
Vol.:(0123456789)

JMST Advances
https://doi.org/10.1007/s42791-024-00085-x

LETTERS

Large language model based collaborative robot system for daily task
assistance

Seunguk Choi1 · David Kim1 · Myeonggyun Ahn1 · Dongil Choi1 

Received: 7 June 2024 / Revised: 21 July 2024 / Accepted: 22 July 2024
© The Korean Society of Mechanical Engineers 2024

Abstract
The recent advancements in natural language processing models have spurred extensive research into robots that interact
with and execute tasks based on human natural language commands. This study introduces a robot system that interprets
human commands using a large language model (LLM) to understand the intent and relay it to a robot for task execution.
The robot system comprises three key components: natural language command inference, vision, and learning-based control
systems. The command inference system utilizes the GPT-4 model to interpret natural language commands and issue task
execution orders to the robot. Based on the transformer model OWL-ViT, the vision system recognizes objects related to
user commands and communicates the findings to the inference system. Upon understanding the user’s commands, a UR3
robot executes the tasks using the Diffusion Policy. The robot system is integrated using ROS (robot operating system) and
validated through experiments. Through the experiment, a success rate of 65% was achieved.

Graphical abstract

Keywords  Large language model · Learning-based control · Vision transformer

Online ISSN 2524-7913
Print ISSN 2524-7905

Extended author information available on the last page of the article

http://orcid.org/0000-0002-0566-2922
http://crossmark.crossref.org/dialog/?doi=10.1007/s42791-024-00085-x&domain=pdf

	 JMST Advances

List of symbols
Q	� Query value
K	� Key value
V	� Value
W	� Attention score
b	� Weight value
A
t

k
	� Robot’s action data

�2I	� Gaussian noise variance
O

t
	� Environmental data

k	� Iteration step count
��	� Noise prediction network
�	� Noise prediction network decay factor
�	� Denoising decay factor

1  Introduction

1.1 � Background of the study

The development of large language model (LLM) has been
progressing rapidly, with increasing applications in the
robotics field. LLM have evolved naturally due to advance-
ments in deep learning and artificial neural networks, ena-
bling the training on massive datasets. Notably, with the
advent of transformers [1], the need for sequential process-
ing as seen in traditional RNNs or LSTMs [2] has been
eliminated, allowing for parallel processing of large data-
sets, exemplified by LLM like BERT [3] and the GPT series
[4]. These models have made interpreting human natural
language intents and inferring context feasible. However,
generating user-specific responses remains challenging,
potentially leading to responses that hinder robot task per-
formance due to misinterpretation of user intent.

Recently, robots employing large language models, such
as Tidybot [5], RT-2, and NICOL [6], have been introduced.
These robots interpret human natural language commands
through LLM and execute predefined actions. Tidybot was
developed as a robot for household cleaning. Before start-
ing the cleaning process, the robot is provided with several
examples of specific objects, which are then fed into the
LLM to categorize objects and infer their rearrangement. It
performs two predefined actions, Pick and Place and Pick
and Toss, to organize items according to user preferences.

However, since Tidybot focuses on the categorization
capabilities of the LLM, there is an issue where the pre-
defined actions appear unnatural when the robot performs
complex tasks from a control perspective. Additionally, add-
ing new actions to the robot requires a process of collecting
new data and solving high-cost problems.

1.2 � Purpose of the study

The robotic system proposed in this study aims to under-
stand human natural language commands and perform
tasks using the UR3 robot. The system integrates a natu-
ral language inference system to interpret user commands,
a vision system to identify objects related to these com-
mands using visual data, and a control system to execute
the tasks when feasible. This integration is achieved
through ROS (robot operating system), enabling seamless
task execution.

The research focuses on developing a system that infers
human natural language, recognizes objects, and com-
mands the robot accordingly. GPT-4 is employed as the
large language model to infer user commands, and the
Transformer-based OWL-ViT model is used to recognize
objects related to the commands, with computations per-
formed on a host PC. Both GPT-4 and OWL-ViT utilize
pretrained models via APIs, with GPT-4 API incorporating
CoT (chain of thought) [7] to understand user intentions.

