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Abstract
Design history reconstruction refers to the process of identifying the features that comprise a computer-aided design (CAD) 
model, determining the parameter values associated with these features, and establishing the order in which the features 
were applied. This is necessary when working with a CAD model that lacks a design history. While commercial CAD 
programs typically support design history as their primary representation, it is common for the design history to be lost in 
many cases due to limitations in standard CAD file formats or for the protection of design knowledge. This loss of design 
history can make it challenging to modify CAD models and can result in higher product design costs. Research on design 
history reconstruction has been ongoing since the late 1980s to tackle this issue. However, previous studies have struggled 
to find solutions that can be widely applied. Nevertheless, recent advancements in deep learning have prompted researchers 
to explore the use of deep learning techniques for design history reconstruction. This article presents several such research 
endeavors, along with a discussion of pending challenges and directions for future research.
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1 Introduction

In modern manufacturing, computer-aided design (CAD) 
models have become a key component for integrating design, 
analysis, and production. Designers employ CAD to create 
three-dimensional (3D) models of products, utilizing these 
models for analysis and process planning, allowing them to 
preemptively identify potential product issues. Subsequently, 
the 3D CAD model undergoes iterative modifications to 
address issues or achieve the optimal design. Furthermore, 
the life cycle of the final CAD model does not conclude 
at this point; it is frequently reused in other designs with 
minor modifications. This process is made feasible through 
the parametric representation of CAD models.

3D CAD models are represented as a procedural model 
of features. A feature is a geometric shape with engineer-
ing meaning, defined by parameters. For example, a drilling 
feature not only has a cylindrical shape but also includes the 
meaning of the drilling operation, with parameters such as 
drill diameter and drilling depth. Designers apply various 
features in a specific sequence to define the final shape. Con-
sequently, the order in which features are applied, known 
as the design history, is crucial. When modifying a CAD 
model, designers modify the parameter values of the fea-
tures. Subsequently, by reapplying the features according to 
the design history, a modified shape is generated [1].

Unfortunately, incorporating features and design his-
tory into released 3D CAD models is challenging. First, 
the widely recognized 3D CAD file exchange format, ini-
tial graphics exchange specification (IGES), lacks support 
for features and design histories. Additionally, while the 
international standard ISO 10103 [2], known as standard 
for the exchange of product model data (STEP), does sup-
port these features, commercial CAD systems do not yet 
fully support this standard. Consequently, only shapes 
represented by boundary representation (B-rep) models 
can currently be used. Another reason that enterprises 
intentionally exclude design history from CAD models 
shared with contractors is to safeguard proprietary design 
knowledge. Although shapes can be reconstructed through 
reverse engineering, only the final shape can be obtained, 
making CAD model modification extremely difficult when 
design history is excluded. This results in prolonged prod-
uct development cycles and escalated costs.

From a manufacturing perspective, converting the design 
features of the reconstructed design history into machining 
features enables integration between CAD and computer-
aided manufacturing (CAM). It would also be possible to 
utilize the additive and subtractive parts of the design fea-
tures to enable hybrid additive–subtractive manufacturing.

To address these issues, extensive research efforts 
have been conducted since the late 1980s aimed at 

reconstructing the design history of 3D CAD models [3]. 
However, practical solutions have not been proposed due 
to various difficulties. Nevertheless, given the signifi-
cant advancements witnessed in other fields through the 
application of deep learning, endeavors are being made to 
harness deep learning techniques in tackling outstanding 
challenges in the domain of design history reconstruction. 
This study will explore the latest research trends in design 
history reconstruction. It will commence by examining 
research predating the era of deep learning, followed by 
summarizing methodologies utilizing deep learning. Fur-
thermore, it will examine published datasets required for 
deep learning applications. Finally, the study will discuss 
pending issues and outline potential directions for future 
research.

2  Algorithm‑based methods

The field of design history reconstruction for 3D CAD mod-
els has a long history. The primary aim of this research field 
is to reconstruct design histories for CAD models without 
design histories. CAD models without design history can be 
represented through various models, including voxel mod-
els and mesh models, but boundary representation (B-rep) 
models are commonly used as input shapes. Attempts have 
been made to convert these into constructive solid geometry 
(CSG) models.

