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Abstract 

As a bioproduct from the thermal decomposition of biomass, biochar has various applications in diversified field. 
In this study, a bibliometric analysis was conducted to visualize the current research status and trends of biochar 
research. A total of 5535 documents were collected from the Web of Science Core Collection and subjected to 
visualization analysis for the biochar field’s development in 2021 with CiteSpace software. The visual analysis results 
demonstrate that the number of publications expanded dramatically in 2021, and the growth trend would continue. 
China and USA were the most contributing countries in biochar research in terms of the number of publications. 
Based on the keyword co-occurrence analyses, “Biochar for toxic metal immobilization”, “Biochar-based catalyst for 
biofuel production”, “Biochar for global climate change mitigation”, “Biochar for salinity and drought stress ameliora-
tion”, “Biochar amendment in composting”, and “Biochar as additives in anaerobic digestion” were the main research 
trends and hotspots in this field in 2021. This indicates that the biochar research was multidisciplinary. Regarding the 
research hotspots, the employment of biochar as heterogeneous catalysts for biofuel production gained great atten-
tion in 2021. On the contrary, bioremediation using functional bacteria immobilized on biochar and biochar-assisted 
advanced oxidation process were well-studied but with less frequency than other topics in 2021. Furthermore, the 
future research was proposed for green and sustainable applications of biochar. This review provides a comprehensive 
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overview of the research frontiers, the evolution of research hotspots, and potential future research directions in the 
biochar field.

Highlights 

•	 A total of 5535 publications were retrieved and evaluated by bibliometric analysis in 2021.
•	 Research frontiers and the evolution of research hotspots of biochar were identified.
•	 Future research outlooks were suggested for sustainable applications of biochar.

Keywords  Bibliometric analysis, Citespace, Research hotspots, Toxic metal immobilization, Sustainable application

Graphical Abstract

1  Introduction
Biochar is a pyrogenic carbon-rich material formed 
through the thermal decomposition of biomass feed-
stock under an oxygen-limited condition (Hagemann 
et  al. 2017; Inyang et  al. 2015; Woolf et  al. 2021). It 
has been established that different biomass materials 
have been utilized to produce biochar which entails 
agricultural waste, forestry waste, garden waste, food 
waste, livestock manure, sewage sludge, and aquatic 

organisms (Woolf et  al. 2010; Wu et  al. 2021a). Many 
processes can be used to produce biochar such as slow 
and fast pyrolysis, microwave-assisted pyrolysis, hydro-
thermal carbonization, gasification, flash carboniza-
tion, and torrefaction (Kostas et  al. 2020; Wu et  al. 
2020; Wu et  al. 2021a; Xiao et  al. 2018) (Fig.  1). Slow 
pyrolysis and hydrothermal carbonization are the most 
frequently used methods for the preparation of bio-
char (Dutta et  al. 2021; Lian and Xing 2017). Biochar 
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is a heterogeneous mixture containing both amorphous 
less-carbonized fractions and microcrystalline graph-
ite-like aromatic structures. It has special properties, 
such as highly developed porosity, high specific surface 
area (SSA), abundant surface functional groups, and 
high content of mineral components. Biochar proper-
ties are mainly regulated by feedstock composition and 
preparation procedures (Ahmad et  al. 2014; Cha et  al. 
2016; Lian and Xing 2017).

Biochar has received increasing attention for its poten-
tial benefits in carbon sequestration, climate change miti-
gation, waste management, bioenergy production, soil 
improvement, and pollution control due to its unique 
properties (Nidheesh et  al. 2021; Xiao et  al. 2018; Yang 
et al. 2021e). Biochar has a high recalcitrant carbon (C) 
content and the strong adsorption capacity to carbon 
dioxide (CO2). Its sustainable production and field appli-
cations enable its great potential for long-term carbon 
storage and carbon emission reduction, thereby mitigat-
ing climate change (Feng et al. 2021b; Yang et al. 2021e; 
Zhang et al. 2022). The conversion of biowaste, especially 
sewage sludge, into biochar through pyrolysis provides 
an alternative and promising way of managing waste bio-
mass (Chen et al. 2020). The produced biochar can act as 
a catalyst for bioenergy production (Malyan et al. 2021). 
Again, biochar positively affects plant productivity and 
crop yields by improving soil quality and fertility levels 
(Farkas et al. 2020).

Meanwhile, the improvement in soil functions after 
biochar application is beneficial to alleviate the salinity 
and drought stress on plants (Mansoor et  al. 2021; Zhu 
et al. 2020). Finally, the multifunctional characteristic of 
biochar makes it an effective material for environmental 
pollution (Ahmad et al. 2014; Nidheesh et al. 2021). The 
biochar’s multiple functions are connected to its physico-
chemical properties (Manya 2012; Zhang et  al. 2021g). 
Considering the striking heterogeneity in physicochemi-
cal properties of biochar, an in-depth understanding of 
the developments of biochar regarding its multifunc-
tional applications is urgently required.

Although several meta-analyses and review studies 
have been carried out to evaluate biochar’s multifunc-
tional applications systematically, very few have investi-
gated current trends and scientific developments in this 
field. A conclusive study was performed here and could 
help us to identify the main subject fields, the current 
research frontiers, and hotspots of biochar research 
(Wu et al. 2019; Wu et al. 2021a). Because new biochar 
applications emerge, the main signs of progress and 
insights associated with this field will change over time. 
Additionally, the unintended consequences of biochar 
application are likely to emerge after long-term bio-
char application. Therefore, it is necessary to provide 
an analytical overview of the main signs of progress and 
insights into biochar research in 2021.

Fig. 1  Biochar production and modification.  Modified from Wu et al. (2020)
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Bibliometric analysis proceeded by Citespace software 
has gained rising interest in many fields due to its math-
ematical statistics and visual analytic functions (Chen 
2004, 2017; Ren et al. 2021). It is believed to be an effec-
tive tool for quantitatively evaluating a given field’s cur-
rent situation and emerging trends (Kamali et  al. 2020). 
In this study, a combined bibliometric analysis and criti-
cal appraisal of the related documents were utilized to 
quantitatively identify the research status and trend of 
biochar in 2021. The aims of this review are to: (1) ana-
lyze the primary authors, countries, and keyword fre-
quency and hotspot trend of the publications; (2) identify 
the current trends and hot topics in the biochar field; (3) 
provide perspectives on full-scale applications of biochar.