The goal is to execute the inferred tasks using the UR3
robot with learning-based control, leveraging the com-
mands processed by the large language model. The entire
system is integrated through ROS to ensure cohesive and
efficient task execution.

2 � Natural language command inference
system

2.1 � Large language model GPT‑4‑Turbo

The GPT-4 model is a large language model released by
OpenAI. Like most large language models, the GPT model
is based on the transformer architecture. While the trans-
former architecture consists of an encoder–decoder struc-
ture, the GPT series models are constructed using only the
decoder part. Through the decoder, GPT predicts the next
word and understands the context of the input sequence
by considering the relationships between words using the
self-attention mechanism. In this study, we constructed a
command inference system using the GPT-4-Turbo-pre-
view model from the GPT series.

Detailed information about the training methods and
the number of layers of the GPT-4 model is not disclosed,
but it is known to operate similarly to GPT-3. The GPT-3
model consists of two main components: the multi-head
self-attention mechanism and position-wise feedforward
neural networks [8]. Each layer contains these two compo-
nents, and GPT-3 has a total of 96 layers. The model needs
the ability to understand contextual information regarding

JMST Advances	

the continuous context given as input. This capability is
enabled by simultaneously considering the information
from different positions in the sequence through the multi-
head self-attention mechanism. When a sentence is input
into the context text, the model splits the sentence into
individual tokens and converts them into high-dimensional
vectors. These converted vectors are multiplied by weight
matrices and then re-converted into keys, queries, and val-
ues. Here, the query is the vector of the currently focused
word, the key evaluates the relationship with other words,
and the value is used to calculate the output based on the
input. The mechanism calculates the attention score as
shown in Eq. (1) to represent the relationships of each
word in the context. Then, the attention score is applied
to the position-wise feedforward neural network, as shown
in Eq. (2). This process enhances the model’s expressive
power while processing each position independently.

Here, max
(

0, xW1 + b1

)

 is the ReLU (rectified linear unit)
activation function, which allows the learning of non-linear
complex patterns and removes negative values. The final
output vector is generated through these two main compo-
nents, enabling the model to understand contextual infor-
mation and identify essential patterns in natural language
processing to infer the user’s command intent and generate
appropriate responses.

(1)Attention(Q,K,V) = softmax

�

QKT

√

d
k

�

V�

0

(2)AFFN(x) = max
(

0, xW1 + b1

)

W2 + b
2

The GPT-4-Turbo-preview model can handle a maxi-
mum of 128,000 tokens and the training data include infor-
mation up to December 2023. Tokens represent the num-
ber of characters the model can process at one time and a
higher number allows the understanding and processing
of more complex commands or questions. In this study,
the command inference system was constructed using the
GPT-4-Turbo-preview API to process user commands.

2.2 � Prompt engineering

Prompt engineering is a technique that provides a large
language model with the user’s intent in advance to induce
the generation of optimal responses. Using one of the
prompt engineering techniques, chain-of-thought (CoT),
the performance of the GPT-4 model was enhanced. CoT
prompt technology explicitly provides intermediate rea-
soning steps to the language model to help solve complex
problems. As shown in Fig. 1, the model’s responses dif-
fer when using a general prompt versus CoT. The primary
reasons for different responses to the same question are
twofold: reducing errors in the reasoning process by learn-
ing problem-solving methods through providing reasoning
steps to the model and enabling Few-Shot [9] learning to
allow the model to infer correct answers.

In the command inference system of this paper, prompt
such as Fig. 2 were structured into a Pre-Prompt.txt file
and provided to the GPT-4 model in advance. This allows
the system to infer user input and generate flags for task
execution. A total of 20 examples were created, consist-
ing of 10 scenarios where command execution is possible
and 10 scenarios where it is not. Through these structured
examples, the system generates responses and performs
control commands via ROS.