B-rep models are the most commonly used models for 
representing shapes in CAD. They explicitly define shapes 
using geometric entities such as points, curves, and surfaces, 
as well as topological entities such as vertices, edges, and 
faces. In contrast, CSG models employ Boolean operations 
of parametrized simple shapes such as spheres, cylinders, 
and cubes. Instead of explicit shapes, CSG models contain 
construction history and parameter values. Converting B-rep 
models into CSG models allows for the reconstruction of 
design histories. However, this process is more challenging 
compared to converting CSG models to B-rep models. Major 
methods for achieving this include cell-based decomposition 
and convex decomposition.

In cell-based decomposition, half-spaces that encompass 
the faces of the B-rep model are used to split a shape into 
simple cells, which are subsequently reassembled to meet 
specified conditions for maximum volume. In this method, 
the design history of the original shape is represented as a 
Boolean union of simple shapes. Shapiro and Vossler [4] 
were the first to propose a way to convert a B-rep model 
to a CSG model by dividing space using half-spaces. 
Sakurai [5, 6] proposed a maximal volume decomposition 
method where, for faces sharing convex edges, the shape 
is decomposed into cells using half-spaces encompassing 
each face, then these cells are recombined to find a convex 
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shape is as large and simple as possible. Kim and Mun [7] 
proposed a method for decomposing volumes in sequential 
iterative order using various volume decomposition opera-
tions. Figure 1a shows an example of maximum volume 
decomposition.

Convex decomposition is a method of sequentially 
decomposing an original shape using convex hulls and delta 
volumes. In this method, the design history of the original 
shape is represented by a binary tree of Boolean unions and 
subtractions of the decomposed volumes. Tang and Woo 
[8] proposed an alternating sum of volumes (ASV) decom-
position method using convex hulls of the B-rep model. 
In this method, for an original shape P

0
 , the convex hull 

H
0
= CH

(

P
0
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 is calculated. This is followed by calculation 
of the difference P

1
= H

0
− P

0
 . This process is repeated until 

P
i+1 = H

i
− P

i
 becomes ∅ . The original shape P

0
 is then 

expressed as 
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 . Refining further, the process can be 

expressed as an operation of subtracting simple shapes from 
the original shape. Figure 1b shows an example of the ASV 
decomposition method. Kim [9] proposed an alternating sum 
of volumes with partitioning (ASVP) decomposition method 
that addresses the problems of ASV, along with a form-fea-
ture decomposition (FFD) method that further develops the 
approach.

Several other modified and improved methods have been 
attempted, evolving into feature recognition techniques. 
Nevertheless, none of these methods have achieved wide-
spread applicability. Moreover, algorithm-based approaches 
require long processing times when dealing with complex 
shapes and are limited in their ability to recognize param-
eters for the basic shapes that constitute CSG models.

3  Deep learning‑based methods

3.1  Feature recognition methods

Algorithm-based methods have evolved from studies 
focusing on the conversion of B-rep models into CSG 
models to research on feature recognition. Therefore, 
investigating how current deep learning-based feature 
recognition is conducted is meaningful. Strictly speaking, 
current deep learning-based methods for feature recogni-
tion are not truly recognizing features. As shown in Fig. 2, 
most studies aim to classify the individual faces of a B-rep 
model based on their feature types. Consequently, from a 
technical standpoint, these methods amount to face clas-
sification based on features.

In the early studies [10–14], researchers primarily 
employed artificial neural networks (ANN). In these stud-
ies, the faces and edges of a B-rep model were converted 
into attributed graphs. Subsequently, heuristics were 
utilized to restructure the graph into a format suitable 
for input into an ANN. However, due to limitations in 

Fig. 1  a maximum volume 
decomposition and b ASV 
decomposition

Fig. 2  Example of feature recognition
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computer performance at that time, these methods were 
not feasible for large models.