2 � Methods
2.1 � Literature search
A systematic literature search was conducted from the 
Web of Science (WoS) Core Collection database using 
the keyword of "Biochar" in the title, keywords, and 
abstract (Ren et  al. 2021). A total of 5533 documents 
were collected from the database in 2021. To guarantee 
the validity of data collected, the synonyms associated 
with biochar research, such as “Cadmium” and “Cd”, “car-
bon dioxide” and “CO2”, “anaerobic digestion” and “AD”, 
“nanoscale zero-valent iron” and “nZVI”, and “polycy-
clic aromatic hydrocarbon” and “PAHs” were manually 
merged.

2.2 � Scientometrics analysis tools
Cite-space is a new statistical analysis tool widely used 
for bibliometric analysis and visualization (Li et al. 2020; 
Ren et al. 2021). It is a Java-based software first developed 
by Professor Chaomei Chen and his team in 2004 (Chen 
2004). Relevant documents were exported from the 
“marked list” (with “plain text” format) of WoS Core Col-
lection and then inserted in Cite-space (5.3.R4) to ana-
lyze their specific characteristics. The visual analysis of 
cooperation networks of authors, contributing countries, 
institutions, categories, and keywords helps to reveal the 
clustering, knowledge structure, and emerging trends of 
biochar research. In the co-occurrence network maps, 
each node corresponds to one item (e.g., author, institu-
tion, keyword), and lines link the nodes. The higher the 
node’s frequency, the larger the node’s size. The thickness 
of the line indicates the cooperation degree between the 
two nodes.

3 � Results and discussion
3.1 � Publications about biochar research
A total of 5533 documents were extracted from WoS 
Core Collection in 2021 (Additional file 1: Fig. S1). It can 
be seen that the annual number of publications increased 

sharply, and this growth trend will continue, which indi-
cates the huge and increasing attention as well as the 
increased amount of scientific knowledge of biochar 
research.

3.2 � Contributing country analysis
As can be realized from Additional file  1: Fig. S2 and 
Table  S1, China is the highest contributing country, 
accounting for 43.99% of the total publications. This is 
most likely because China is a great agricultural country 
with a large population, where agriculture occupies a sig-
nificant and strategic position in the national economy. 
China was followed by the USA, with 504 publications, 
accounting for 9.11%. Besides China and USA, India, Paki-
stan, South Korea, Australia, Canada, Brazil, Saudi Arabia, 
and Germany also have many scientific documents. Many 
connections between countries indicate robust global 
cooperation and communication in this field.

3.3 � Research institution analysis
The top 10 institutions with the most publications in the 
field of biochar research are summarized in Additional 
file 1: Table S2. Chinese Academy of Sciences published 
the largest number of papers in this field, followed by the 
University of Chinese Academy of Sciences and Zhejiang 
University. The Chinese Academy of Sciences is expected 
to be the leading institution in many fields. It can also be 
found that 8 institutions were from China among the top 
10 productive institutions.

3.4 � Keyword analysis
3.4.1 � Biochar for toxic metal immobilization
Biochar utilized for immobilizing toxic metals has caused 
the interest of researchers in 2021 (Fig. 2). Keyword co-
occurrence analysis suggested that the most studied toxic 
metal was Cd (Table 1). Such heightened research inter-
est in Cd was due to its being highly toxic and carcino-
genic even at low concentrations (Purkayastha et al. 2014; 
Rai et al. 2019).

The transformation of sewage sludge to biochar via 
pyrolysis provides a feasible approach for the safe dis-
posal of the sludge (Buss 2021; Zhang et al. 2021f ). The 
sewage sludge-derived biochar had a much lower leach-
ing potential of heavy metals than the sewage sludge itself 
(Wang et al. 2021d; Xiong et al. 2021). Recently, co-pyrol-
ysis of sewage sludge and waste biomass (e.g., rice straw, 
rice husk, cotton stalk, and sawdust) has been proven to 
improve the porous structure and reduce the leaching 
toxicity of heavy metals in sewage sludge-derived biochar 
(Tong et al. 2021; Wang et al. 2021d, 2021f, 2021g; Xiong 
et al. 2021). Another study also reported that co-pyrolysis 
of sewage sludge and calcium sulfate was conducive to 
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immobilizing heavy metals in sewage sludge-derived bio-
char (Liu et al. 2021a). The application of sewage sludge-
derived biochar as a sorbent for toxic metal removal has 

shown promising results. The abundant mineral constitu-
ents in sewage sludge-derived biochar, such as Si, Al, Fe, 
and Ca, greatly participated in cationic metal removal via 
cation exchange, complexation, and precipitation (Gopi-
nath et al. 2021; Islam et al. 2021; Jellali et al. 2021).

Engineered biochar has gained much attention in terms 
of immobilizing toxic metals in 2021. Modification may 
improve the carbon content, SSA, porous structure, 
functional groups, and stability of biochar. Recently, 
metal oxides and salts have been widely used for biochar 
modification. Magnetic or metal-based biochar syn-
thesized by using the transition metals (e.g., Fe, Co, Ni) 
and their oxides (e.g., Fe2O3 and Fe3O4) with waste bio-
mass exhibits advantages over pristine biochar in heavy 
metal immobilization. For instance, a novel functional 
colloid-like magnetic biochar with high dispersibility 
synthesized via impregnation of Fe(II)/Fe(III)/artificial 
humic acid onto corn stalk-derived biochar followed by 
torrefaction activation exhibited superior removal per-
formance for Cd (the maximum adsorption capacity of 
170 mg g−1) (Yang et al. 2021c). The removal mechanisms 
included ion exchange, Cd–π interaction, complexation, 
and precipitation (Fig.  3a). Hierarchically porous mag-
netic biochar produced from K2FeO4 pre-treated wheat 
straw at 700 °C effectively removed Cd by 80 mg g−1 (Fu 
et  al. 2021b). The pre- and post-heat treatment modi-
fication with Fe could produce Fe-loaded biochar with 
different properties. Generally, the Fe pre-modification 