Fig. 1   Standard prompt (left), chain of thought prompt (right)

	 JMST Advances

2.3 � GPT‑4‑Turbo‑Preview API

To use the GPT-Turbo-Preview model, a paid API key
must be obtained from OpenAI. The method for using the
API involves installing the OpenAI library, registering
the API key, and paying based on the length of the used
tokens. After connecting to the host server, the raw format
response of the model is as follows. The API call returns
various information, including the unique identifier ID,
model information, and token count. The information we
will use is the model’s response, denoted as Text. In string
format, this text will be input into the query of OWL-
ViT, explained in the next section, and integrated with the
vision system.

3 � Vision transformer‑based vision system

3.1 � OWL‑ViT model

In this study, we employed the OWL-ViT (open world locali-
zation using vision transformers) model, a type of Open-
Vocabulary Object Detection (OVOD) model, for the vision
system. OWL-ViT is based on the Vision Transformer archi-
tecture and is particularly strong in zero-shot learning [10].
OVOD models possess the capability to recognize and detect
new objects that were not included in the training data. Most
OVOD models, including OWL-ViT, rely on CLIP (Contras-
tive Language-Image Pre-Training), trained with text-image
pairs, enabling them to understand complex textual descrip-
tions and recognize corresponding objects.

Fig. 2   Example of prompt for command inference

Fig. 3   OWL-ViT architecture

JMST Advances	

The architecture of OWL-ViT, as shown in Fig. 3, con-
sists of text and image encoders. Similar to how the GPT
model processes text, the text data are divided into indi-
vidual words using a tokenizer. These words are then con-
verted into embedding vectors and processed through the
transformer encoder. The input RGB data are divided into
16 × 16 patches for image encoding, then converted into one-
dimensional vectors with positional encoding added. These
vectors, including the positional information, are sent to
the multilayer perceptron head. The similarity between the
resulting text and image embedding vectors is calculated,
and positional information is matched for object recognition.

3.2 � Application of the OWL‑ViT model

To apply OWL-ViT to the system, the model must be loaded
through HuggingFace’s Transformers library. After loading
the model and its related configurations, the RGB data are
converted into a tensor format for application. The objects
to be recognized are set as text query values, tokenized, and
then provided as input to the model. When the model was
initially applied on a CPU, high computational demands
resulted in low frame rates. The model was executed on
a GPU to address this issue, significantly enhancing per-
formance by approximately tenfold, as shown in Fig. 4.
Although using a GPU increased frame rate, it also required
substantial resources. Therefore, in the integrated system,

the command inference system and vision system were run
on a single PC, while the learning-based robot control algo-
rithm was executed on a separate PC, with all components
integrated using ROS.

3.3 � Application of the vision system
in the command inference system

Before the robot can execute tasks based on natural language
commands from the user, it must verify the presence of nec-
essary objects for task execution. This process involves send-
ing up to ten object names related to the command from
GPT-4 to the OWL-ViT as text query values for detection.
OWL-ViT performs object recognition based on text queries,
identifying the most accurate objects. Multithreading was
employed to separate the threads and integrate both models
into the system. When receiving responses from GPT-4, a
queue operates to store the responses in the texts variable
as queries. The list format values are updated each time
an input from the GPT-4 model is received. The robot will
recognize only itself if no relevant objects are identified in
the response. As shown in Fig. 5, when the response from
GPT-4 includes “Tissue,” it is entered as a text query, and
OWL-ViT detects and signals the object’s presence. The
right image with the red box indicates successful detection
of “Tissue.”

Fig. 4   Frame comparison using
CPU (left) and GPU (right)

Fig. 5   GPT-4 response to
OWL-ViT

	 JMST Advances

4 � Learning‑based robot control system

4.1 � Learning based control

Unlike model-based control, learning-based control involves
adjusting and optimizing the system’s operations using
machine learning techniques. The primary methods used
in learning-based control include reinforcement learning,
supervised learning, and unsupervised learning. This paper
focuses on applying supervised learning within the learn-
ing-based control framework. Supervised learning involves
collecting data from the actual control system and training
algorithms to control the system. The advantage of super-
vised learning is that, by leveraging extensive data, it can
perform precise control even for complex or detailed tasks.

