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Abstract
Mining and excavation activities cause massive degradation of land, leading to complete loss of soil resources, vegetation, 
and biodiversity. Mine spoils support invasive weeds (predominantly Lantana) which can strive in these harsh conditions, 
causing allelopathy during plantation stage of reclamation. It is hypothesised that biochar produced from invasive weeds 
will enhance enzymatic activity, CO2 flux and overall fertility of coal mine spoil. A 6-month incubation study was conducted 
on the effect of biochar amendment (2 and 3%, w/w) on mine spoil enzymatic activities (dehydrogenase, invertase, amylase 
and cellulase), respiration and coal mine spoil fertility. The study showed that biochar significantly improved dehydrogenase 
(83%) and cellulase activity (78%) at 3% amendment. Geometric mean of enzymatic activities increased from 1.87 in control 
to 4.51 at 2% and 3.25 at 3% biochar amendment. Mine spoil physio-chemical properties such as soil organic carbon (65%), 
cation exchange capacity (54%), bulk density (25%) and water holding capacity (19%), were improved significantly com-
pared to the unamended mine spoil. Biochar amendment reduced mine spoil CO2 flux at 2% (2.85 μmol CO2 m−2 s−1) and 
3% (2.60 μmol CO2 m−2 s−1) compared to control (4.92 μmol CO2 m−2 s−1). The cost of biochar production and application 
(2%, w/w) in pit plantation during reclamation is estimated to be 844 USD t ha−1 (plantation density: 1600 trees ha−1). On the 
basis of present study, biochar preparation from invasive weeds can be used for sustainable reclamation of coal mine spoil.
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1  Introduction

Coal is an important contributor to worldwide energy gen-
eration but its environmental impact is quite catastrophic 
(Ahirwal and Maiti 2017). Coal ranks highest amongst the 
fossil fuels reserves in India and is responsible for 55% of 
energy requirement of the nation (Maiti 2013). 729 million 
tonnes (MT) of coal was produced in 2019–2020 in India, 
out of which > 90% of coal extraction was by surface mining. 
This causes loss of soil and vegetation cover and biodiver-
sity, air and water pollution, complete disturbance of drain-
age and permanently alters natural landforms (Ahirwal et al. 

2017). Mine spoil is nutrient deficient and characterised by 
low cation exchange capacity, nutrient unavailability, impov-
erished organic content and poor physical–chemical and 
biological characteristics (Frouz et al. 2008; Ussiri and Lal 
2008). 2021–2030 is declared as the decade for ecosystem 
restoration by the UN General Assembly. Its main objective 
is the restoration of degraded land which provides essen-
tial ecosystem services. Therefore, the restoration of mine 
affected land is essential to fulfil the goals of global land-use 
policies. Biochar, a carbonaceous product of pyrolytic reac-
tion of biomass has been reported to reclaim degraded land 
(Ghosh et al. 2020; Ghosh and Maiti 2020a, b). It is suit-
able for improving plant growth and microbial biodiversity 
(Pandey et al. 2020).

Enzymatic assays help quantify the microbial activity in 
soils which are responsible for important operations such as 
mineralization and humification (Palansooriya et al. 2019). 
This in turn influences the biogeochemical cycles of ele-
ments such as carbon, nitrogen, phosphorous and sulphur 
(Futa et al. 2020; García-Ruiz et al. 2008; Novak et al. 2018). 
Activities of these enzymes affect soil physio-chemical 
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characteristics and support the growth of vegetative cover 
(Gascó et al. 2016; Ghosh and Maiti 2020a, b; Paz-Ferreiro 
et al. 2012). Thus, enzyme activity is a sensitive indicator for 
the evaluation of effect of an amendment in mine spoil recla-
mation (Ahirwal and Maiti 2018b; Palansooriya et al. 2019). 
Biochar application has been reported to increase activities 
of various extracellular and intracellular enzymes related to 
C, N, P and S cycles (Masto et al. 2013; Paz-Ferreiro et al. 
2012; Gascó et al. 2016) and also improve enzymes such 
as dehydrogenase and catalase which are involved in the 
life process of microbes (Khadem and Raiesi 2017; Gascó 
et  al. 2016). Other enzymatic activities such as urease, 
alkaline phosphatase, β-glucosidase, arylsulphatase, oxi-
dase, fluorescein diacetate hydrolase has also been reported 
to improve by biochar application (Munir et al. 2021; Masto 
et al. 2013). The effect of biochar on enzymatic activity of 
coal mine spoil depends on the soil characteristics, micro-
bial activities, types of enzymes and their interaction with 
biochar (Mohan et al. 2018). Sorption of enzyme molecules 
to the functional groups present on biochar surface influ-
ences the enzymatic reaction (Raiesi et al. 2019; Sandhu 
et al. 2019).