Fig. 2  Keyword co-occurrence map of biochar research in 2021

Table 1  The top 20 keywords related to biochar research in 2021

Rank Keyword Frequency

1 Biochar 2774

2 Adsorption 1064

3 Removal 716

4 Pyrolysis 668

5 Heavy metal 605

6 Aqueous solution 573

7 Bioma 545

8 Carbon 486

9 Activated carbon 484

10 Sorption 449

11 Water 448

12 Soil 439

13 Mechanism 419

14 Waste 327

15 Cadmium 325

16 Pyrolysis temperature 312

17 Performance 311

18 Sewage sludge 303

19 Waste water 297

20 Temperature 294
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Fig. 3  Possible pathways for the removal of toxic metals by biochar. Cd removal mechanisms by functional colloid-like magnetic biochar (a) 
(Yang et al. 2021c); Hg(II) removal mechanisms by sulfurized magnetic biochar (b) (Hsu et al. 2021); As(III) removal mechanisms by MnO2-biochar 
composite (c) (Cuong et al. 2021)
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loaded greater Fe3O4 micro-/nanoparticles on biochar 
and achieved greater surface area, while the Fe post-
modification enriched oxygen-containing functional 
groups on biochar (Reynel-Ávila et  al. 2021; Zhao et  al. 
2021b). Hsu et al. (2021) synthesized sulfurized magnetic 
biochar via a single heating step. The product had high 
adsorption for Hg(II) (the maximum adsorption capacity 
of 8.93 mg g−1), and C-S functional groups were the vital 
adsorptive sites for Hg(II) (Fig. 3b).

For metal anions (mainly As and Cr), biochar-based 
composites are effective sorbents for Cr and As. An 
active MnO2-biochar composite was prepared to enhance 
As(III) removal from the aqueous solution. The removal 
mechanisms involved partial As(III) adsorption and the 
oxidation of As(III) to As(V) by MnO2. The generated 
As(V) could be removed by forming MnHAsO4⋅H2O 
precipitation with Mn(II), complexation with Mn-OH 
groups on the MnO2 surface, and O-containing func-
tional groups on the biochar surface (Fig.  3c) (Cuong 
et  al. 2021). Nano zero-valent iron (nZVI) modified 
biochar has been proven to be a promising remediation 
material for Cr removal (Zhou et al. 2021b; Zhuang et al. 
2021). For instance, Zhuang et  al. (2021) synthesized 
sulfidated nZVI-supported biochar for Cr(VI) removal. 
The porous structure of biochar and sulfidated nZVI 
dispersed on biochar surface could provide adsorption 
sites for Cr(VI). Then, Fe0 and generated Fe(II) acted as 
electron donors to reduce Cr(VI). The generated Cr(III) 
would form co-precipitation with Fe(III) and be removed 
from the aqueous solution.

The employment of biochar in reducing the bio-
availability and phytotoxicity of toxic metals in soil has 
attracted growing interest. However, pristine biochar has 
a limited effect on the remediation of toxic metal-con-
taminated soils (Arabi et al. 2021; El-Naggar et al. 2021). 
It was found that biochar, especially rice straw-derived 
biochar application contributed to the reduction of As(V) 
to As(III), which increased the potential mobility of As 
in soils (El-Naggar et al. 2021). Heat treatment tempera-
ture (HTT) is a predominant parameter influencing As 
mobility in soil. A meta-analysis indicated that biochar 
produced under low HTT (≤ 450  °C) did not affect As 
mobility in soil, but high-temperature biochar (> 450 °C) 
exhibited high As mobilization in soil (Arabi et al. 2021). 
Fe-modified biochar exhibited efficient removal of As 
from soil and reduced its mobility in paddy soil (Wen 
et  al. 2021). Similarly, Fe/Al/Zn (hydr)oxides modified 
biochar significantly reduced As uptake by arugula (Sun 
et  al. 2021b). More importantly, Fe-modified biochar 
could be considered an efficient remediation material 
for moderately and highly Cd- and As-co-contaminated 
farmland (Wen et al. 2021; Yang et al. 2021a, b).

Although most of the positive results are achieved for 
acidic heavy metal-contaminated soil amended with bio-
char, there needs to be more research on the remediation 
effect of biochar on alkaline heavy metal-contaminated 
soil. Previous studies showed that conventional biochar 
showed no significant remediation effect in alkaline soil. 
Meanwhile, biochar amendment might reduce soil fertil-
ity and cause soil alkalization. Fe- and Fe/Zn-modified 
biochar application promoted the transformation of 
exchangeable Cd into oxidizable and residual Cd (Sun 
et  al. 2021c; Yang et  al. 2021g). Moreover, Fe-modified 
biochar increased the richness and diversity of bacterial 
communities in the alkaline contaminated soil (Sun et al. 
2021c). The combination of biochar with ferrous sulfate 
and pig manure is also reported to effectively immobilize 
Cd and reduce Cd uptake by wheat in the alkaline con-
taminated soil (Chen et al. 2021b).

3.4.2 � Biochar‑based catalyst for biofuel production
The employment of biochar as heterogeneous catalysts 
for biofuel production gained much attention in 2021. 
Biochar-based catalyst possesses sustainable feedstock 
availability, abundant surface functional groups and inor-
ganic species, a hierarchical and well-developed porous 
structure, and tunable surface functionality (Chi et  al. 
2021; Low and Yee 2021).

Using biochar-based heterogeneous catalysts for bio-
diesel production is still a great research hotspot in 2021. 
The presence of biochar-based catalyst promoted the 
transesterification or esterification of waste cooking oil, 
vegetable oil, animal oil, or fats (Chi et al. 2021; Cho et al. 
2021; Low and Yee 2021). Swine manure-derived biochar 
could act as an alkaline catalyst for the transesterification 
lipid fraction extracted from the swine manure (Fig. 4a). 
A high yield of biodiesel (≥ 94%) was achieved with the 
application of the catalyst (Cho et al. 2021). A maximum 
biodiesel yield of 96.4% was obtained with methanol: oil 
ratio of 9:1 at 70  °C for 2  h using K2CO3 + Cu(NO3)2-
treated hydrochar-derived catalyst (Fig.  4b) (Abdullah 
et al. 2021). Likewise, Nazir et al. (2021) obtained a bio-
diesel yield of 89.19% at 60 °C for 15 min in the transes-
terification of oil with methanol at a molar ratio of 1:18, 
catalyzed by H2SO4-modified biochar. Moreover, the 
biochar-based catalyst exhibited high reusability and sta-
bility with a minor loss in its activity after being reused 
for six cycles. Microwave-assisted biofuel production has 
recently gained great attention due to the advantages of 
microwave heating (i.e., quick heating rate and energy 
efficiency) (Nazir et al. 2021; Zailan et al. 2021).

