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Abstract
This paper focus on comparison between three wavelets methodologies to estimate a time–frequency varying parameter. In 
the discrete case, we oppose the intuitive application of the rolling regression on wavelets frequency bands to the time–fre-
quency rolling window. We compare if we have to use the time rolling window directly on the wavelet’s frequency bands or 
apply the time–frequency rolling window on the series realizing the wavelet decomposition at each step of the process. A 
time–frequency varying estimator by continuous wavelets is also considerate in the comparison. Our objective is to show 
that the time–frequency rolling window and the Continuous estimates are more suitable than the intuitive way. We use in first 
time simulated data and also the daily returns of AXA and the CAC 40 index from 2005 to 2015 as empirical application. 
We show that the differences between discrete methods are more important at low-frequencies. Moreover, the continuous 
time–frequency Betas are closer to the time–frequency windows estimates.

Keywords  Time–frequency rolling regression · Wavelets · Time–frequency Betas · CWT​ · MODWT
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1  Introduction

Measuring the risk is one of the objectives of portfolio man-
ager and analyst. The CAPM of Sharpe [21] provides a sim-
ple measure of systematic risk by the Beta parameter. This 
indicator represents the exposure to the market risk and thus 
the sensitivity of an equity to market fluctuations. Consid-
ering the OLS and CAPM hypotheses, the Beta is constant 
over time. However, many studies as those of Black et al. [3], 
Fama and McBeth [9], and Fabozzi and Francis [6] focused 
on CAPM limits and the instability of its main parameter 
the Beta. Consequently, an important literature emerges to 
develop a time-varying estimation of risk such as the rolling 
window [4, 5, 7, 8].

Moreover, the hypothesis of homogeneity of agents 
behavior represents an important limit in risk measurement. 
The tool used to appreciate the risk supposes that all agents 

share the same investment horizon. Empirically, the market 
is composed by short-run traders and long-run investors but 
they still use the same computation and model. In this con-
text, the time–frequency analysis and the wavelets represent 
a suitable tool to analyze the risk according different invest-
ment horizons.

The time–frequency analysis, elaborated by Haar in 1909 
and Gabor [10] is an important advance to separate the fre-
quency components of a time series and allows a time repre-
sentation of it. There are different types of wavelets decom-
positions: the continuous wavelets transforms (CWT) and 
the Discrete Wavelets Transforms (MODWT). The discrete 
wavelets transformation is a practical simplification of CWT 
because it is based on dyadic scale regrouping the frequen-
cies in bands. High-Frequency Bands are tight and regroup 
short-run horizon whereas the Low-frequencies bands are 
larger and related to large investment horizon. In the CWT, 
the frequencies are separately analyzed so the decomposition 
consider specific and particular investment horizon. Conse-
quently, the wavelets are suitable to take into consideration 
the hypothesis of heterogeneous behavior and analyze the 
time–frequency relationships between variables in finance.
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The continuous wavelets are mainly used to appreci-
ate the time–frequency linkages between different vari-
ables thanks the wavelets-coherence. Rua and Nunes [19] 
study the co-movement between several markets with 
CWT, Bekiros and Marcellino [1] analyze the dynamics 
of exchanges rate, Vacha and Barunik [22], Bekiros et al. 
[2]examine the commodities-energy markets linkages.

In the CAPM framework, Gençay et al. [11, 12] study 
the Beta diversification across different investment hori-
zons by using discrete wavelets decomposition and high-
light that the systematic risk is frequencies varying. Mes-
tre and Terraza [17] show that the beta value (of an equity) 
is strongly volatile but it is differentiated across frequen-
cies. McNevin and Nix [16] study the Beta time–frequency 
variations by economic sectors using similar approach. 
They find that the Beta is time–frequency dependent. To 
highlight this result, they intuitively use the rolling for-
ward regression with a fixed size window associated with 
discrete wavelets decompositions. This method is equiva-
lent to consider a unique discrete wavelets decomposi-
tion of the time series. Conceptually this is contestable 
because the length of the series is an important parameter 
to determine the order of wavelet decomposition operated 
by successive filtering and subsampling. In this case, if we 
traditionally use the rolling window on discrete Wavelets 
outputs, the results may be biased. We develop a time–fre-
quency rolling window realizing the wavelets decomposi-
tions at each step of the rolling procedure. In this case, the 
wavelets are used inside the window.

The Continuous wavelets are used in the CAPM frame-
work by Rua and Nunes [20] to analyze the Beta of dif-
ferent countries portfolio. They used the Wavelets coher-
ence to highlight that the importance of systematic risk is 
time–frequency varying. The risk is higher and stable at 
long-run than in short-run. Mestre and Terraza [18] use 
continuous wavelets to develop the time–frequency vary-
ing beta estimation. They indicate that the systematic risk 
can be differentially estimate across time and frequency 
in order to analyze the greater or lesser robustness of the 
risk-profile.