Surface mining has been reported to significantly decrease 
the terrestrial carbon pool (Ahirwal and Maiti 2018a), there-
fore, development of remediation technology which effec-
tively sequesters carbon in the reclaimed coal mine spoil is 
necessary to combat global warming (Ahirwal et al. 2020). 
Biochar as an amendment during mine spoil reclamation not 
only enriches C pool in the derelict soil but also supports 
plant growth (Masto et al. 2013; Mohan et al. 2018). In an 
unfertilised soil, an increased CO2 flux after biochar appli-
cation has been observed due to the soil microbial activity. 
Also, the substrate provides matrix for microbial decomposi-
tion resulting in the increase in the CO2 released. However, 
in reclaimed coal mine spoil, the labile fraction of carbon is 
much less compared to the recalcitrant carbon (Ghosh et al. 
2020). Thus, CO2 flux in a barren soil has been reported to 
increase up to a certain period and then remain stable post 
biochar application. Carbon in biochars, originally removed 
from the atmosphere as CO2 during plant growth, remains 
in soils for hundreds of years (Camps-Arbestain et al. 2015; 
Lehmann et al. 2015). However, both positive and negative 
mineralization and CO2 emission have been reported. Bio-
char stability and its interaction with soil biota depend upon 
the biochar feedstock, the production method, the pyrolysis 
residence times and temperature (Ameloot et al. 2013). Bio-
char can act as an amendment to address problems related 
to remediation of degraded land (Ducey et al. 2021). How-
ever, a few studies have also reported the negative impact of 
biochar application on plant growth at high application rate 
(60 t ha−1) possibly due to increased soil alkalinity resulting 
in decreased nutrient availability and potentially Na toxicity 
(Gonzaga et al. 2018). However, the coal mine spoil is so 

impoverished that there will be probably no negative impact 
of biochar application.

Invasive weeds like Lantana camera naturally colonise 
coal mine overburden dumps and often cause allelopathy 
during plantation stage of reclamation. Lantana has very 
high biomass content and lignocellulosic composition 
(Ghosh et al. 2020). Invasive weeds like Lantana can be 
easily uprooted, converted to biochar in the site itself and 
used in the pit plantation technique during restoration of 
coal mine spoils (Kaur et al. 2018; Radhaboy et al. 2019). 
Thus, we propose that abundantly growing weeds in aban-
doned overburden dumps can be harnessed during the dry 
tropic summer months and converted to biochar. The biochar 
produced can be very easily applied in the pit plantation 
method. Biochar can be mixed with mine spoil and com-
mercially important trees can be planted in such pits.

Influence of biochar in coal mine spoil enzymatic activi-
ties has not been reported widely, and experiments are 
essential for designing practical applicability in field scale 
for mine spoil quality and fertility enhancement. Thus, the 
influence of biochar application on enzyme activity in coal 
mine spoil and its correlation with the soil organic matter 
and mine spoil CO2 flux need attention. The study tested 
the hypothesis that biochar produced from invasive weeds 
will improve enzymatic activities, CO2 flux and fertility of 
coal mine spoil. The objectives of this study were to assess 
the impact of Lantana biochar (1) on the mine spoil physio-
chemical properties after 6 months incubation in pilot scale 
application; (2) mine spoil enzymatic activity involved in C 
cycling and respiration, and (3) the economics involved for 
its application in a field scale.