With the advent of deep learning, attempts were made to 
apply these methods to feature recognition. However, there 
was no effective method for using B-rep models as inputs 
for neural networks, so these models had to be approxi-
mated into a format suitable for deep learning. Typically, 
shapes were approximated using voxel models [15] and 
point clouds [16]. Nevertheless, approximated models can-
not precisely represent three-dimensional shapes, and their 
accuracy varies with resolution. Additionally, they fail to 
capture the geometric properties of the shape and struggle 
to represent the topological structures of the B-rep model. 
Most importantly, handling these models requires significant 
memory resources, making high-resolution approximations 
a challenge.

Recently, methods that apply B-rep models to deep learn-
ing without the need for three-dimensional shape approxi-
mation have been proposed. Cao et  al. [17] proposed a 
method for using B-rep models directly. In this approach, the 
faces and edges constituting a B-rep model are represented 
as a face adjacency graph, and features are identified using 
a graph neural network. However, this technique is limited 
to shapes composed of planes. To address this limitation, 
UV-Net [18] and Hierarchical CADNet [19] focus on learn-
ing geometric information for curves and surfaces. UV-Net 
approximates the faces and edges of the B-rep model into 
two-dimensional grids and one-dimensional grids in UV 
space, respectively. Feature vectors for faces and edges are 
then extracted using a convolutional neural network (CNN). 
The adjacency relationships among these faces and edges are 
represented as a graph, with a graph neural network used for 
face classification. Similarly, hierarchical CADNet repre-
sents the B-rep model as a face adjacency graph, projecting 
it from the B-rep model dimension to a unit face dimension 
to extract curve features. Face classification is then achieved 
using a graph convolution network (GCN). These methods 
convert the data structure of the B-rep model into a face 
adjacency graph, resulting in the loss of some topological 

position information with neighboring entities. Lambourne 
et al. [20] proposed an alternative approach for face classi-
fication. They utilized feature vectors of neighboring faces 
and edges based on co-edges. In this study, adjacency rela-
tionships are represented as a matrix to represent the connec-
tions between topological entities. The concept of topologi-
cal walk is adopted to represent the features of neighboring 
entities as a single feature matrix. Subsequently, multi-layer 
perceptrons (MLP) are utilized for face classification. Cha 
and Kim [21] introduced a method where, after face clas-
sification, connected-component analysis is used to identify 
sets of faces included in the same features.

Feature recognition methods exhibit high performance, 
with accuracy exceeding 95%. However, they can only clas-
sify individual faces based on features, and are unable to find 
sets of faces that constitute a feature. Further, they are inca-
pable of recognizing the design history, which is the order of 
the features, and the parameters for defining features.

3.2  Program synthesis methods

Program synthesis is a method in which elements of the 
underlying programming language are combined to auto-
matically find a program that can fulfill a specific purpose. 
As shown in Fig. 3, when program synthesis is applied 
to design history reconstruction, the simple shapes of the 
CSG, Boolean operations involving these shapes, features, 
parameter values, and so on, are treated as elements of the 
programming language. These elements are then combined 
to synthesize a program capable of generating the desired 
shape. This is made possible because CAD models are pro-
cedural models. The challenge in program synthesis lies in 
the vast search space for synthesizable programs. Therefore, 
the key to successful program synthesis is to combine pro-
gramming language elements effectively and find a program 
that can achieve the intended purpose within a reasonable 
amount of time. Accordingly, various studies have proposed 
methods to address it.