The objective of this paper is to compare theses three 
wavelets methodologies (based on discrete and continuous 
wavelets) to appreciate the difference between the time–fre-
quency varying betas estimates. In the discrete case, we 
consider the intuitive association of the wavelets decom-
positions and the rolling regression and the time–frequency 
rolling window. In the continuous case, we refer to the meth-
odology developed by Mestre and Terraza [18]. We based 
our calculations on simulated data characterizing different 
situations and as an empirical application, we use the daily 
returns of AXA and the CAC40 index from 2005 to 2015 
in order to estimate the Beta of it market line by these three 
methods.

2 � Time–frequency Betas methodologies

In this part, we present briefly the theoretical aspects of 
wavelets, and the different way to estimate a time–fre-
quency varying parameter in the CAPM framework. We 
simulate data to illustrate various market situations in 
order to clearly analyze the Betas differences between 
these methods.

2.1 � Theoretical aspects of wavelets

The wavelets method is a mathematical tool developed to 
reduce the time or frequency arbitrage imposed by the Fou-
rier transform. There are two types of wavelets decomposi-
tion, the continuous transforms and the discrete transform.

The continuous wavelets transform (CWT) is based on 
a particular function �(t) called wavelet-mother with zero-
mean and energy/variance preserving properties.

The wavelet-mother is shifted by � and dilated by s to 
provide the wavelet family ��,s(t) (equivalent to the filter).

The wavelets coefficients are calculated by the follow-
ing equation:

�∗
(

t−�

s

)
 is the complex conjugate of ��,s(t).

These coefficients represent the values of x(t) at fre-
quency scale s and around the time � , consequently we 
have a time representation of the frequency component of 
x(t). In this paper the wavelet-mother used is the Morlet 
wavelet �M(t):

where i2 = −1 and f0 the non-dimensional frequency equal 
to 6 in order to have a good balance between time and fre-
quency localization [23].

The previous equations present the continuous wavelets 
decomposition (CWT) but there is also a Discrete Wave-
lets Transform (DWT) easiest to implement. The DWT is 
based on dyadic scale (the length of series N must be a 
multiple of 2) in order to reduce the computational time. 
However, in this paper, we use a particular version of 
DWT called Maximal Overlap Discrete Wavelet Transform 
(MODWT) having supplementary properties as a better 
variance analysis without the dyadic constraint.
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The MODWT can be viewed as a practical simplifica-
tion of the CWT by discretizing the parameter s and � . 
The object if is to reduce the frequency step without lose 
informations about the series, consequently, we consider 
frequency bands gathering intermediate frequencies of the 
decomposition. Therefore, there is also an optimal level J 
indicating the number of frequency bands needed to recon-
struct the series named the depth of the MODWT.

The decomposition is realized by a successive filtering 
of the series and wavelets coefficients with rescaling and 
subsampling operations. This is called the Cascade Algo-
rithm of Mallat [13–15]. On this basis, the MODWT can be 
assimilated as a band-pass filter composed by a high-pass fil-
ter �(t) called the wavelet-mother and a low-pass Filter �(t) 
called the Wavelet-Father. As previous ��,s(t) and ��,s(t) are 
the Wavelet Mother and Father shifted by � and dilated by s.

In the algorithm, the series x(t) is consecutively filtered 
by ��,s(t) and ��,s(t) J times to obtain the details coefficients 
associated to a particular frequency bands j and the smooth 
coefficients associated to J level. After the decomposition, 
we have a frequency repartition of the series on frequency 
bands Dj for j = 1,….J related to a time horizon (see Appen-
dix Table 5). We can reconstruct the original series by sum-
ming up the frequency bands:

The series is a sum of an approximation SJ and the fre-
quency bands Dj with different resolution level j (different 
investment horizon).

The MODWT provide frequency bands of length N, so it 
is possible to compute the wavelets variance of each bands 
as:

where d̃2
j,x,t

 are the wavelets coefficients at the level j. Nj is 
the number of coefficients non-affected by boundary (see 
[11].

In a multivariate framework, by considering another time 
series y(t) , we can compute the wavelets covariance between 
the frequency bands of level j of each series such as:

(4)J =
Ln(N)

Ln(2)
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j=J∑
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(
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=
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Consequently, an estimator Beta for each frequency bands 
is written as follow:

The continuous wavelets transform (CWT) can provides a 
multivariate case by providing tools to compute the correla-
tion between two signal x(t) and y(t) as the wavelet coher-
ence and phase. These tools are a translation of the spectral 
analysis methods to the wavelets framework. In this case, 
we define SWxy(s, �) the cross-wavelets transformation and 
|SWxy(s, �)|2 the cross-wavelets power spectrum describing 
the time–frequency covariance, such as:

Wx(s, �) is the wavelets coefficients of x(t) and W∗
y
(s, �) is the 

complex conjugate of the coefficient Wy(s, �) of y(t).
It is also relatively easy to define the wavelet coherence 

WQ(s, �) as the ratio of the cross-spectrum on the auto-power 
spectra ||Wx(s, �)

||
2
and

|||Wy(s, �)
|||
2

 describing the wavelets 
variance of the two series:

G is a time–frequency smoothing operator used to have 
real values of the coherence [24].