4.2 � Diffusion policy algorithm

The supervised learning model employed in this study is the
diffusion policy algorithm [11]. The diffusion policy algo-
rithm is a supervised learning model developed by applying
the approach of denoising diffusion probabilistic models
(DDPMs) to learning policies. The basic concept of the dif-
fusion model is to predict clean data x0 from noisy data xk .
The process consists of the forward process, which creates
xk by adding Gaussian noise to the clean data x0 at each of
the K steps, and the reverse process, which predicts x0 by
reversing the noise addition process.

The policy equation for the diffusion policy algorithm is
given in Eq. (3). The input data includes the Observation
Space, containing the robot’s information, and the output
data consists of the robot’s Action. At the current time step t,
the robot’s output data, Action, at the kth step of the diffusion
process is computed by subtracting the U-NET[12] based
noise prediction network value, scaled by the network decay
factor, and adding Gaussian noise to obtain the Action value
at the (k − 1)th step. Despite the process aiming to produce
clean data, Gaussian noise is added to prevent model overfit-
ting and ensure training stability.

The loss function is described by Eq. (4). It starts by ran-
domly selecting data x0 without added noise from the data-
set. For each sample, a denoising step k is randomly chosen,
and random noise �

k
 with appropriate variance for that step

is sampled. �
k
 represents the noise added to the actual x0 .

The predicted x0 by the noise prediction network at step k is
obtained from ��(x0 + �

k
, k) . The Loss Function is defined

using the Mean Squared Error between these values.

(3)A
t

k−1
= �(At

k
− ���

(

O
t
,At

k
, k
)

+ N(0, �2
I))

(4)Loss = MSE(�
k
, ��(x0 + �

k
, k))

4.3 � Virtual environment configuration for diffusion
policy algorithm control

Data collection and training were conducted in a virtual
environment for experimentation and validation to train the
diffusion policy algorithm. The virtual environment was
constructed using the Robosuite library, which employs
the MuJoCo (multi-joint dynamics with contact) simulator.
MuJoCo, an open-source software owned by DeepMind, is
widely used for virtual environment experiments in robotics,
reinforcement learning, and dynamic control. The virtual
environment setup is shown in Fig. 6.

The manipulator used in the simulation environment was
the Panda from Franka Robotics. The task was to move a
can to the red box area on the right side of Fig. 6. The end-
effector used was the Franka Hand from the same company.

To control the Panda manipulator in the simulation envi-
ronment, a Spacemouse from 3Dconnexion (Fig. 7) was
used. The Spacemouse is typically used with 3D modeling
software such as CAD programs and can implement move-
ment in 3D space with a 6-degree-of-freedom sensor. It
provides control inputs to the manipulator with three trans-
lational movements (x, y, z) and three rotational movements
(roll, pitch, yaw). The detailed control input values of the
Spacemouse are summarized in Table 1.

Operational space control (OSC) is the control method
for the manipulator using the Spacemouse in the simulation
environment. Since the Robosuite library supports OSC, it
is straightforward to use. OSC calculates the required joint
torques to minimize the difference between the current and
target poses with minimal kinetic energy. The control frame
is defined in the space between the gripper fingers, and
the joint torque commands are mapped by calculating the
proportional-derivative gain vector between position and
orientation differences.

4.4 � Data collection method in virtual environment

In the virtual environment, the manipulator was directly
controlled by a human using the Spacemouse to perform
pick-and-place tasks. Data collection concluded when the
manipulator successfully picked up the can and placed it in
the designated red area shown in Fig. 6. During this demon-
stration, the robot’s state and control inputs were collected
as input–output data and stored in HDF5 format.

HDF5 (hierarchical data format version 5) is a file format
designed for storing large amounts of data. The file con-
sists of groups, attributes, datasets, and metadata, enabling
a hierarchical structure within the file system. Specifically,
attributes provide additional information about datasets and
groups in key-value pairs. Groups contain datasets, where
the collected data are stored, and metadata exists for the file,
groups, and datasets to describe their respective information.

JMST Advances	

A total of 200 demonstrations were conducted and the col-
lected data are summarized in Table 2.

