
using the landslide incidence data collected from the records 
of the GSI. A total of 23 landslides have been recorded in the 
study area. The major contributing factor is roads, followed 
by land use/land cover, slope, and SPI. Of the 23 landslides, 
16 (69.56%) occurred near the road cuttings. The landslide 

Table 2   Normalized matrix

Slp Ele Asp. RB LULC STI SPI SB Litho Soil LB ∑ rank [C] [D] = 
[A]*[C]

[E] = 
[D]/[C]

λmax CI CR

Slp 0.33 0.41 0.38 0.34 0.30 0.27 0.24 0.22 0.20 0.18 0.17 3.03 0.275 3.368 12.236 11.708 0.071 0.047
Ele 0.17 0.20 0.26 0.26 0.24 0.22 0.20 0.19 0.17 0.16 0.15 2.23 0.202 2.506 12.386
Asp. 0.11 0.10 0.13 0.17 0.18 0.18 0.17 0.16 0.15 0.14 0.14 1.63 0.149 1.837 12.356
RB 0.08 0.07 0.06 0.09 0.12 0.13 0.14 0.13 0.13 0.13 0.12 1.20 0.109 1.332 12.173
LULC 0.07 0.05 0.04 0.04 0.06 0.09 0.10 0.11 0.11 0.11 0.11 0.89 0.080 0.957 11.897
STI 0.06 0.04 0.03 0.03 0.03 0.04 0.07 0.08 0.09 0.09 0.09 0.65 0.059 0.683 11.594
SPI 0.05 0.03 0.03 0.02 0.02 0.02 0.03 0.05 0.07 0.07 0.08 0.47 0.043 0.486 11.324
SB 0.04 0.03 0.02 0.02 0.02 0.01 0.02 0.03 0.04 0.05 0.06 0.34 0.031 0.345 11.143
Litho 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.04 0.05 0.25 0.022 0.248 11.096
Soil 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.18 0.016 0.183 11.198
LB 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.14 0.012 0.141 11.388
∑ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 11.00 1.00 128.791

Table 3   Random index (Saaty 
1980)

Number of criteria 2 3 4 5 6 7 8 9 10 11

RI 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51
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susceptible zone maps are depicted in Figs. 14 and 15. A 
considerable number of landslides occurred on agricultural 
land, higher slopes, and in areas with higher SPI. 39.13% 
and 43.48% of landslide incidences have been recorded in 
the low susceptible zone of the maps prepared using the 

F-AHP and AHP methods, respectively. These landslides 
have occurred within a 100 m buffer distance of roads. This 
confirms that the occurrence of landslides in this area is 
mainly due to anthropogenic reasons (road cuttings). The 
study found that unscientific hill cutting for road widening 

Table 4   Pair-wise comparisons of parameters

Slp Ele Asp. RB LULC STI SPI SB Litho Soil LB

Slp (1,1,1) (1,2,3) (2,3,4) (3,4,5) (4,5,6) (5,6,7) (6,7,8) (7,8,9) (8,9,10) (9,10,11) (11,11,11)
Ele (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4) (3,4,5) (4,5,6) (5,6,7) (6,7,8) (7,8,9) (8,9,10) (9,10,11)
Asp. (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4) (3,4,5) (4,5,6) (5,6,7) (6,7,8) (7,8,9) (8,9,10)
RB (1/5,1/4,1/3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4) (3,4,5) (4,5,6) (5,6,7) (6,7,8) (7,8,9)
LULC (1/6,1/5,1/4) (1/5,1/4,1/3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4) (3,4,5) (4,5,6) (5,6,7) (6,7,8)
STI (1/7,1/6,1/5) (1/6,1/5,1/4) (1/5,1/4,1/3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4) (3,4,5) (4,5,6) (5,6,7)
SPI (1/8,1/7,1/6) (1/7,1/6,1/5) (1/6,1/5,1/4) (1/5,1/4,1/3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4) (3,4,5) (4,5,6)
SB (1/9,1/8,1/7) (1/8,1/7,1/6) (1/7,1/6,1/5) (1/6,1/5,1/4) (1/5,1/4,1/3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4) (3,4,5)
Litho (1/10,1/9,1/8) (1/9,1/8,1/7) (1/8,1/7,1/6) (1/7,1/6,1/5) (1/6,1/5,1/4) (1/5,1/4,1/3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4)
Soil (1/11,1/10,1/9) (1/10,1/9,1/8) (1/9,1/8,1/7) (1/8,1/7,1/6) (1/7,1/6,1/5) (1/6,1/5,1/4) (1/5,1/4,1/3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1,2,3)
LB (1/11,1/11,1/11) (1/11,1/10,1/9) (1/10,1/9,1/8) (1/9,1/8,1/7) (1/8,1/7,1/6) (1/7,1/6,1/5) (1/6,1/5,1/4) (1/5,1/4,1/3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1)

Table 5   Geometric means of 
fuzzy comparison values

Fuzzy geometric mean 
value ( ̃r

i
)

Slp 3.98 4.91 5.73

Ele 2.90 3.71 4.61
Asp. 2.09 2.72 3.48
RB 1.50 1.96 2.55
LULC 1.07 1.40 1.84
STI 0.76 1.00 1.32
SPI 0.54 0.71 0.94
SB 0.39 0.51 0.67
Litho 0.29 0.37 0.48
Soil 0.22 0.27 0.35
LB 0.17 0.20 0.25
∑r̃

i
13.90 17.77 22.22

(∑r̃
i
)−1 0.05 0.06 0.17

Table 6   Relative fuzzy weights 
of each parameter

Fuzzy weight ( ̃w
i
)