With the cross-transforms by continuous wavelets, we can 
compute the Phase function �x,y(s, �) providing supplemen-
tary informations on the links between x(t) and y(t) such 
as the sign of the correlation. If the two series are in phase 
so they are positively correlated at the opposite if they are 
out-of-phase the correlation is negative. The phase is the 
arc-tangent of the real and imaginary part ratio of the cross-
wavelets transform:

The coherence formula is similar to a the determination 
coefficient (R2) so it is possible to find the values of the Beta 
at each frequency and time. From these tools we develop a 
time–frequency estimator of the Beta ��,s based on CWT​1:
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1  See Mestre and Terraza [17, 18].



100	 Journal of Banking and Financial Technology (2019) 3:97–111

1 3

For a given s and � , WQ�,s is the wavelets coherence and 
��,s a phase parameter equal to 1 if the series are in phase or 
− 1 if they are out-of-phase.

Contrary to the discrete estimator of Eq.  (8) the ��,s 
estimated by continuous wavelets are time and frequency 
varying.

2.2 � The wavelets in the CAPM framework

Our paper is based on the Capital Asset Pricing Model 
(CAPM) of Sharpe [21] and its relations between variables 
called the market line.

ytand xt are stationary stochastic processes illustrating 
respectively the assert returns and market returns and �t is a 
i.i.d (0,�� ) process.

The parameter � estimated by OLS is BLUE estimators 
by hypothesis and represents the systematic risk of the asset.

The CAPM model supposes that the risk estimated by 
Beta is stable and constant across time and whatever the 
investment horizon. It does not consider the time evolu-
tion (or changings) of systematic risk and the behavioral 
hypothesis about heterogeneity of agents. To overcome this 
problem, we use in this paper different wavelets transforms 
to decompose the series in the time–frequency space and 
estimate the beta parameter.

The frequency bands of discrete decomposition are sub-
chronic for which it is possible to estimate the Beta of the 
CAPM as show Gençay et al. [11]. However, the Betas esti-
mated on frequency bands are not time-varying. However, 
it is possible to use rolling window to estimate a parameter 
at each iteration. Mestre and Terraza [17] apply this method 
to estimate the beta of French stocks with daily data and 
highlight that at long-run the beta is higher volatile than in 
short-run. The frequency dynamic of beta is significantly 
different than the standard rolling beta estimate without 
wavelets. This approach is also used by McNevin and Nix 
[16] with monthly data to analyze the time variations of 
the Betas by economics sectors. They find that the beta is 
time and frequency varying and its dynamics are different 
according sectors. These authors intuitively apply the rolling 
regression with a fixed window of length L on the frequency 
bands resulting from a wavelets decomposition based on N 
observations.

The intuitive combination of the forward regression 
with rolling window and wavelets decomposition is con-
ceptually contestable because of the parameter estimate 
is realized on L points (inside the window) whereas the 
wavelets decompositions are based on N points (total num-
ber of observations). In this case, there is not a concord-
ance between the size of the regression and the size of the 

(13)yt = � + �.xt + �t

decomposition. Consequently, the wavelets coefficients 
are not rescaled and subsampling when the window slides 
overtime. In practice, it would be conceptually preferable 
to decompose the series at each step of the regression. 
Thus, we use the time–frequency rolling window realizing 
simultaneously the wavelets decompositions of the series 
and the parameter estimation at each step of the forward 
regression.

In this paper, we compare different ways to estimate a 
time–frequency beta with discrete and continuous wave-
lets. In the discrete case, we use the forward rolling regres-
sion with a constant window length equals to L combined 
with MODWT. In the continuous case, Eq. (12) is used to 
estimate Betas across time at each frequency.

By this way, we define the following varying Betas:

•	 �r represents the standard rolling Betas estimated with-
out the frequency decomposition.

•	 �F represents the rolling Betas estimated with the intui-
tive approach. First, we decompose the series with the 
MODWT and after, in a second, we use the rolling win-
dow on the frequency bands. Only one wavelets decom-
position (based on N observations) is realized. We esti-
mate N–L time-varying Betas on each frequency bands.

•	 �TF are the time–frequency rolling Betas estimated 
with the time–frequency rolling Window. The wavelets 
decompositions is realized inside the window of length 
L, so the number used to decompose the series is equal 
to L and not N in this case. This method estimates N–L 
time-varying parameter on each band.