4.5 � Training data collection in virtual environments

The collected data was used to train the diffusion policy
algorithm. The input data, robot state data, was fed into
O

t
 and the output data, control commands from the Spac-

emouse, was fed into At for the denoising process. RGB data
were processed through a noise scheduler and cropped to
76 × 76 pixels. A Resnet18 neural network, comprising 18
layers, was employed for image processing. Resnet18 uses

Fig. 6   MuJoCo simulator environment

Fig. 7   3Dconnexion Spacemouse wireless model

Table 1   Spacemouse controls to Panda robot and gripper

Control Command

Right button Reset simulation
Left button (hold) Close gripper
Move mouse laterally Move arm horizon-

tally in x–y plane
Move mouse vertically Move arm vertically

	 JMST Advances

Residual Learning with Skip Connections to address gradi-
ent vanishing issues. The noise prediction network employed
a U-NET structure, which upscales data dimensions to 256,
512, and 1024, then downscales them again. This process
has the advantage of minimizing data loss related to feature
points by linking the previously lost information within the
same dimension.

The training parameters were set as follows: 2000 epochs,
AdamW optimizer, and a batch size 256. The WanB plat-
form was used to monitor training progress and results.
WanB supports various machine learning frameworks such
as PyTorch, TensorFlow, and Keras. This feature provides
intuitive results to the user by supporting the tracking of
training progress and the training environment.

4.6 � Training results

Figure 8 shows the training results. The training loss con-
verged to zero, indicating proper training. Although the
validation loss deviated slightly to around 0.1, it showed
convergence, suggesting robustness to new data.

The trained model was then applied in the virtual environ-
ment, successfully completing the task of moving the can,
as shown in Fig. 9. Out of 100 evaluations, 79 tasks were
successfully completed. For comparison, the same dataset
was used to train another algorithm, IBC (implicit behav-
ior cloning), which learns behavior distribution using the
maximum entropy principle. The IBC algorithm achieved
a 40% success rate, demonstrating that the diffusion policy
algorithm performed better.

5 � System integration and experiment in real
environment

5.1 � Experimental setup and data training

The three systems described earlier were integrated and
tested in a real-world environment. The hardware configura-
tion used in the experiments is as follows: Intel’s RealSense
D435 was employed for the command inference system, and
the vision system and the RealSense D455 were used for
the learning-based control system. Thus, two cameras were
utilized. The data format sent from the cameras to the system
is RGB data. Detailed camera specifications are summarized
in Table 3.

The manipulator used was the UR3 from Universal
Robots. The UR3 is a robot with six degrees of freedom
that is widely utilized in manufacturing, education, and other
fields. Due to its flexibility and precision, the UR3 is particu-
larly advantageous in small workspaces. Detailed specifica-
tions are summarized in Table 4.

5.2 � UR3 control dataset collection and training

New real-environment data had to be collected to apply the
diffusion policy algorithm to the UR3 manipulator. The goal

Table 2   Collected data lists

Data Shape

Object with shape (118, 14)
End effector pose (118, 3)
End effector quaternion (118, 4)
End effector velocity angle (118, 3)
End effector velocity linear (118, 3)
Gripper qpos (118, 2)
Gripper qvel (118, 2)
Joint pose (118, 7)
Joint velocity (118, 7)

Fig. 8   Result graph of training

JMST Advances	

was to move a tissue to a red area. During data collection,
the manipulator was controlled using a Spacemouse. Move-
ments were limited to the X–Y plane relative to the robot’s
end effector. A total of 200 demonstrations of moving the
tissue to the target area were conducted, with the data col-
lected in the same format as the simulation environment.

The training was conducted using a workstation. The
parameters set for training were epochs = 600, batch
size = 64, and weight decay = 1.0 e−6. The training was
monitored using the WanB platform. As shown in Fig. 10,

the results indicated that both the training loss and validation
loss converged to zero, confirming that the training process
was effective.

The trained model was saved as a pt file and applied to the
actual UR3, where it performed tasks correctly. As shown
in Fig. 11, the UR3 robot accurately moved the tissue to the
target area, achieving 38 successes out of 40 trials. Addition-
ally, the system demonstrated effective control even when
the tissue was placed alongside other objects.