Syngas, produced through biomass gasification, usu-
ally consists of H2, CO, CH4, CO2, and other hydrocar-
bons such as bio-oil or tar (Low and Yee 2021; Sun et al. 
2021a). The addition of biochar as a catalyst for syngas 
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production and upgrading has been largely reported 
recently. Biochar-based catalysts have several advan-
tages in tar reforming and syngas cleaning: (1) the highly 
porous structure and large SSA are conducive to prolong-
ing the retention time of the reactants and improving 
their conversion efficiency; (2) the abundant functional 
groups favor the reforming of volatiles from biomass heat 
treatment; and (3) the alkali and alkali earth metals and 
other inorganic species present in biochar can provide 

a catalytic effect on tar removal (Feng et  al. 2021a; Hu 
et al. 2021a; Liu et al. 2021c). By using walnut shell bio-
char with high contents of K2O and CaO as a catalyst, the 
conversion efficiency of tar and H2-rich gas production 
increased (Mazhkoo et  al. 2021). Anniwaer et  al. (2021) 
reported that biochar derived from Japanese cedarwood 
possessed a highly porous structure and contained high 
contents of alkali and alkaline earth metals, which might 
provide high catalytic activity for tar reforming. In this 

Fig. 4  Employment of biochar as heterogeneous catalysts for biofuel production. Biodiesel production through biochar-catalyzed 
transesterification of lipid fraction extracted from the swine manure (a) (Cho et al. 2021); Biodiesel production with K2CO3 + Cu(NO3)2-treated 
hydrochar as a catalyst (b) (Abdullah et al. 2021)
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study, 99% of the remaining tar was cracked/reformed, 
yielding H2-rich syngas. Metal-supported biochar exhib-
ited excellent catalytic activity in syngas upgrading. Hu 
et  al. (2021a) loaded Fe–Ni on pine wood biochar as a 
catalyst for syngas production; their results indicated 
that Fe–Ni-supported biochar significantly increased H2/
CO ratio to 1.97 in syngas. In addition, Fe–Ni-supported 
biochar still exhibited excellent catalytic activity after five 
times of reuse. Similarly, an H2 concentration of 67.35% 
in syngas and a gasification efficiency of 96.93% could 
achieve by using Fe/Ca/Al-loaded biochar as a catalyst 
(Hu et  al. 2021b). In short, engineered biochar has tre-
mendous promise as a catalyst in syngas upgrading.

3.4.3 � Biochar for global climate change mitigation
Biochar production and amendment have been increas-
ingly adopted to mitigate global climate change (Woolf 
et  al. 2021). China’s rising influence on global climate 
change mitigation advances biochar’s role in climate gov-
ernance. The functionality of biochar to achieve carbon–
neutral goals is mainly through carbon sequestration and 
emission reduction (Cao et al. 2021; Nan et al. 2021). The 
high content of aromatic carbon within biochar is the 
basis of its carbon sequestration benefits (Xu et al. 2021). 
Biochar storage in soil via agricultural soil management 
can also realize carbon sequestration (Guenet et al. 2021). 
Therefore, converting biomass waste into biochar and 
storing the produced biochar in soil has excellent poten-
tial for carbon sequestration. Yang et  al. (2021d) used a 
life cycle assessment at the country level to evaluate the 

carbon sequestration potential of biochar produced from 
various crop residues. It was found that over 920 kg CO2e 
t-1 (CO2-equivalent) sequestration could be achieved in 
China, demonstrating great carbon sequestration poten-
tial through biochar that was incorporated into soil 
(Fig. 5a). Similarly, Leppäkoski et al. (2021) calculated the 
carbon footprint of willow biochar production and appli-
cation in marginal lands by conducting a cradle-to-grave 
LCA. Their results found that the carbon footprint of 
willow biochar was − 1875 kg CO2e t−1, in which carbon 
sequestration (− 1704 kg CO2e t−1) dominated the carbon 
footprint. It is estimated that 63 − 82% of initial carbon 
in biochar was stably sequestered in soil after 100 years 
of using a greenhouse gas inventory model (Woolf et al. 
2021). These results indicate the long-term sequestration 
of carbon by biochar storage in soil.

Biochar also has a high potential for CO2 capture and 
storage (Shafawi et  al. 2021). It has been reported that 
a large surface area, high micro-porosity, and abundant 
mineral contents of biochar contributed to CO2 capture 
(Feng et  al. 2021b; Shafawi et  al. 2021). To highlight, 
N-doped biochar showed a superior CO2 uptake capac-
ity. The N-doped biochar prepared by urea phosphate 
impregnation-pyrolysis had a superior CO2 adsorption 
capacity of 1.34  mmol  g−1 (Ma et  al. 2021). The excel-
lent adsorption property of CO2 was attributed to the 
enhanced microporous structure and various N-contain-
ing functional groups on the biochar (Fig. 5b). A related 
study by Feng et  al. (2021b) showed that NH3·H2O 
activation was beneficial to forming micropores and 

Fig. 5  Country-level potential of carbon sequestration for biochar implementation (a) (Yang et al. 2021d); The removal mechanisms of CO2 
by N-doped biochar (b) (Ma et al. 2021); The removal mechanisms of CO2 by NH3·H2O-activated biochar (c) (Feng et al. 2021b); The mitigation 
mechanisms of N2O Emission by biochar at the cellular level (d) (Zhang et al. 2021 g)
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introducing N-containing functional groups on biochar 
surfaces. The N-containing functional groups dominated 
the adsorption of CO2 (Fig. 5c).