•	 ��,s are the time–frequency varying Betas estimated by 
continuous wavelets. By this way we estimate N Betas 
at each frequency.

The different estimated betas have not the same nature, 
�F and �TF are estimated for frequency bands regrouping 
several frequencies (discrete case) whereas ��,s is esti-
mated for a specific frequency s (continuous case). In order 
to appreciate the difference between the three methods, we 
need to realize some adjustments to “discretize’’ the ��,s.

First, to simplify the analysis, we consider only the D1, 
D2 and D6 frequency bands corresponding respectively to 
short-run investment (2–4 days), medium run (1–2 weeks) 
and long run (3–6 months) investment horizon. Second, in 
the continuous case, we compute the frequency mean of 
the ��,s for the frequencies corresponding to the previous 
bands (D1, D2 and D6). Third, �F and �TF have not the 
same length as ��,s , consequently, we calculate the rolling 
mean of ��,s across time (with length equal to L) in order 
to guarantee the time coherence of the comparison. The 
“discretize” chronic of ��,s is noted MBc thereafter (for 
‘Modified Betas continuous’).
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2.3 � Comparison of the three methods 
with simulated data

In order to concretely assess the differences between these 
three methods, we resort to simulated data corresponding 
to the variables of Eq. (1) and we estimate the Beta to 
compare them each other’s. The number of observations N 
is equal to 2800 with a time step of Δt = 1 in each simula-
tion (similar to a daily frequency).

For the 3 simulations, xt is a sample of a centered 
AR(1)-GARCH(1,1) process with �1 = 0.6 for the AR 
part, u1 = 0.7 and w1 = 0.2 for the GARCH part veri-
fying u1 + w1 < 1 . We fix the market line parameters 
� = 0 and � = 1 in order to compute the yt by adding simu-
lated �t to xt . In this case, we simulate different �t to create 
three cases corresponding to the lesser or greater volatili-
ties of the CAPM errors and so different Beta dynamics.

•	 The first simulation is elaborated with an �t ∼ i.i.d.(0, 1) 
and represent the theoretical case.

•	 For simulation 2, �t ∼ AR(1) − GARCH(1, 1) with 
�1 = 0.4 for the AR part and u1 = 0.3 and w1 = 0.3 for 
the GARCH(1,1) part such as u1 + w1 < 1 . In this case, 
�̂� = 1.55 corresponding to a relatively low volatility.

•	 For simulation 3, �t ∼ AR(1) − GARCH(1, 1) with 
�1 = 0.8 for the AR part and u1 = 0.6 w1 = 0.3 fo r 
the GARCH(1,1) part such as u1 + w1 < 1 . In this case, 
�̃� = 4.53 corresponding to a relatively high volatility.

For the 3 cases, we estimate the traditional Beta by 
OLS, the �r (without wavelets) and finally the �F, �TF and 
the “discretized” ��,s noted MBc.

The OLS estimations for the 3 regressions (Appendix 
Table 6) indicate that the � = 0 and � = 1 . The determina-
tion coefficient (R2) are higher for simulations 1 and 2 and 
lower for simulation 3 in accordance with the simulated �t . 
Simulation 1 is the only one with characteristics of its resid-
uals close to those of an i.i.d. process, while for the other 
two it is a function of the greater or lesser volatility of �t.

Figure 1 illustrates the estimated rolling Betas �r for the 
three simulations and their volatilities.

These results confirm our expectation related to the con-
struction of the simulations: the mean of the betas is not sig-
nificantly different from one (the theoretical value) whereas 
the standard deviation of the betas of simulation 3 is the 
most important.

In order to apply the intuitive method, we decompose the 
series with MODWT with the La8 wavelets of Daubechies. 
We estimate by OLS the Standard Beta on each frequency 
bands (Appendix Table 7). As previous, the betas are not 
significantly different from one and the coefficients of deter-
minations are very high except for the simulation 3 which 
has the most volatile �t.

Figure 2 illustrated the differents varying parameters for 
each simulation (for D1–D2–D6).

The three varying wavelets betas are relatively close 
to the standard rolling betas at high-frequencies (D1–D2) 
especially for simulation 1 where the residuals are i.i.d. pro-
cess. At low-frequencies (D6), the differences are more pro-
nounced. These figures highlight the higher volatility of the 
Beta in simulation three especially at low-frequencies bands.

Whatever the simulation, we note an increasing gap 
between �F et �TF as the scale increases: �F et �TF are simi-
lar for D1 and D2 but totally different on D6 band and the 

Fig. 1   Standard rolling betas
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Fig. 2   Time-frequency vary-
ing Betas. a Varying Betas of 
simulation 1. b Varying Betas 
of simulation 2. c Varying Betas 
of simulation 3
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differences seems more important for the simulation 3. 
Moreover, the Betas estimated with continuous wavelets are 
less erratic than the others betas (of discrete case) because of 
the ‘’discretization’’ used to compare the parameters.