To verify the ability to move objects from various posi-
tions, an experiment was conducted where a tissue was
placed at random locations and moved. The results are
shown in Table 5.

5.3 � Hardware configuration in the integrated
system

The hardware configuration in the real-world environment
is illustrated in Fig. 12. The setup includes a Host PC for
the command inference and vision systems, which also
issues task execution commands to the robot. A Client PC,
used for robot control with the Diffusion Policy applied,
was also included. Both PCs were connected to RealSense
D435 and D455 cameras, respectively, to receive RGB data.
Communication between the PCs was facilitated using ROS

Fig. 9   Diffusion policy algorithm (left) and IBC algorithm (right)

Table 3   Intel Realsense D435
and D455 specification

Parameter Camera sensor properties

Camera name D435 D455
Outer dimension 90 mm, 25 mm, 25 mm

(W, L, H)
124 mm, 29 mm, 26 mm (W, L, H)

Image sensor OmniVision Technologies OV9282
Active pixels 1280 × 800
Sensor aspect ratio 8:5
Format 10-bit Raw RGB

Table 4   Universal robots UR3 specification

Degree of freedom 6 DOF
Payload 3 kg
Maximum reach 500 mm
Joint position limits A1, A2,

A3, A4,
A5: ± 360°,
A6: infinite

Joint velocity limits A1, A2,
A3: ± 180°/s,
A4, A5,
A6: ± 360°/s

Power consumption 300 W
Moderate operating setting 100 W

	 JMST Advances

noetic, which publishes topics to send control commands.
For safety, a Spacemouse and an Emergency Stop button
were prepared to allow manual control of the UR3 if neces-
sary. The UR3 and the Client PC were connected via TCP/
IP communication.

ROS (robot operating system) is an open-source frame-
work for developing robot software across various platforms.
The system configuration is as follows: when the user inputs
a natural language command, the command inference sys-
tem sends a query to the vision system to check for rel-
evant objects. The vision system then relays the presence
or absence of the objects back to the command inference
system, which subsequently sends task execution commands
to the robot control system. Based on these commands, the
robot control system initiates the control of the UR3 robot.

5.4 � Integrated system experiments

Experiments were conducted in a real-world environment
with an integrated system. When the user issued the natural
language command, “Oh no, I spilled coke,” the command
inference system identified that the user needed something to
clean up the spilled coke and relayed this query to the vision
system. The vision system successfully performed object
recognition based on the given query and communicated the
results to the command inference system. The Host PC then
published a topic to send the control command to the Client
PC for task execution. The Client PC received the topic and
issued control commands to the UR3 to move the tissue to
the target area. This process is illustrated in Figs. 13 and 14,
showing the Host PC screen and the recorded screen from a
separate camera over time.

Additional experiments were conducted using various
commands. A total of 20 different commands were given

Fig. 10   Result graph of training (UR3)

Fig. 11   Trained model applied on UR3

Table 5   Result of moving
object from random location Number of tests 40

Success 32
Fail 8

Fig. 12   Overview of Integrated System

JMST Advances	

and their success rates are summarized in Table 6. When
the command inference system accurately inferred situations
requiring tissue, the vision system recognized the tissue in
all cases. However, when commands such as “The ice is
melting” and “I caught a mosquito” were given, the com-
mand inference system did not recognize the need for clean-
ing. Hence, no task commands were sent to the robot. Addi-
tionally, in each experiment, the tissue started from a random
position. The control success rate was lower compared to the
virtual environment experiments due to insufficient training
data in the experimental environment, indicating the need
for further refinement.