Nitrous oxide (N2O) has a global warming potential 
of 298 times that of CO2, which plays an essential role 
in global warming (Zhang et al. 2021g). Excessive appli-
cation of N fertilization and low N use efficiency are 
the primary sources of soil N2O emissions (Reay et  al. 
2012; Tian et  al. 2019). Numerous studies have demon-
strated the effectiveness of biochar in mitigating N2O 
emissions (Deng et al. 2021a; Jiang et al. 2021; Shin et al. 
2021). Lower N2O emissions involved several mecha-
nisms, which included abiotic N retention mechanisms 
and microbial N immobilization mechanisms (Guenet 
et  al. 2021; Lehmann et  al. 2021; Liao et  al. 2021). The 
promoted microbial reduction of N2O to N2 by biochar 
amendment was believed to be a permanent mitigation 
benefit as the transformation could not be reversed, and 
N had left the soil system. The microbial reduction of 
N2O to N2 could result from an increased expression of 
denitrification-associated functional genes (e.g., nosZ, 
nirK, nirK, and narG) (Deng et al. 2021a; Liao et al. 2021; 
Wu et  al. 2021b). Additionally, biochar could act as an 
electron shuttle to facilitate electron transfer and N2O 
reduction through biochar’s O-containing functional 
groups and carbon matrices (Yuan et al. 2021; Zhao et al. 
2021c). It is important to note that the positive effects 
of biochar on denitrification metabolism could be elu-
cidated at the cellular level by integrating physiological 
and multi-omics (proteomic and metabolomics) analy-
ses (Zhang et  al. 2021g). It was observed that biochar 
could directly modulate carbon metabolism and allocate 
the produced reducing power, thereby promoting N2O 
reduction (Fig. 5d). 15N stable isotope tracing techniques 
have been widely used to gain insight into N2O emissions 
in biochar-amended soils (Craswell et  al. 2021). Zhang 
et al. (2021c) utilized a dual isotope (15 N–18O) labeling 
technique to differentiate the contribution of nitrifier 
nitrification, nitrifier denitrification, nitrification-coupled 
denitrification, and heterotrophic denitrification to soil 
N2O emissions amended with biochar. Their results indi-
cated that biochar reduced N2O emissions derived from 
nitrifier denitrification by 45–94%, nitrification-coupled 
denitrification by 30–64%, and heterotrophic denitrifica-
tion by 35–46%. Biochar application for N2O emission 
mitigation was due to the decrease of nitrite concen-
tration while increasing N2O reduction (Zhang et  al. 
2021c). A long-term field study also used a dual isotope 
(15  N–18O) labeling technique to measure the effects of 
biochar on N2O emissions; the results showed that bio-
char decreased N2O emissions by 48% and 22% in acidic 
and alkaline soils, respectively. Lower N2O emissions 

resulted from the decrease in nitrifier denitrification (by 
74%) and heterotrophic denitrification (by 58%) (Zhang 
et  al. 2021e). The 15N stable isotope tracing techniques 
may help to fully understand N2O emission mitigation 
mechanisms by biochar.

Biochar has been well-reported to mitigate CH4 emis-
sions from paddy soil (Dong et al. 2021; Jiang et al. 2021; 
Qi et al. 2021b). The mechanisms of CH4 emission miti-
gation by biochar mainly included: (i) biochar inhibited 
the activity and abundance of methanogens but stimu-
lated those of methanotrophs (Nan et al. 2021); (ii) bio-
char increased the adsorption of CH4 in soil (Zhao et al. 
2021a). Contrastingly, other studies have found that bio-
char amendment increased CH4 emissions from paddy 
soils (Cao et al. 2021; Yang et al. 2021h). The unintended 
consequence of an increase in CH4 emissions may result 
from the improved aeration condition after biochar 
application (Cao et al. 2021). Moreover, biochar’s geocon-
ductor function could directly transfer electrons to meth-
anogens, stimulating CH4 production (Yang et al. 2021h). 
The contradictory studies could be due to the differences 
in biochar and soil properties (Malyan et al. 2021; Yang 
et al. 2021h). Based on the discussions, biochar has great 
potential in mitigating CH4 emissions from paddy soils. 
However, scientific soil management and proper biochar 
are necessary to avoid the unintended consequence of 
increased CH4 production.

3.4.4 � Biochar for salinity and drought stress amelioration
Biochar has the potential to enhance salinity tolerance to 
plants by improving soil physical (porosity, water hold-
ing capacity, hydraulic conductivity, pH, SOC), chemi-
cal (Na+ bioavailability, cation–anion exchange capacity, 
nutrients, enzymatic activities), and biological (microbial 
activities, symbiotic N2-fixation) properties (Farhangi-
Abriz and Ghassemi-Golezani 2021; Singh et  al. 2021). 
Incorporating biochar in salt-affected soil improved 
soluble cation (Ca2+, Mg2+) contents but decreased Na+ 
concentration through its high sorption capacity. The 
higher Ca2+ concentration and lower Na+ concentration 
facilitated K and P uptake by plants and thus promoted 
plant productivity (Zhou et al. 2021d). It was also found 
that biochar amendment in saline soil increased photo-
synthetic rate, leaf water content, stomatal conductance, 
pigment contents, nutrient uptake, and root and shoot 
growth (Cui et al. 2021a; Farhangi-Abriz and Ghassemi-
Golezani 2021; Liang et  al. 2021c; Singh et  al. 2021). In 
some cases, toxic metal contamination and soil salinity 
may cause a more serious environmental concern. Soil 
salinity may aggravate the stress caused by toxic metals 
on plants (Azadi and Raiesi 2021; Shabbir et  al. 2021). 
Biochar has been reported to mitigate the potential pres-
sures of the co-occurrence of toxic metal contamination 
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and salinity (Azadi and Raiesi 2021; Shabbir et al. 2021). 
The salt stress could also be alleviated by supplement-
ing biochar with other additives. In addition, combining 
biochar with compost has increased plant productivity 
(Liang et al. 2021b).

Drought stress has been considered a major chal-
lenge for sustainable agricultural productivity (Man-
soor et  al. 2021). It has been discovered that biochar 
amendment improved the retention and availability 
of soil water, which led to enhanced stomatal con-
ductance, photosynthetic rate, and productivity 
under drought stress (Fu et al. 2021a; Kim et al. 2021; 
Safahani Langeroodi et  al. 2021). Biochar played a 
positive role in nutrient supply and improved plant 
performance in the clay soil under drought conditions 
(Mannan et  al. 2021). The biochar amendment could 
also alleviate the oxidative damage of plants induced 
by drought stress (Khan et  al. 2021; Safahani Lan-
geroodi et al. 2021). Overall, biochar is an efficient soil 
amendment to ameliorate soil salinity/drought stress, 
improve soil functions, and promote plant productiv-
ity in salt/drought-affected soil.