2 � Materials and methods

2.1 � Biochar production and characterisation

Lantana camara growing in the coal mine overburden 
dumps was used as feedstock for biochar preparation. Feed-
stock was pyrolysed in a pre-heated muffle furnace at 450 ℃ 
for 60 min residence time. Biochar yield was calculated by 
the formula: yield (%) = weight of biochar (g)/weight of 
feedstock (g) × 100. pH and electrical conductivity of the 
filtrate (1:5; solid: deionised water; w/v) were measured by 
using multi-parameter probe (HI-2020, Hanna Instruments, 
India) (Singh et al. 2010). Organic carbon was determined 
by the potassium dichromate oxidation method (Walkley and 
Black 1934). The elemental analysis (C, H and N) was done 
using a CHNS-O Elemental Analyser-Euro vector EuroEA 
3000, Italy. Bulk density and porosity of the biochar sam-
ples were estimated by using a column experiment (Ghosh 
et al. 2020). The surface morphology of the biochar was 
determined by field-emission scanning electron microscopy 
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(FE-SEM Supra55, Carl Zeiss, Germany) and an FTIR 
(Fourier-transform infrared spectrophotometer) spectrum 
was used to analyse surface functional groups present in the 
biochar samples.

2.2 � Collection of coal mine spoil

Coal mine spoil sampling was done from Tetulmari open-
cast project (OCP) (23° 48′ 210″ N and 86° 20′ 27″) Dhan-
bad (Fig. 1). Spoil samples were sieved in the field itself 
(< 2 mm) to get rid of the large boulders and rocks present 
in the mining site. Bulk spoil samples were brought back to 
the institute campus to conduct a pilot scale study on the pit 
application of biochar.

2.3 � Coal mine spoil characterisation

pH and EC of the mine spoil were determined with a mul-
tiparameter probe (HI-2020, Hanna Instruments, India) in 
a spoil and water slurry (spoil: water, 1:2.5, w/v). Organic 
carbon (OC) was calculated by chromic acid wet oxida-
tion method (Walkley and Black 1934). Cation exchange 
capacity (CEC) was determined by the ammonium acetate 
method (Jackson 1973). A Kjeldahl distillation unit (KJEL-
ODIST-EAS VA, Pelican equipment’s Inc. India) was used 
for available nitrogen (Av-N) content in the mine spoil. 
Total C, H and N were measured by CHNS-O Elemental 
Analyser (Eurovector EuroEA 3000, Italy) by flash com-
bustion technique (980 °C). Water holding capacity (WHC) 
was determined by placing the spoil samples in a Keen box 

(5.6 × 1.6 cm) in a water bath for 24 h (Maiti 2013). Bulk 
density (BD) was measured by soil core method (Maiti, 
2013). Available potassium and sodium were determined 
by ammonium acetate method. Available phosphorus was 
extracted by alkaline sodium bicarbonate (pH 8.5) and meas-
ured by a UV–VIS Spectrophotometer, Shimadzu Corpora-
tion, Japan (Ahirwal et al. 2017).

2.4 � Experimental design of biochar amendment 
study

The experimental design was a completely randomised 
block design with mine spoil as control and biochar amend-
ment at 2% and 3% (w/w) with five replicates for each dose 
(Fig. 2a). The mine spoil samples collected from the field 
were air dried at room temperature in laboratory condition 
(25–25 °C), and divided into three equal parts. One part was 
mixed with biochar at 2% (w/w) and another with 3% (w/w). 
The control and amended mine spoil samples were placed 
in PVC lined pits each of 45 cm × 45 cm × 30 cm dimension 
(Fig. 2b). A total of 15 (3 amendments × 5 replicates) such 
pits were prepared in the ESE department of Indian Institute 
of Technology (Indian School of Mines) Dhanbad campus. 
A PVC collar (11 cm in height and 21 cm in diameter) was 
placed up to a depth of 5 cm at each plot having overbur-
den dump as shown in Fig. 2b, c. Initially, distilled water 
was added to obtain a field capacity of 50%. The coal mine 
spoil was left naturally to incubate for 6 months in mid-June. 
The spoil enzymatic activity was measured on the begin-
ning in June, mid-way in August (3 months) and the end of 

Fig. 1   Location of coal mine spoil collection site in Tetulmari OCP, Jharkhand, India
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incubation in November (6 months). After the incubation 
period, mine spoil respiration was measured for 4 months 
(November–February).