Slp 0.179 0.276 1.000

Ele 0.130 0.209 0.804
Asp. 0.094 0.153 0.607
RB 0.067 0.111 0.446
LULC 0.048 0.079 0.322
STI 0.034 0.056 0.230
SPI 0.024 0.040 0.164
SB 0.018 0.029 0.117
Litho 0.013 0.021 0.083
Soil 0.010 0.015 0.060
LB 0.008 0.011 0.044

Table 7   Averaged and normalized relative weights of parameters

Weight (Mi) Normalized 
weight (Ni)

Slp 0.485 0.265
Ele 0.381 0.208
Asp. 0.285 0.155
RB 0.208 0.113
LULC 0.150 0.082
STI 0.107 0.058
SPI 0.076 0.041
SB 0.054 0.030
Litho 0.039 0.021
Soil 0.028 0.015
LB 0.021 0.011
∑ 1.83 1.00

Table 8   Area and percentage of susceptible zones: AHP method

Landslide suscepti-
ble zones

Area (Sq. Km) Percentage of the area 
of the susceptible 
zones

Very low 93.71 17.87
Low 153.27 29.23
Moderate 125.54 23.94
High 92.97 17.73
Very high 58.89 11.23
Total 524.38 100
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and construction and the lack of proper slope protection 
measures are the major reasons for landslides. Toe erosion is 

also one of the main reasons for slope instability. The ROC 
curve analysis for both the AHP and the F-AHP methods 
estimated fair AUC values as depicted in Fig. 16.

The hillside roads affect the stability of a slope by overload-
ing and over steepening fill slopes, altering natural flow paths 
and concentrating water on unstable hill slopes, and undercut-
ting unstable slopes (He et al. 2019). Many researchers (Nepal 
et al. 2019; Nanda et al. 2020; Pasang and Kubíček 2020; Yin 
et al. 2020) conducted landslide susceptibility mapping along 
road cuttings or road corridors. A study by Bui et al. (2012) 
found road cuttings as one of the major factors influencing 
landslide occurrence in the Hoa Binh province (Vietnam). He 
and others (He et al. 2019) in their study conducted in Sichuan, 
China found that road excavation and rainfall resulted in the 

Table 9   Area and percentage of susceptible zones: F-AHP method

Landslide suscepti-
ble zones

Area (Sq. Km) Percentage of the area 
of the susceptible 
zones

Very low 91.56 17.46
Low 150.24 28.65
Moderate 127.79 24.37
High 97.27 18.55
Very high 57.52 10.97
Total 524.38 100

Fig. 14   Landslide susceptible 
zones: AHP method
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reactivation of a debris slide. Like the findings of this study, 
Nanda et al. (2020) also found that human activities like con-
struction of roads and buildings, and agricultural practices are 
the major reasons for landslide occurrence. Improper land-
use practices can decrease the stability of slopes. Karsli et al. 
(2009) found that the conversion of land cover for agriculture 
in Ardesen (Turkey) resulted in the occurrence of many land-
slides with many casualties and property damage. The slope 
is an important factor influencing landslide occurrence in an 
area because the downslope shear stress on a particle increases 
with an increase in slope angle (Rea 2013). In their study, Nak-
ileza and Nedala (2020) found that most of the slope failures 
were initiated at mid to upper slope positions. Reichenbach 
et al. (2014) also pointed out the influence of steeper slopes on 

soil slide initiation. Getachew and Meten (2021) in their study 
found that more than 84% of landslides fall on slopes greater 
than 25°. SPI estimates the capacity of streams to modify the 
geomorphology of a region through erosion and transportation 
of materials (Vijith and Dodge-Wan 2019). Poudyal (2012) 
also found SPI as one of the most influential factors for land-
slide occurrence.

Conclusions

Due to its unique geological and geomorphological settings, 
the Western Ghats region is prone to landslides. The land-
slide susceptible zones in the study area were demarcated 

Fig. 15   Landslide susceptible 
zones: F-AHP method
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using the AHP and F-AHP methods, and the spatial relation-
ship and influence of eleven condition factors were evalu-
ated. The area of the landslide susceptible zones is clas-
sified into five zones: very low, low, moderate, high, and 
very high. The study confirmed road cuttings as the most 
influential factor. The number of landslides that occurred 
on agricultural land and close to the streams confirms the 
influence of agricultural practices and land modifications, 
and undercutting and erosion by the streams. The valida-
tion of the prepared susceptibility maps using the ROC 
curve method confirmed that both methods can be applied 
for landslide susceptibility mapping with an AUC value of 
0.71 (AHP method), and 0.76 (F-AHP method). As the AUC 
value for F-AHP is higher, it was selected as the best model. 
As per the F-AHP model, 10.97% of the study area is clas-
sified as a very high landslide susceptible zone. The find-
ings of the study suggest the need for effective mitigation 
measures, especially nature-based solutions (bioengineering 
techniques) for landslide mitigation along road cuttings and 
stream banks, as these are cost effective. The prepared map 
will be useful for landuse planners and policy makers in 
adopting suitable measures to reduce the impacts of land-
slides in areas of similar geoenvironmental conditions.
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