6 � Conclusion

This paper introduces a robot system capable of understand-
ing and interpreting human natural language commands to
perform tasks. The system comprises three key components:
a natural language-based command inference system, a
vision transformer-based vision system, and a learning-
based control system. By applying the Chain of Thought
technique to the GPT-4 model for natural language com-
mand inference, the system accurately captures user intent
to generate appropriate responses. The inferred commands
are translated into object queries for the OWL-ViT model,
which recognizes the required objects and communicates
their presence to the command inference system, confirming
the feasibility of executing the natural language commands.
The Diffusion Policy algorithm, trained via ROS, issues
control commands to the UR3 robot to perform the tasks.
To verify the integrated system’s applicability, simulations
were conducted in the MuJoCo environment, achieving a
79% success rate for control tasks using the diffusion policy
algorithm. Furthermore, real-world experiments with the
integrated system were conducted using 20 different natural
language commands, achieving a 65% success rate. Future
research plans include integrating the inference and vision
systems to simplify the model, which is expected to reduce
system costs. Additionally, the control success rate will be
improved by constructing more diverse and complex datasets
for diffusion policy training.

Fig. 13   System experiment, host PC screen

Fig. 14   System experiment, recorded video

	 JMST Advances

Declarations 

Conflict of interest  The authors declared that there is no potential con-
flicts of interest with respect to the research, authorship, and/or publi-
cation of this article.

References

	 1.	 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N.
Gomez, I. Polosukhin, Attention is all you need, in Advances in
neural information processing systems 30. ed. by I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R.
Garnett (Curran Associates Inc, USA, 2017)

	 2.	 A. Sherstinsky, Fundamentals of recurrent neural network (RNN)
and long short-term memory (LSTM) network. Phys. D 404,
132306 (2020)

	 3.	 J.D.M.W.C. Kenton, L.K. Toutanova, BERT: Pre-training of
deep bidirectional transformers for language understanding, in
Proceedings of NAACL-HLT. (Association for Computational
Linguistics, USA, 2019), pp.4171–4186

	 4.	 T. Brown, B. Mann, N. Ryder, M. Subbiah, J.D. Kaplan, P. Dha-
riwal et al., Language models are few-shot learners. Adv. Neural.
Inf. Process. Syst. 33, 1877–1901 (2020)

	 5.	 J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song et al.,
Tidybot: personalized robot assistance with large language mod-
els. Auton. Robot. 47(8), 1087–1102 (2020)

	 6.	 M. Kerzel, P. Allgeuer, E. Strahl, N. Frick, J.G. Habekost, M. Eppe
et al., Nicol: a neuro-inspired collaborative semi-humanoid robot
that bridges social interaction and reliable manipulation. IEEE
Access 11, 123531–123542 (2023)

	 7.	 J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi et al.,
Chain-of-thought prompting elicits reasoning in large language
models. Adv. Neural. Inf. Process. Syst. 35, 24824–24837 (2022)

	 8.	 G.I. Winata, A. Madotto, Z. Lin, R. Liu, J. Yosinski, P. Fung,
Hardware accelerator for multi-head attention and position-wise
feed-forward in the transformer, in 2020 IEEE 33rd international
system-on-chip conference (SOCC). (IEEE, USA, 2020), pp.84–89

	 9.	 S. Lu, M. Wang, S. Liang, J. Lin, Z. Wang, Language models are
few-shot multilingual learners, in 2020 IEEE 33rd international
system-on-chip conference (SOCC). (IEEE, USA, 2020), pp.84–89

	10.	 M. Minderer, A. Gritsenko, A. Stone, M. Neumann, D. Weis-
senborn, A. Dosovitskiy et al., Simple open-vocabulary object
detection, in European conference on computer vision. (Springer
Nature Switzerland, Cham, 2022), pp.728–755

	11.	 C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, S. Song,
Diffusion policy: visuomotor policy learning via action diffusion.
arXiv (2020). https://​doi.​org/​10.​4855/​arXiv.​2303.​04137

	12.	 O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks
for biomedical image segmentation, in Medical image computing
and computer-assisted intervention—MICCAI 2015: 18th interna-
tional conference, Munich, Germany, October 5–9, 2015, proceed-
ings, part III 18. (Springer International Publishing, Cham, 2015),
pp.234–241

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Table 6   Experiment results Trial Input (user command) Command
inference
system