2.5 � Enzyme activities

The mine spoil samples were analysed for four enzymatic 
activities and the changes that occurred after 3 and 6 months 
of incubation were measured. The soil enzymatic activities 
such as dehydrogenase (DHA), invertase, amylase and cel-
lulase were measured. Glasswares were previously treated 
by 2 M nitric acid for 24 h then further cleaned with distilled 
water. All chemical and reagents used were of analytical 
grade. DHA was determined by reducing triphenyl tetrazo-
lium chloride (TCC) to triphenyl formazane (TPF) (Casida Jr 
1977). The results were expressed as µg TPF g−1 soil 24 h−1. 
For invertase (EC 3.2.1.26), amylase (EC 3.2.1.1) and cel-
lulase (EC 3.2.1.4) activities, soil samples were incubated 

in sucrose, starch and carboxy methyl cellulose substrate, 
respectively, with Sorensen’s buffer (pH 5.5, 0.06 M) for 
24 h at 30 °C. The produced sugar was measured colo-
metrically by 3, 5–dinitrosalicylic acid (Arey, 2010). The 
activities of invertase, amylase and cellulase were finally 
represented by µg glucose per g soil after 24 h.

2.6 � Geometric mean of enzyme activities

The geometric mean of enzyme activities (GMea) can be 
used as an index to quantify the all enzymatic activity values 
in a single numerical value (García-Ruiz et al. 2008; Paz-
Ferreiro et al. 2012). Literature review suggested that the 
reported GMea are of agricultural or garden soil, its value in 
coal mine degraded soil has not been reported yet (Zhang 
et al. 2015). Thus, GMea of the assayed enzymes activities of 
the biochar amended soil was calculated by Eq. 1:

Fig. 2   a Randomised block design for biochar amendment study. b Diagrammatic representation showing the pilot scale set up for the biochar 
amendment study, c soil CO2 flux measurement (LICOR LI -8100, LICOR Inc)
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where, DHA, I, A and C are dehydrogenase, invertase, amyl-
ase and cellulase activities, respectively.

2.7 � Measurement of CO2 flux

CO2 flux was monitored in control plot (only coal mine spoil) 
and biochar amended mine spoil (2–3%) which was incubated 
for a period of 6 months. Spoil CO2 flux was monitored by 
LICOR LI-8100 (LICOR Inc. Lincoln, USA). A PVC collar 
(11 cm in height and 21 cm in diameter) was inserted up to 
a depth of 5 cm at each plot (Fig. 2b). The observations for 
CO2 flux were taken for a period of four months (120 days) 
from November 2018 to February 2019. 12 h data from 8:00 
to 20:00 (+ 5:30 GMT) was measured at 20 min interval, each 
lasting for 90 s. LI-8100 PC Client v3.0.1 windows interface 
software was used for the operation of the CO2 flux system 
using Lenovo laptop.

Spoil temperature was recorded by inserting a temperature 
probe into the spoil (type E thermocouple, p/n 8100–201; 
6.4 mm in diameter, 25 cm in length). Spoil moisture was 
recorded by placing a soil moisture probe up to a depth of 5 cm 
(ECHO Model EC-5, p/n 8100–202; 5 cm in length). Relative 
humidity was generated by the instrument itself. The moisture 
probe generated the output in mV (500–1300 mV) from which 
volumetric water content (VWC) was measured by Eq. 2:

Millivolts (mV) vs. moisture content (%, w/w) was in the 
range of 640 mV to 902 mV and corresponding moisture con-
tent ranged from 1.2% to 16.6%. The regression equation used 
is as follow (Eq. 3):

2.8 � Statistics

One-way ANOVA (analysis of variance) was used to com-
pare the means of biochar and mine spoil characteristics. 
Differences between individual means were evaluated using 
Duncan’s multiple range test at p < 0.05. Pearson’s correlation 
analysis with a significance level of p < 0.01 and p < 0.05 was 
performed to identify the correlation between variables. For 
all statistical analysis MS-Excel and IBM-SPSS 2019 software 
were used.