At high-frequencies, the ��,s (noted MBc) share glob-
ally the same evolutions than the others betas but at low-
frequencies the ��,s dynamic is relatively closer to the �TF 
compare to the �F.

In order to analyse and confirm these observations, we 
compute in Table 1 the means and the standard deviations 
of the previous betas chronics.

Regardless of the simulation, we note that the standard 
deviations are higher on D5–D6 (long-term) compared to 
D1–D2 (short-term) and some differences appears between 
�F and �TF at long-run. Low-frequency betas (D5–D6) are 
more volatile than high-frequency betas (D1–D2), so beta is 
less stable on low frequencies than on high frequencies and 
the nature of residuals fosters this volatility. The more the 
residuals are heteroscedastic the more the betas are volatile 
over time.

These results confirm the previous graphical observa-
tions: the �F is more “smoothed” than �TF and we observe 
an increasing shift between �F and �TF . The ��,s also appear 
more smooth than the others betas because of the standard 

deviations are weaker. But this fact is due to the ‘’discretiza-
tion’’ method used to realize the comparison (aggregation 
of frequencies and rolling mean).

In order to appreciate the differences between the pre-
vious methodologies, we calculate the mean (in absolute 
value) of the differences between the rolling estimators 
(Table 2).

We note, in average, that the differences between the two 
discrete methods ( �F and �TF ) are more important at low 
frequency bands (long horizon) whatever the simulation, 
whereas there are almost no differences between �F and �TF 
on the high frequencies (D1–D2). Moreover, we notice that 
the differences are more important for the third simulation. 
As explained before, the intuitive method does not consider 
the adequation between the window size/length (260 points) 
and the number of points used during the decomposition 
(2800 points). In this case, the intuitive approach supposes 
a unique wavelet decomposition based on 2800 on and the 
rolling window of length 260 cuts frequency bands without 
considerate the rescaled or subsampled coefficients. At the 
opposite the time–frequency window realize a wavelet trans-
form inside the window (at each iteration) so the window 
length and the number of points used in the decomposition 
are equal. In this case, the wavelets coefficients are rescaled 

Table 1   Time-frequency varying betas characteristics

Simulation �
F

D1 D2 D3 D4 D5 D6

1.1 for �
F

 1 Average Beta 0.99 1.01 0.99 1 0.99 0.99
S.D. 0.031 0.035 0.033 0.045 0.04 0.09

 2 Average Beta 1 0.99 0.97 1.02 0.92 0.9
S.D. 0.038 0.039 0.097 0.075 0.097 0.154

 3 Average Beta 0.99 0.96 1.08 1.01 1.05 0.78
S.D. 0.092 0.099 0.189 0.231 0.423 0.591

Simulation �
TF

D1 D2 D3 D4 D5 D6

1.2 for �
TF

 1 Average Beta 0.99 1.01 0.99 1 0.99 1
S.D. 0.032 0.035 0.033 0.047 0.047 0.087

 2 Average Beta 1 0.99 0.97 1.02 0.93 0.92
S.D. 0.038 0.041 0.095 0.079 0.107 0.17

 3 Average Beta 0.99 0.96 1.08 1 1.05 0.88
S.D. 0.092 0.101 0.195 0.238 0.428 0.836

Simulation ��,s∕MBc D1 D2 D6

1.3 for ��,s
 1 Average Beta 1.05 1.04 1.01

S.D. 0.06 0.04 0.07
 2 Average Beta 1.11 1.07 0.96

S.D. 0.06 0.07 0.14
 3 Average Beta 1.1 1.06 1.03

S.D. 0.19 0.13 0.54
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according to the window length and the wavelets properties 
are respected. Thus, the time–frequency window is more 
preferable than the intuitive way.

These results confirm our hypotheses, higher the volatil-
ity of the residuals is greater the gap between �F and �TF is 
important and increases with the frequency scale.

These observations also concern the differences between 
�r and �F and those between �r and �TF . We see that differ-
ences begin to be relatively large from D5 to D6 for simula-
tion 1. For simulation 2, they are wider from D3, while for 
simulation 3, they are significant on each band.

By analyzing the differences between the continuous 
betas and the discrete estimations, we note the followings 
comments:

•	 We observe that the differences between continuous betas 
and �F increase as the scale increases but there is a break 
for the D2 band. This result is observed whatever the 
simulation but it is more pronounced for the third simula-
tion due to the heteroscedastic nature of residuals.

•	 As previously observed the differences between continu-
ous betas and �TF are relatively weaker for D2 band, how-
ever, they don’t increase at long-run except for simulation 
3. At long-term, we notice that the errors between MBc 
and �TF are lesser than the differences between MBc and 
�F . So, we confirm our hypothesis: the continuous betas 
are closer to �TF than to �F.