3.4.5 � Biochar amendment in composting
Composting is a promising technology to convert organic 
waste into stable and humus-like products for use as 
organic fertilizer (Lu et al. 2021; Shan et al. 2021; Yin et al. 
2021). Composting is a cost-effective way to manage agri-
cultural and breeding industry waste in China. However, 
some issues such as greenhouse gases (CH4, CO2, and 
N2O) and odorous emissions (NH3 and H2S), and nitro-
gen loss during composting impede the development of 
these practices (Yin et  al. 2021; Zhou et  al. 2021c). The 
functionality of biochar as a bulking agent for compost-
ing has been proven to be a promising strategy for solv-
ing the environmental trade-offs of composting. Biochar 
as additives could enhance the aeration rate and provide 
main shelters for microorganisms to enhance their activ-
ity, thus improving the humification process and com-
posting performance as well as minimizing GHGs and 
odor emissions. These capabilities are mainly attributed 
to its unique properties, including porous structure, large 
SSA, and abundant functional groups (Awasthi et  al. 
2021; Guo et al. 2021; Wang et al. 2021c). HHT is a criti-
cal parameter in assessing biochar’s function in mitigat-
ing GHGs emissions during composting (Yin et al. 2021). 
It is concluded that biochar pyrolyzed at high tempera-
tures (500–900  °C) is more effective in mitigating CH4 
and N2O emissions; in comparison, biochar produced at 
low temperatures (< 500 °C) has a greater effect on reduc-
ing NH3 emissions (Yin et al. 2021).

Toxic metals and antibiotics/antibiotic resistance 
genes (ARGs) are the main contaminants in composting 
products (Lu et al. 2021; Zhou et al. 2021a). It has been 
reported that biochar amendment aerobic composting 
is an efficient technology for reducing ARGs abundance 
in livestock manure and sewage sludge (Fu et  al. 2021c; 
Zhou et  al. 2021a). Qiu et  al. (2021) found that biochar 
reduced the total abundance of ARGs by 17.6% dur-
ing sewage sludge composting. The analysis revealed 
that biochar reduced the abundance of bacterial patho-
gens such as Bacteroides and Pseudomonas. It is sug-
gested that change in the bacterial community by biochar 
amendment dominated the reduction in the risk of ARGs 
in manure/sludge composting (Mazhar et  al. 2021; Qiu 
et  al. 2021). Composting livestock manure or sewage 
sludge with biochar has also been reported to reduce 
the mobility and bioavailability of toxic metals. In sheep 
manure composting, 10% biochar dose passivated copper 
(Cu) and zinc (Zn) by 46.95% and 56.27%, respectively.

Additionally, microbial diversity was improved, and 
Firmicutes was the dominant bacterial phylum in bio-
char-based composting (Duan et  al. 2021). In similar 
studies, biochar amendment had a positive impact on the 
diversity of toxic metal-resistant bacteria and toxic met-
als (Cu, Zn, Pb, Ni, Cr, As) passivation during livestock 
manure/sewage sludge composting (Liu et  al. 2021b; 
Song et al. 2021; Zhang et al. 2021a). More importantly, 
reducing the bioavailability of toxic metals was responsi-
ble for lowering ARGs abundance (Qiu et al. 2021).

No more than 10% biochar dose was recommended 
because excess biochar addition could cause severe water 
loss and heat dissipation, thus negatively affecting the 
composting process (Wang et  al. 2021c). Moreover, the 
cost of biochar may also be a limiting factor (Wang et al. 
2021e).

3.4.6 � Biochar as additives in anaerobic digestion
Anaerobic digestion (AD) is a biological treatment 
method to convert organic wastes into renewable biogas 
and biofertilizer and to sustain waste management 
(Ambaye et al. 2021; Su et al. 2021). Particularly, organic 
wet wastes, including livestock manure, food waste, and 
sewage sludge, are the most commonly used wastes for 
AD. However, several key challenges persisted thor-
oughly, including low methane efficiency, operational 
instability, unsatisfactory substrate degradation, and gen-
eration of toxic metabolic intermediates and gaseous pol-
lutants (Zhang and Wang 2021).

Biochar has been identified as an effective additive to 
boost and improve AD performance (Qi et  al. 2021c; 
Shi et  al. 2021b; Sugiarto et  al. 2021a). It could sig-
nificantly assist in shortening the lag phase of organic 
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biodegradation, improving the production of methane 
(CH4) and hydrogen (H2). Such improvement in AD 
process efficiency with biochar amendment could be 
attributed to buffering capacity, adsorption of inhibi-
tory substances (e.g., ammonia nitrogen (NH4

+-N) and 

volatile fatty acids)), and accelerated direct interspecies 
electron transfer (DIET) (Ambaye et  al. 2021; Bu et  al. 
2021; Qi et al. 2021c). Bu et al. (2021) reported that bio-
char significantly boosted H2 production from pretreated 
sugarcane bagasse by implementing efficient enrichment 

Fig. 6  Proposed schematic of dark fermentative hydrogen enhanced with biochar (a) (Bu et al. 2021); The anaerobic digestion of waste activated 
sludge promoted by hydrochar and biochar (b) (Shi et al. 2021b)
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and colonization of functional bacteria and activating 
extracellular electron transfer between functional bac-
teria (Fig. 6a). Moreover, biochar amendment could also 
advance the removal of key contaminants during the AD 
treatment of organic wet wastes, such as heavy metals, 
antibiotics, polycyclic aromatic hydrocarbons (PAHs), 
and microplastics (MPs). Biochar has been considered a 
passivator to reduce the bioavailability of heavy metals 
by electrostatic adsorption, physical adsorption, compl-
exation, precipitation, and redox effect in AD (Qi et  al. 
2021a). Adsorption and promotion of biodegradation 
are critical pathways for removing antibiotics with bio-
char amendment in AD (Cheng et al. 2021). Biochar has 
high-effective performance in promoting the biodegrada-
tion of PAHs in AD. The enhancement was attributed to 

the increased DIET between syntrophic microorganisms 
and the activity of microorganisms (Qi et al. 2021a). Bio-
char could advance MPs removal in AD through direct 
adsorption. In addition, biochar amendment could pro-
mote microbial activity in AD, thus enhancing the bio-
degradation of MPs (Qi et al. 2021d). Table 2 summarizes 
the effects of biochar on AD performance.