(1)GMea =
4
√

DHA × I × A × C,

(2)
VWC

(

m3m−3
)

= −3.14 × 107 ×mV
2
+ 1.16 × 10−3 ×mV − 0.612.

(3)Moisture % = 0.032 ×mV − 19.407.

3 � Results and discussions

3.1 � Biochar properties

The general properties of biochar are given in Table 1. A 
54.9% yield of biochar was obtained at this pyrolysis condi-
tion from Lantana feedstock. Biochar obtained had an alka-
line pH (9.34) and EC of 4.76 mS cm−1. The total elemental 
carbon, nitrogen, hydrogen and oxygen were 51.64%, 6.08%, 
5.88% and 7.64%, respectively. The low H/C ratio (0.11) of 
Lantana biochar represents its high degree of aromatisation 
while the low O/C ratio (0.14) represents the polarity of the 
biochar. The C/N ratio of 9.18 indicates that the pyrolysis 
improves organic matter which enhances the labile carbon, 
thus making it available for microbial activity in the spoil. 
The ratios are indicative of the prolonged stability of carbon 
in the soil.

The FE-SEM of the biochar revealed a highly porous 
morphology (Fig. 3). This provided a large surface area and 
substrate for microbial activity and nutrient accumulation. 
The FTIR spectra showed five strong peaks representing 
various functional groups. The O–H bond at 3391 cm−1 
was prominent due to the breaking of hydrogen bonded 
hydroxyl groups at higher temperatures (Fig. 4). Other 
bonds such as –CH3 (2924 cm−1), –CH2 (2870 cm−1), C=O 
(1600–1700 cm−1) due to cellulose of the feedstock were 
also present.

3.2 � Changes in mine spoil physio–chemical 
properties

The change in the physio–chemical properties due to Lan-
tana biochar amendment in a coal mine spoil has been 
shown in Table 2. Electrical conductivity showed a steep 
rise from 90.06 mS cm−1 in spoil to 721.66 mS cm−1 at 
3%, w/w application rate (p < 0.05). The increase in cation 

Table 1   Physio-chemical properties of biochar (n = 5)

Characteristics Values

pH (1:5, w/v) 9.34 ± 1.22
EC (1:5, w/v; mS cm−1) 4.76 ± 2.11
OC (%) 61.64 ± 1.17
C (%) 55.819 ± 1.2
H (%) 5.883 ± 0.6
N (%) 6.08 ± 1.2
H/C 0.11 ± 0.01
C/N 9.18 ± 0.03
BD (g cm−3) 0.25 ± 0.03
Yield (%) 54.9 ± 0.76
Porosity (%) 88 ± 0.89
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exchange capacity from control to 3% (w/w) amendment 
(7.24 vs. 15.85 Cmol kg−1) might be responsible for the 
steep rise in electrical conductivity. Mohan et al. (2018) 
reported the similar results by rice husk and corn cover bio-
char application. The organic carbon increased with increas-
ing biochar application rate in the mine spoil, and significant 
increase (p < 0.05) of 192% was observed at 3% (w/w) bio-
char amendment compared to the control (Table 2). Gonzaga 

et al. (2018) reported similar results by the application of 
coconut husks and pine wood chips biochar. Total carbon 
increased from 3% in mine spoil to 21% at 3% (w/w) biochar 
application rate. Total N and H did not show any significant 
changes (p < 0.05) by biochar application. Water holding 
capacity (27%) and bulk density (decreased by 13%) were 
also effected significantly by its application at 3% (w/w). 
Fellet et al. (2011) reported an increase in water-holding 

Fig. 3   The FE-SEM image of Lantana biochar showing the pores at 2.5 k × and 120 k ×

Fig. 4   FTIR spectra of Lantana biochar showing the surface functional groups
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capacity by 5% at 10% biochar application in a mine spoil. In 
another mine spoil, Kelly et al. (2014) reported a decrease in 
bulk density decreased by 16.4% and 19.7% for soil sampled 
from different sites.