•	 Whatever the simulation, the differences between con-
tinuous betas and the standard rolling betas �r are again 
weaker for the D2 band. For simulations 2, the long-run 
betas differences are lower than errors for D1, and they 
are relatively closed to simulation 1. The long-run differ-
ences are higher than short-run errors only for simulation 
3.

As a partial conclusion, the three wavelets procedures 
confirm that the beta is more volatile at low frequencies 
in particular when the residuals are strongly heteroskedas-
tic. Moreover, the three methods are relatively similar at 
high-frequencies especially the two discrete approaches. 
The differences observed for the continuous betas are due, 
in part, to the “discretization” of ��,s . At low-frequencies, 
the differences are more significant particularly between the 
intuitive approach and the time–frequency window method. 
At the opposite, the difference between betas estimated by 
continuous wavelets and by the time–frequency window are 
the lowest at this frequency. Consequently, we can conclude 
that the time–frequency window and the continuous method 
are relatively and conceptually similar because of the two 
betas chronic share the same tendency (evolutions) even if 
the errors are important.

These simulations show that it is possible to include 
frequency volatility in computations by joining regres-
sion software and wavelet computations. The use of the 

Table 2   Differences between Betas Estimators

�
MAE =

1

T

T∑
i=1

��̂
i
− �̂

j
�pour i = r,F,TF, (�, s) et j = r,F,TF, (�, s) such as i ≠ j eand T = number of Rolling Betas

�

MAE Between D1 D2 D3 D4 D5 D6

�
r
  −  �

TF
0.03 0.03 0.02 0.03 0.04 0.06

Simulation �
r
  −  �

F
0.03 0.03 0.02 0.03 0.03 0.06

�
r
  −  MBc 0.06 0.05 – – – 0.05

1 �
F
  −  �

TF
0.01 0.01 0.01 0.02 0.04 0.09

�
F
  −  MBc 0.07 0.03 – – – 0.07

�
TF

  −  MBc 0.07 0.03 – – – 0.03
�
r
  −  �

TF
0.04 0.03 0.07 0.06 0.08 0.13

Simulation �
r
  −  �

F
0.04 0.04 0.08 0.07 0.09 0.15

�
r
  −  MBc 0.12 0.09 – – – 0.09

2 �
F
 - �

TF
0.01 0.01 0.03 0.05 0.08 0.17

�
F
  −  MBc 0.1 0.08 – – – 0.16

�
TF

  −  MBc 0.1 0.08 – – – 0.09
�
r
  −  �

TF
0.11 0.09 0.13 0.20 0.32 0.62

Simulation �
r
  −  �

F
0.11 0.10 0.13 0.20 0.28 0.51

�
r
  −  MBc 0.17 0.1 – – – 0.35

3 �
F
  −  �

TF
0.01 0.03 0.07 0.14 0.28 0.79

�
F
  −  MBc 0.15 0.12 – – – 0.51

�
TF

  −  MBc 0.15 0.12 – – – 0.43
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time–frequency window instead of the conventional rolling 
window is an asset to appreciate the stability of the regres-
sion parameter over time and frequency scales. Conceptu-
ally, the time–frequency window is more suitable than the 
intuitive approach because of the user does not change his 
calculations procedure since the discrete wavelet decom-
position is realized inside the window at the same time as 
the regression at each new observation.

However, the simulated data used cannot fully repre-
sent the empirical observations of the market line char-
acteristics. They are just a fairly picture of the structures 
observed for the market line variables and for the residuals 
resulting from its estimation. It is that why, we empirically 
apply these methodologies to comfort the previous results.

3 � Time–frequency Betas estimation: 
empirical application

As an empirical application part, we use the daily returns 
of AXA and the CAC40 index from 2005 to 2015 in order 
to estimate the Rolling Beta of it market line by the pre-
vious methodologies based on discrete and continuous 
wavelets.

3.1 � Static OLS Beta estimates

Previously, we check the stationary of the returns (see 
Appendix Table 8) and then we estimate the Beta by OLS. 
The OLS beta is called “Classic Beta’’ because it is non-
varying parameter supposed constant over the period. We 
also discreetly decompose our series with discrete wavelets 
and we estimate an OLS Beta for each frequency bands. 
Results are recorded in Table 3. The estimated parameters 
confirm the nullity of the constant and we note that all Betas 
and R2 are significantly different to zero.

However according to the tests, the residuals are not a 
white-noise process, so we suppose that we are in the same 
case of simulation 2 and 3. Consequently, the Minimal Vari-
ance property of BLUE estimator is not respected in our 
case, so the beta could be instable over time.

3.2 � Rolling beta estimates ˇ
r
,ˇ

F
,ˇ

TF
 and ˇ�,s

We apply the three previous methodologies in order to esti-
mates a time-varying Betas and modelize it instability. Fig-
ure 3 illustrates our results. We highlight the Beta volatility 
around its static estimator and we note a frequency differen-
tiation of the beta dynamics.