Vision system Manipula-
tor control
system

1 “Oh no, coke splattered on me.” ○ ○ ○
2 “I am crying.” ○ ○ ○
3 “I spilled coke.” ○ ○ ○
4 “I spilled soup on my clothes.” ○ ○ X
5 “I knocked over the kimchi container.” ○ ○ ○
6 “Something is on the corner of my mouth.” ○ ○ ○
7 “My phone is dirty.” ○ ○ X
8 “I caught a mosquito.” X X X
9 “My forehead is bleeding.” ○ ○ ○
10 “The ice cream is melting.” ○ ○ X
11 “Crumbs are falling as I eat a hot dog.” ○ ○ ○
12 “The water from the purifier is leaking.” ○ ○ ○
13 “I painted, and now my clothes are stained.” ○ ○ ○
14 “The ice is melting.” X X X
15 “I spat accidentally.” ○ ○ ○
16 “My hands are sweaty.” ○ ○ ○
17 “There is a lot of moisture on the windowsill.” ○ ○ X
18 “Why is water leaking from the ceiling?” ○ ○ ○
19 “Crumbs are falling as I eat bread.” ○ ○ ○
20 “Ramen soup spilled on the floor.” ○ ○ ○

https://doi.org/10.4855/arXiv.2303.04137

JMST Advances	

Seunguk Choi  received his B.S.
degree in mechanical engineer-
ing from Myongji University,
Yongin-si, Gyeonggi-do, Repub-
lic of Korea, in 2021. He is cur-
rently a graduate student at
Myongji University. His research
interests include learning-based
control, large language model,
and reinforcement learning.

David Kim  received his B.S. and
M.S. degrees in mechanical
engineering from Myongji Uni-
versity, Yongin-si, Gyeonggi-do,
Republic of Korea, in 2020 and
2022, respectively, and is cur-
rently a Ph.D. Candidate in the
Dynamic Robot Control Labora-
tory, Department of Mechanical
Engineering, Myongji Univer-
sity, Yongin-si, Gyeonggi-do,
Republic of Korea. His research
interests include design and con-
trol of autonomous robot, mobile
manipulator, and motion
control.

Myeonggyun Ahn  received his
B.S. degree in mechanical engi-
neering from Myongji Univer-
sity, Yongin-si, Gyeonggi-do,
Republic of Korea, in 2024. He
is currently a graduate student at
Myongji University. His research
interests include design and con-
trol of unmanned aerial vehicle
and real-time control.

Dongil Choi  received his B.S.,
M.S., and Ph.D. degrees in
mechanical engineering from
Korea Advanced Institute of Sci-
ence and Technology (KAIST),
in 2005, 2007, and 2012, respec-
tively. He is currently a professor
at Myongji University. His
research interests include design
and control of autonomous robot,
biped humanoid robot, and
mobile manipulator.

Authors and Affiliations

Seunguk Choi1 · David Kim1 · Myeonggyun Ahn1 · Dongil Choi1 

 *	 Dongil Choi
	 dongilc@mju.ac.kr

1	 Dept. of Mechanical Engineering, Myongji University,
Yongin, South Korea

http://orcid.org/0000-0002-0566-2922

	Large language model based collaborative robot system for daily task assistance
	Abstract
	Graphical abstract

	1 Introduction
	1.1 Background of the study
	1.2 Purpose of the study

	2 Natural language command inference system
	2.1 Large language model GPT-4-Turbo
	2.2 Prompt engineering
	2.3 GPT-4-Turbo-Preview API

	3 Vision transformer-based vision system
	3.1 OWL-ViT model
	3.2 Application of the OWL-ViT model
	3.3 Application of the vision system in the command inference system

	4 Learning-based robot control system
	4.1 Learning based control
	4.2 Diffusion policy algorithm
	4.3 Virtual environment configuration for diffusion policy algorithm control
	4.4 Data collection method in virtual environment
	4.5 Training data collection in virtual environments
	4.6 Training results

	5 System integration and experiment in real environment
	5.1 Experimental setup and data training
	5.2 UR3 control dataset collection and training
	5.3 Hardware configuration in the integrated system
	5.4 Integrated system experiments

	6 Conclusion
	References