3.3 � Effect of biochar amendment on enzymatic 
activities of coal mine spoil

3.3.1 � Dehydrogenase activity

Effect of biochar application on the spoil enzymatic activi-
ties at the end of 6-month incubation study has been shown 
in Fig. 5a. A significant increase (p < 0.05) of 83% was 
observed in dehydrogenase (DHA) value at 3% (w/w) com-
pared to control. DHA values at 2 and 3% (w/w) application 
rates were significantly different during the middle of the 
study. DHA is considered to be the index of microbial meta-
bolic activity and most importantly the indicator of respira-
tion of the soil) (Maiti 2013; Gascó et al. 2016). Mukhopad-
hyay et al. (2020) reported that yard waste biochar addition 
at 10% (w/w) increased the coal mine spoil DHA activity 
from 34.02 µg TPF g−1 soil 24 h−1 in control to 59.71 µg 
TPF g−1 soil 24 h−1. Wang et al. (2015a, b) reported similar 
findings in DHA activity by addition of biochar produced 
from maize at 300–600 °C. Liu et al. (2018) also reported 
a positive effect of coconut shell @5% (w/w) on the DHA 
activity in a soil incubation experiment.

3.3.2 � Invertase activity

Invertase activity was also found to increase significantly 
(p < 0.05) up to 2% (w/w) biochar application while a 
decreased was observed at 3% biochar amendment (Fig. 5b). 

At 2% (w/w) invertase activity increased from 3 µg glucose 
g−1 soil 24 h−1 in the control mine spoil in the beginning 
of the experiment to 14 µg glucose g−1 soil 24 h−1 after 
3 and 6 months of the experiment. However, at 3% (w/w) 
application rate, there were no significant changes in the 
invertase activity. Invertase enzyme in microorganisms 
catalyses the hydrolysis of sucrose to glucose and fructose. 
Thus, the changes in the invertase activity in the spoil act 
as an indicator of microbial activity. Zhang et al. (2015) 
reported an increase in invertase activity by using rice straw 
and peanut hull biochars in an acidic spoil. Similarly, Kha-
dem and Raiesi, (2017) found a 1.3- to 5.8-fold increase in 
invertase activity by corn stalk biochar in calcareous soil. 
A decrease in enzymatic activity beyond 2% (w/w) biochar 
amendment can be due to its ability to adsorb organic and 
inorganic molecules. Nie et al. (2018) reported that sugar-
cane and bagasse biochar at different doses (1.5, 2.25 and 
3.0 t ha−1), increased the invertase activity 1.2, 1.5 and 1.7 
times, respectively, compared to the control. At higher level 
of application, biochar particles might inhibit soil enzymes 
or their corresponding substrates by blocking their reaction 
sites (Bailey et al. 2011).

3.3.3 � Amylase activity

Amylase activity increased significantly (p < 0.05) up to 2% 
(w/w) application rate; beyond this threshold a steep fall 
was observed at 3% biochar amendment (Fig. 5c). At 2% 
(w/w), the amylase activity increased form 11 µg glucose g−1 
soil 24 h−1 in control to 38 µg glucose g−1 soil 24 h−1 after 
3 months to 44 µg glucose g−1 soil 24 h−1 at the end of the 
incubation study. However, at 3% (w/w), a decrease in amyl-
ase activity was observed compared to the control. Awasthi 

Table 2   Physio-chemical 
properties of coal mine spoil 
and the amended mine spoil 
(2% and 3%, w/w) (n = 5, 
and values are given in 
mean ± standard deviation)

Mine spoil (control) Amended coal mine 
spoil (2%, w/w)