We notice that the short-run Beta (D1 and D2 bands) are 
volatile around 1.51 (OLS Beta) but they are always greater 
than one so the initial risk-profile is preserved across time 
only the intensity of the risk is time varying. At the opposite, 
the long-run betas (D6 band) are more volatile than short-
run Betas. Consequently, we note that the initial risk-profile 
is not the same across time.

We observe again a scale increasing gap between �F 
and �TF . The differences between these Betas increase 
with the frequency scale (time horizon larger). Moreover, 
the continuous betas are closer to betas estimated by the 
time–frequency rolling window because of they share the 
same dynamics. At high-frequencies (D1–D2 bands), ��,s 
are not totally similar to �F and �TF but they share globally 
the same dynamics (similar evolutions). At low-frequencies, 
��,s are less volatile and erratic than �F and �TF but the ��,s 
dynamic is similar to �TF.These results are similar to those 
observed for simulations 2 and 3.

To confirm these observations, we test if the betas differ-
ences are significant (or not) and we calculate its mean in 
absolute value (see Table 4).

We note that the differences between �F and �TF (the two 
discrete methods) are more important at long-run (low-
frequencies bands) whereas there are no significant differ-
ences at short-run (high-frequencies). Globally, the differ-
ences become relatively important starting the D3 band, 

Table 3   Static Beta estimates

At 5% risk level, Colum LB (Ljung–Box test): χ2(5) = 11.1; Colum ARCH (ARCH-LM test): χ2(2) = 5.99; 
Colum JB (Jarque–Bera normality test): χ2(2) = 5.99

Axa D1 D2 D3 D4 D5 D6 Overall period

Beta 1.45 1.56 1.54 1.61 1.52 1.77 1.506
T-stats 78.36 80.39 75.8 79.97 60 85.1 77.98
Constant 0 0 0 0 0 0 0.000425
T-stats 0 0 0 0 0 0 1.54
R2 0.68 0.69 0.67 0.69 0.56 0.72 0.68
LB 1050 2043 4678.9 5801 10,905 13,225 21.068
ARCH 621 792 1547 2664 2850 2864 62.132
JB 11,765 10,145 3695 1192 6617 2374 41,993.2
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Fig. 3   Rolling Betas of AXA 
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these results confirm our previous graphical observations. 
The estimation gap between �F and �TF increases as the fre-
quency scale increases.

At high-frequencies, the difference between �TF and ��.s 
estimators are 0.11 in average. Similar results are observed 
for the difference between �F and the continuous betas. But 
at low-frequencies, the error between �TF and ��.s are lesser 
than differences between �F and ��.s (0.25 < 0.45). This result 
confirms our hypothesis: at high-frequencies the two dis-
crete methods and the continuous wavelets estimations are 
relatively similar whereas at low-frequencies the differences 
are more important. The time–frequency window and the 
continuous wavelets method provide Betas sharing similar 
dynamics even if significant differences are observed. These 
differences could be explained, in part, by the adjustments 
used to compare Betas.

Empirically, the evolution of AXA Betas ( �TF and ��.s ) 
indicates that the systematic risk increases sharply during 
crisis period. After the subprime crisis, both the short-run 
and long-run betas are globally decreasing but their values 
begin to increase in mid- 2007 with the subprime crisis and 
rise brutally in autumn 2008 with the financial crisis and the 
Lehmann Brothers bankruptcy. The Betas reach a peak in 
mid-2009—early-2010 at the beginning of the global depres-
sion. Betas also increase during the European Debt Crisis in 
2011–2012 and the Russian Rubles Crisis in summer-2014. 
We also note that during expansion or recovery periods, the 
short-run and long-run betas tend to decreasing until the next 
crisis time. The differences between the long-run and short-
run betas are about their values and volatilities. At short-
run, Betas are very erratic and change brutally when shocks 
appear but it quickly reverses to its OLS value. At long-run, 
the variations are larger but smoother so betas are highly vol-
atile especially during persistent crisis period as 2007–2009 
but it slowly reverses in tendency to it OLS value.

Our results are globally consistent with those of Rua and 
Nunes [20], McNevin and Nix [16] and Mestre and Terraza 
[17] concerning the beta estimate. The short-run betas are 
not significantly different to the standard beta but as the scale 
increases the differences are higher and the time–frequency 
volatility is also different according to the frequency scales. 
However, our results are different in more particular aspects. 
Concerning the MODWT, McNevin and Nix use a 60-months 

rolling window (5 years) on frequency bands to analyze the beta 
instability by sectors, whereas, we especially focus our research 
on the better method to combine the Rolling-Window and the 
MODWT decompositions. Thus, the time–frequency rolling 
window appears more suitable at long-run than the intuitive 
approach. In the continuous case, findings are not fully similar 
to Rua and Nunes because of we find that the systematic risk 
is volatile and erratic both for short-run and long-range invest-
ment. However, the results comparison is complicated because 
of the time framework has not the same sense in each paper: 
they use monthly data whereas we employ daily observations 
so wavelets coefficients are less erratic in their case.