The mineral contents (e.g., Fe, Ca, K, Na) present in 
biochar play a crucial role in promoting CH4 and hydro-
gen production. It was reported that the addition of 
leached biochar in the AD system resulted in lower CH4 
and hydrogen production compared to unleached bio-
char treatment (Sugiarto et  al. 2021b). The role of iron 
(Fe) within biochar in boosting CH4 production in the 
AD system was largely reported in 2021. Wang et  al. 

Table 2  Biochar performance in anaerobic digestion (AD) for the treatment of organic wet wastes

Feedstock HTT (°C) Substrate in AD Dosage Performance References

Wood chip 700, 800, 900 Seed sludge 12 g L−1 900 °C HTT enhanced 
specific CH4 production to 
742 mL g−1 ethanol

Qi et al. (2021d)

Fenton sludge 200, 400, 600, 800 Seed sludge + feeding 
substrate

– 400 °C HTT increased CH4 
production by 38.1%

Wang et al. (2021b)

Pine sawdust 650, 900 Food waste 15 g L−1 900 °C HTT increased 
cumulative CH4 produc-
tion by 46.9%

Sugiarto et al. (2021a)

Corn straw 300, 400, 500 Kitchen waste 10 g L−1 400 °C HTT enhanced CH4 
production rate by 152%

Wang et al. (2021a)

Horticultural waste  < 500 Seed sludge + food waste 50 g L−1 Enhanced accumula-
tive CH4 production to 
126.7 mL g−1 volatile solid

Zhang et al. (2021b)

RIce husk 550 Corn stover + chicken 
manure

10 g L−1 Enhanced specific CH4 
production by 18.5%

Yu et al. (2021)

Waste apple tree branch 550 Potato pulp waste + dairy 
manure

2% TS content Potato pulp waste/
dairy manure enhanced 
maximum CH4 yield of 
200 mL g−1 TS

Chen et al. (2021a)

Rice husk 300 Swine manure 5% TSwaste Increased accumulative 
CH4 yield by 23.6%

Yang et al. (2021f )

Waste wood pellet 800 Food waste 25 g L−1 Enhanced the ultimate 
accumulative CH4 yield by 
214%

Cui et al. (2021b)

Corn stover 300, 400, 500 Waste activated sludge 1.0 g g−1 300 °C HTT increased the 
maximum CH4 production 
rate by 181.6%

Shen et al. (2021)

Hickory wood chip 400, 900 Seed sludge 12 g L−1 900 °C HTT increased 
specific CH4 production to 
725 mL CH4/g ethanol

Qi et al. (2021c)

Corn straw Hydrochar (260, 320); 
Biochar (500, 700)

Waste activated sludge 10 g L−1 Hydrochar (260 °C) 
increased the CH4 meth-
ane yield by 25.6%

Shi et al. (2021b)

Corn stover 500, HNO3-modification Food waste 10 g L−1 Increased CH4 production 
by 90%

Gao et al. (2021)

Corn straw 550, nZVI-modification Sewage sludge + food 
waste

3.0 g g−1 Increased the maximum 
CH4 production rate by 
49.87%

Zhang and Wang (2021)
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(2021b) showed that magnetite-contained biochar pre-
pared from Fenton sludge pyrolyzed at 400  °C signifi-
cantly improved AD performance due to magnetite’s high 
conductivity. Fe-modified biochar could act as a catalytic 
medium for substrate hydrolysis and accelerating metha-
nogenesis. The generated Fe oxides on the biochar sur-
face contributed to the interspecies electron transfer in 
syntrophic metabolism (Deng et  al. 2021b). Therefore, 
introducing Fe oxides into biochar has great potential to 
improve AD performance.

Hydrochar has also been demonstrated to enhance AD 
performance. He et  al. (2021) showed that hydrochar 
promoted methane production rates by 36.4–237% in 
AD of organic wastes via DIET mediated through surface 
oxygen-containing functional groups. Hydrochar pre-
pared at lower temperatures had greater surface oxygen-
containing functional groups, which were related to the 
facilitated DIET. Similarly, Shi et  al. (2021a) found that 
hydrochar increased the methane yield and production 
rate by 31.4% and 30.8%, respectively. Genome-centric 
metatranscriptomics analysis revealed that hydrochar 
behaved as an electron shuttle to promote DIET between 
Syntrophomonas sp. FDU0164 and Methanosarcina sp. 
FDU0106. It should be noted that hydrochar exhibited 
a superior ability to promote methane yield and produc-
tion rate than biochar. Hydrochar had greater surface 
oxygen-containing functional groups, which were related 
to facilitated DIET and enhanced methane yield and pro-
duction rate. The metabolomic analysis also showed that 
the alterations of metabolites associated with fatty acids 
and amino acids metabolism induced by hydrochar were 
stronger than those of biochar (Fig. 6b) (Shi et al. 2021b).

The addition of biochar in the anaerobic co-digestion 
of food waste or livestock manure with sewage sludge has 
recently aroused considerable attention. It has highly syn-
ergistic effects on hydrolysis acidification and methane 
production compared with digestion alone (Johnravin-
dar et  al. 2021; Liang et  al. 2021a; Zhang et  al. 2021d). 
A recent study indicated that the anaerobic co-digestion 
of pig manure with municipal sludge enhanced methane 
yield by 83.0–136.5% and 31.3–68.0% at mesophilic and 
thermophilic temperatures, respectively (Zhang et  al. 
2021d). Notably, certain disadvantages of incompatible 
inoculum-to-substrate ratio, excessive acidification, and 
organic overloading may lead to the inhibition of biogas 
production (Liang et al. 2021a).

It is noted that biochar/hydrochar addition, exceed-
ing a certain amount, could negatively affect AD perfor-
mance. In some cases, the negative effect was due to the 
high sorption capacities of biochar, which might reduce 
the contact between microbes and substrates. Another 
potential explanation is that a high dose of biochar accel-
erated the hydrolysis and acidogenesis-acetogenesis, 

resulting in the accumulation of toxic metabolic inter-
mediates that could delay methane production (Ambaye 
et al. 2021).