Amended coal 
mine spoil (3%, 
w/w)

pH (1:2.5, w/w) 6.49 ± 0.45 6.69 ± 0.57 7.41 ± 0.34
EC (mS cm−1); (1:2.5, w/w) 90.06 ± 16.29 651.67 ± 25.65 721.66 ± 71.8
CEC (C mol kg−1) 7.24 ± 0.50 12.08 ± 0.79 15.85 ± 2.05
SOC (%) 0.74 ± 0.4 2.09 ± 0.075 2.16 ± 0.073
Available-N (mg kg−1) 17.0 ± 1.00 22.46 ± 0.5 44.53 ± 0.25
C (%) 3.00 ± 0.5 20.006 ± 1.2 21.072 ± 1.4
H (%) 0.359 ± 0.1 1.649 ± 0.3 0.649 ± 0.5
N (%) 0.693 ± 0.2 0.21 ± 0.2 0.424 ± 0.11
H/C 0.0847 ± 0.22 0.0819 ± 0.01 0.0307 ± 0.01
C/N 4.329 ± 0.53 24.69 ± 2.015 29.10 ± 1.7
WHCmax (%) 33.16 ± 0.03 37.92 ± 0.16 41.32 ± 0.19
BD (g cm−3) 1.2 ± 0.005 0.957 ± 0.05 0.95 ± 0.01
K (ppm) 91 ± 1 500 ± 55.67 470 ± 20
P (ppm) 0.163 ± 0.12 0.416 ± 0.02 0.4 ± 0.025
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Fig. 5   a Dehydrogenase, b amylase, c invertase, d cellulase activities and e GMea in control and 2% and 3% (w/w) Lantana biochar amendments 
at the beginning, middle and end of incubation
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et al. (2016) reported that biochar produced from wheat 
straw significantly improved amylase activity in a substrate. 
Amylase plays an important role of catalysing the hydro-
lytic depolymerisation of polysaccharides such as starch in 
soil to simple glucose molecule. Its presence is significantly 
correlated with microbial populations and moisture content. 
A decrease in the amylase activity beyond 2% (w/w) indi-
cates that an application rate beyond this negatively affected 
microbial population responsible for amylase secretion in the 
spoil. At higher application rate, enzymes may be inactivated 
in biochar amended soils, by blocking or absorption of the 
substrate (Bailey et al. 2011).

3.3.4 � Cellulase activity

In the current study, cellulase activity had a positive relation 
with biochar application (Fig. 5d). At 3% (w/w) of biochar 
amendment, the cellulase activity increased from 0.06 µg 
glucose g−1 soil 24 h−1 in control to 0.4 µg glucose g−1 soil 
24 h−1 in the middle of the study period and 0.6 µg glucose 
g−1 soil 24 h−1 at the end of the incubation study. An average 
increase in 70% and 78% was observed at 2% and 3% (w/w) 
biochar application, respectively. A number of biochar-based 
studies reported that biochar application significantly stimu-
lated the cellulase activity in the soil (Awasthi et al. 2016; 
Khadem and Raiesi 2017). Cellulase is another important 
enzyme involved in C-metabolism and produced by soil 
microbes that catalyse the decomposition of cellulose and 
some other related polysaccharides. The presence of cel-
lulase indicates a nutrient-rich soil with enriched microbial 
activity.

3.4 � Effect of biochar in geometric mean of enzyme 
activities

The geometric mean of enzyme activities (GMea) is an 
index to summarise the soil enzymes activities having 
various values and units (Paz-Ferreiro et al. 2012). GMea 
of the unamended mine spoil was 1.87 while it increased 
to 4.51 at 2% (w/w) and 3.25 at 3% (w/w) biochar amend-
ments, clearly stating the fact that Lantana biochar at 2% 

application is best suited for improving the spoil biochem-
istry (Fig. 5e). The improvement in the GMea is related 
to soil organic carbon and microbial activity due to bio-
char application (Lehmann 2007) or by direct interaction 
between the enzymes and the biochar surfaces (Lehmann 
2007).