Fig. 3  Example of program synthesis
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Du et al. [22] proposed InverseCSG as a method for 
generating CSG programs from 3D shapes. Whereas this 
method does not employ deep learning, a method for finding 
CSG programs efficiently in the search space using various 
heuristics was proposed. Sharma et al. [23] proposed a CSG-
Net for reconstructing CSG models from voxel models using 
the encoder–decoder model widely used in language models. 
In CSGNet, the encoder uses a CNN to extract feature vec-
tors from the voxel model. The decoder then outputs a CSG 
program from the feature vectors using a recurrent neural 
network (RNN) consisting of gated recurring units (GRUs). 
Kania et al. [24] proposed a UCSG-Net similar to CSGNet. 
However, UCSG-Net uses shapes represented as signed dis-
tance fields (SDF) as input. Tian et al. [25] proposed a model 
consisting of a program generator and a program executive. 
The program generator serves as the encoder which syn-
thesizes the shape-generating program, while the program 
executor serves as the decoder which predicts the result of 
the synthesized program. The models for both programs are 
represented using a CNN and an RNN. Ellis et al. [26] pro-
posed a universal method for program synthesis wherein the 
program is partially written, then the execution result of the 
partially written program is used to find the target program. 
This method was demonstrated by reconstructing a CSG 
model. In this method, search is not performed until the pro-
gram is fully synthesized. Instead, if the desired result is not 
yielded from the partially synthesized program, the search is 
not continued. This increases search speed. A reinforcement 
learning technique using Monte Carlo search was applied to 
writing and executing the program to improve speed.

Program synthesis methods are the most promising for 
achieving the goal of design history reconstruction as they 
can find design history, features, and parameter values from 
the input shape. However, existing studies have primarily 
used voxel models or images as input shapes, which restricts 
their capacity to fully reconstruct the original shape.

4  Datasets

Training datasets play a key role in achieving maximum per-
formance with deep learning. While datasets for image and 
language tasks are abundant, collecting datasets for CAD 
models is time-consuming, and often these datasets do not 
align with the desired model representation. Consequently, 
many studies opt to synthetically create CAD model data-
sets while recording the generative process. For CSGNet 
[23], datasets were generated using randomly created shapes 
composed of spheres, cubes, and cylinders. However, due to 
their random generation, these datasets contain numerous 
unrealistic shapes.

In hierarchical CADNet [19], an MFCAD +  + dataset was 
artificially generated and used. The MFCAD +  + dataset 

comprises 59,655 CAD models containing 24 machining 
features. For MFCAD +  + , several rules were applied to 
give the resemblance of CAD models created by humans. 
Nonetheless, this dataset is limited to machining features, 
and the shapes are relatively simple. Additionally, since the 
design history is not separately provided, researchers must 
generate it following the proposed method.

Fusion 360 Gallery [27] provides a dataset with design 
history expressed through sketch commands and extrusion 
commands for CAD models created by humans. This data-
set encompasses 8,625 shapes, and it also provides Fusion 
360 Gym, suitable for reinforcement learning environments. 
However, it primarily features a single type of feature—
extrusion. Various other CAD model datasets, including the 
ABC dataset [28], FeatureNet dataset [15], and FabWave3D 
[29], typically provide labeling data for shape and face clas-
sifications but lack comprehensive information required for 
design history reconstruction.

5  Limitations and future research directions

The design history reconstruction methods presented have 
several limitations. First, there is no unique design history 
for the same shape, so the results of reconstruction using 
each method may be different. To overcome this challenge, 
a method for assessing the quality of the design history is 
needed. Second, existing studies have focused on elemen-
tary shapes such as spheres and boxes when reconstructing 
design histories. Consequently, there is a pertinent need to 
explore methodologies that facilitate the reconstruction of 
features and sketch commands at a level akin to established 
commercial CAD programs. Third, the representation of 
relative feature positions through references to faces, edges, 
and vertices is essential. While this is common practice in 
commercial CAD programs, previous methods have relied 
on absolute positions. Finally, the lack of a dedicated dataset 
for deep learning design history reconstruction is a signifi-
cant challenge. This lack precludes a standardized basis for 
evaluating and comparing the results of different studies. 
The construction of a standardized dataset is, therefore, 
essential to improve the reliability and comparability of 
results in this area.

6  Conclusion

As deep learning continues to advance, solutions to the 
challenge of design history reconstruction are steadily pro-
gressing. Currently, methods that combine program syn-
thesis and reinforcement learning seem the most promis-
ing. However, there have been no studies that employ this 
approach to reconstruct design history for a B-rep model. 
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Hence, there is a need to address this gap and find a solu-
tion to this problem. Upon implementation, design history 
reconstruction will reduce product development time and 
costs significantly. It will play a crucial role in integrating 
CAD with CAM or enabling hybrid additive–subtractive 
manufacturing.
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