4 � Conclusions and perspectives
CiteSpace-based scientometric analysis was used to 
analyze the research trends and hotspots in the biochar 
field based on 5535 publications collected from WoS 
core collection in 2021. The number of publications has 
expanded dramatically in 2021 and the growth trend may 
continue. China and USA were pioneers in this field. The 
keyword clustering analysis indicated that “Biochar for 
toxic metal immobilization”, “Biochar-based catalyst for 
biofuel production”, “Biochar for global climate change 
mitigation”, “Biochar for salinity and drought stress ame-
lioration”, “Biochar amendment in composting”, and 
“Biochar as additives in anaerobic digestion” were the 
main research trends and hotspots in biochar research 
in 2021. The employment of biochar as heterogeneous 
catalysts for biofuel production became the focus of bio-
char research in 2021. Biochar’s applications for heavy 
metal immobilization, global climate mitigation, salin-
ity and drought stress amelioration, biofuel production, 
and anaerobic digestion promotion represent sustainable 
growing topics in 2021. However, bioremediation using 
functional bacteria immobilized on biochar and biochar-
assisted advanced oxidation process were well-studied 
but with less frequency in 2021 than in 2020. In short, the 
present review provides a comprehensive overview of the 
research and the evolution of research hotspots in bio-
char research.

Although biochar has multifunctional applications in 
agriculture, environment, and energy, its potential eco-
logical risks, and long-term safety and implications are 
of great concern. Previous studies have confirmed that 
biochar contained several toxic components, includ-
ing polycyclic aromatic hydrocarbon (PAHs), volatile 
organic compounds (VOCs), polychlorinated dibenzo-
p-dioxins (PCDDs), persistent free radicals (PFRs), toxic 
metals, and water-soluble organic compounds (WSOCs) 
(Brtnicky et al. 2021; Godlewska et al. 2021). The detri-
mental effects of these harmful substances were corre-
lated with their bioavailable fraction, which depended 
on the feedstock and preparation methods (Godlewska 
et al. 2021; Wang et al. 2019). PAHs are mostly formed 
during the incomplete combustion of biowaste (Wang 
et  al. 2017). It is suggested that biochar produced by 
slow pyrolysis had lower PAHs than by fast pyrolysis 
(Wang et  al. 2017). Biochar produced under medium 
temperatures (400–600 °C) often contained higher con-
tents of bioavailable PAHs. In general, the majority of 
biochars contained a low bioavailable fraction of PAHs 
(Tomczyk et al. 2020). PCDD/Fs are mainly formed on 
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the surface of biochar during the thermal treatment of 
feedstock, especially food waste (El-Naggar et al. 2019). 
It is reported that low temperatures (200–400  °C) and 
short residence time favored the formation of PCDDs 
on biochar surface (Lyu et  al. 2016). It is accepted 
that PCDDs always existed in low quantities in bio-
char and posed a relatively marginal risk to organisms 
(Godlewska et al. 2021; Weidemann et al. 2018). VOCs 
are mainly formed on biochar surfaces or/and inside 
biochar pores by the thermal decomposition of bio-
mass. The contents of VOCs in biochar decreased with 
increasing HTTs (Buss et  al. 2015). Numerous stud-
ies have reported the stable and large molecular PFRs 
in biochar during the biomass carbonization process 
(Liao et al. 2014; Lieke et al. 2018; Yang et al. 2016; Zhen 
et al. 2021). It was found that the electron paramagnetic 
resonance (EPR) signals in lignin-derived biochar were 
higher than those in cellulose-derived biochar. The EPR 
signals increased with increasing HTT for the major-
ity of biochar (Liao et  al. 2014). Besides organic com-
pounds, heavy metals (e.g., Cd, Cu, and Pb) in biochar 
are highly concerned with their toxicity. Heavy metal 

contaminants are mainly originated from feedstock 
rich in heavy metals, especially sewage sludge, animal 
manure, and plants grown on heavy metal-contami-
nated soils. The conversion of biomass abundant with 
heavy metals to biochar is considered a promising 
method for safely disposing of biomass and significantly 
reducing the bioavailability and leaching of heavy met-
als (Devi and Saroha 2014; Wang et al. 2019; Zhang et al. 
2020). The contents of certain heavy metals increased 
with increasing HTTs, which may be attributed mainly 
to the ‘concentration effect’ resulting from a decrease 
in biochar yield (Zhang et  al. 2020). The bioavailabil-
ity of heavy metals depends on heavy metal contents 
in raw biomass and the transformation and dissolution 
of heavy metals in biochar (Godlewska et al. 2021). The 
release of water-soluble organic compounds (WSOCs) 
from hydrochar was higher than from biochar. With the 
increase in HTT, the contents of phenols and organic 
acids in WSOCs increased (Hao et al. 2018).

Despite the ecologically acceptable levels of these 
harmful substances for most biochar, it may pose an 
ecological risk to soil biota (Fig.  7). For example, it is 

Fig. 7  Potential risks associated with biochar application to soils
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revealed that the attendance of some contaminants (e.g., 
PAHs, cresols, methylated phenols) in biochar might 
cause direct toxicity to soil microorganisms (Oleszczuk 
and Koltowski 2018; Yang et  al. 2019), for example, sig-
nificant germination inhibition, plasma membrane dis-
ruption, and plant growth retardation (Liao et al. 2014). 
When incorporated into agricultural soils, dust emis-
sions from biochar may cause a health hazard for farm-
ers (Li et  al. 2018). The nano biochar after ball milling 
had a higher potential ecological risk than pristine bio-
char due to its unique nanotoxicity (Huang et al. 2021). 
Moreover, soil physicochemical changes caused by bio-
char amendment may indirectly induce ecotoxicity to soil 
organisms. The increase in soil pH after biochar addition 
may negatively affect earthworm reproductions (Van 
Zwieten et al. 2009). The strong adsorption of nutrients 
by biochar would reduce the bioavailability of nutrients, 
thus inhibiting plant growth. Similarly, the accessibility 
of water to plants would decrease due to biochar’s strong 
water retention capacity (Brtnicky et  al. 2021). It has to 
be noted that an appropriate biochar application rate 
may not have unintended adverse effects on soil organ-
isms. Still, excess biochar addition is likely to generate 
unintended consequences.
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