4 � Conclusion

In this paper, we compare different methods to estimate 
time–frequency varying parameter. We consider two meth-
ods based on discrete wavelets transformations and one 
method based on continuous wavelets.

Our results show that there are no significant differences 
between the short-run betas of the two discrete methods, but 
errors increase when the frequency scale increases (from 
high-frequencies to low-frequencies). In the discrete case, 
the time–frequency rolling window appear more suitable 
than the intuitive approach. At short and long-run, the vary-
ing betas estimated with continuous wavelets share glob-
ally the same dynamics as the betas estimated with the 
time–frequency window. The comparison is depending to 
the ‘’discretization ‘’ of the betas estimated with continu-
ous wavelets so errors between these methods are signifi-
cant, however, results of are consistent each other (same 
tendency). The estimation with continuous wavelets is more 
accurate because it considers more frequencies (opposite 
to a frequency bands) however the computational effort is 
greater. At the opposite, the Time–Frequency rolling win-
dow considerate frequency bands (discrete wavelets) in order 
to reduce the computational time.

The empirical application with AXA and the CAPM 
confirms the results observed by simulations. We observe 
that differences between the two discrete methods are larger 
in long-run where we note a shift between the betas. The 
betas estimated with the time–frequency window and those 

Table 4   Percentages of Beta 
significantly different and mean 
absolute of errors

MAE entre D1 D2 D3 D4 D5 D6

�
r
 and �

F
0.07 0.08 0.13 0.18 0.33 0.39

�
r
 and �

TF
0.07 0.08 0.11 0.17 0.28 0.35

�
r
 and MBc 0.12 0.16 – – – 0.33

�
F
 and �

TF
0.01 0.03 0.06 0.13 0.30 0.59

�
F
 and MBc 0.11 0.11 – – – 0.45

�
TF

 and MBc 0.11 0.11 – – – 0.25
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estimated with continuous wavelets have similar evolutions 
and globally the same tendency. Both the short-run and the 
long-run betas increase sharply during crisis time. But at 
long-run the systematic risk is highly volatile so the stock 
risk-profile changes. At short-run the risk is very erratic but 
the betas values are still in the same risk-profile.

We conclude, that the three methods have similar results 
if we consider short-run investment, but, the time–frequency 

window and the continuous approach provide more relevant 
and consistent results if we consider long-run investment.

Appendix

See Tables 5, 6 7 and 8.

Table 5   Frequency bands and 
time horizon

Resolution Frequency days Months

Inf border Sup border Inf border Sup border

D1 2 4 0.09 0.18
D2 4 8 0.18 0.36
D3 8 16 0.36 0.73
D4 16 32 0.73 1.45
D5 32 64 1.45 2.91
D6 64 128 2.91 5.82
D7 128 256 5.82 11.64
D8 256 512 11.64 23.27
D9 512 1024 23.27 46.55
D10 1024 2048 46.55 93.09
D11 2048 4096 93.09 186.18
S11 4096 – 186.18 –

Table 6   Betas estimation of 3 
simulations: OLS static betas

Simulation 1 Simulation 2 Simulation 3

Beta 1 0.98 1
T-Stat 152.7 96.87 33.77
Constante − 0.0186 − 0.0016 0.0002
T-Stat − 0.98 − 0.055 0.0025
R2 0.89 0.77 0.29
LB 4.25 615 4223
ARCH 0.029 426 1428
JB 0.19 248 7460

Table 7   Betas estimation of 
3 simulations: wavelets Betas 
estimation for the 3 simulations

D1 D2 D3 D4 D5 D6

Simulation 1
 Beta 0.98 1.015 1 1.02 0.99 1.02
 T-stats 87.55 136 195 250 316 335
 R2 0.73 0.87 0.93 0.96 0.97 0.98

Simulation 2
 Beta 0.99 1 0.986 1.02 0.93 0.91
 T-stats 79.62 88.77 94.67 114.68 129.6 122
 R2 0.69 0.74 0.76 0.82 0.86 0.84

Simulation 3
 Beta 1.01 0.97 1.04 0.965 1.02 0.98
 T-stats 51.62 45.41 38.45 26.22 28.35 27.52
 R2 0.49 0.42 0.35 0.23 0.22 0.21
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Table 8   Stationary tests

Philips–Perron test KPSS-test

AXA − 51.2187 0.074
CAC​ − 56.1127 0.106
Critical value
 1% level − 3.43 0.216
 5% level − 2.86 0.146
 10% level − 2.57 0.119
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