3.5 � Effect of biochar amendment on CO2 flux

The effect of biochar amendments at 2% (w/w) and 3% 
(w/w) on CO2 flux, surface CO2 concentrations, mois-
ture, temperature and relative humidity at 5 cm depth was 
recorded for a 4-month period (Table 3). The control had 
much higher average CO2 flux value of 4.92 μ mol CO2 
m−2 s−1 compared to 2.85 and 2.60 μ mol CO2 m−2 s−1 in 
2% and 3% (w/w) biochar amendment. The CO2 flux value 
showed a significant (p < 0.05) 50% decrease by Lantana 
biochar application. It was found to be highly correlated 
with organic carbon, GMea, cellulase and DHA activity 
(Table 2). Studies report that changes in CO2 flux by bio-
char application is influenced by feedstock, pyrolysis tem-
perature, substrate type and also the age of biochar (Gascó 
et al. 2019). Biochar amendment significantly increased 
the CO2 flux due to the increase in the organic matter in 
the substrate. On the other hand, wood biochar has been 
reported to reduce the CO2 emission by about 42.8%, and 
a mixture of saw dust and coffee husk biochar reduced the 
CO2 emissions by about 50% (Awasthi et al. 2016). Bio-
char prepared at higher temperature are generally known 
to be highly aromatic with high recalcitrant carbon (Al-
Wabel et al. 2013). Majumder et al. (2019) reported that 
biochar had dual effects on soil carbon mineralization, 
depending upon the source material and pyrolysis temper-
ature. In the present study, the mine spoil was incubated 
in natural conditions for 6 months, during this period the 
labile fraction of the biochar was acted upon by microbial 
activity leaving behind the high recalcitrant carbon. Thus, 
the 6-months aged biochar on the mine spoil had a lower 
CO2 flux than the unamended substrate.

Table 3   Effect of biochar amendment on CO2 flux (μ  mol CO2 
m−2  s−1), volumetric water content (m3 m−3), relative humidity 
(%), spoil moisture (%) and temperature (°C) (12  h data from 8:00 

to 20:00 (+ 5:30 GMT) were taken at every 20 min interval for 90 s 
duration for 4  months, considering each amendment was measured 
twice a week, n = 3168)

Control 2% (w/w) 3% (w/w)

CO2 flux (μ mol CO2 m−2 s−1) 4.92 ± 0.67 2.85 ± 0.75 2.60 ± 0.72
Volumetric water content (m3 m−3) 0.22 ± 0.01 0.27 ± 0.01 0.24 ± 0.003
Relative humidity (%) 45.45 ± 4.2 64.45 ± 10.2 69.12 ± 5.2
Spoil moisture (%) 1.18 ± 0.36 2.98 ± 0.43 3.17 ± 0.65
Temperature (°C) 22.25 ± 0.5 20 ± 1.00 19 ± 0.86
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3.6 � Volumetric water content, relative humidity, 
spoil moisture and temperature

Incubated spoil moisture content was highest at 3% (w/w) 
amendment and least in control (Table 3). Mean relative 
humidity was also found to be highest at 3% (w/w) amend-
ment (69%) and lowest in the control (45%) (Table 3). Bio-
char application in spoil affects its water holding capacity by 
modifying soil texture and structural properties. In addition, 
internal porosity also stores plant available water which in 
turn affects soil water retention properties (Rasa et al. 2018). 
The daily mean spoil temperatures at a 5-cm depth were 
22.5, 20 and 19 °C for control, 2%, and 3%, respectively, 
with clear diurnal differences. The possible changes in spoil 
temperature resulting from biochar addition might affect 
other biophysical–chemical properties of the spoil.

3.7 � Monthly variation

Spoil respiration was recorded for the months of November 
to February. In the control mine spoil, CO2 flux initially 

decreased from November to January, and started increas-
ing after January. However, in the biochar amended mine 
spoil, a decrease was observed after November, which 
eventually remained stable up to the month of February 
(Fig. 6a). Similarly, the cumulative CO2 flux in the control 
mine spoil increased over the period of time while the bio-
char amended spoil had a lower cumulative CO2 flux value 
(Fig. 6b). A review conducted by Liu et al. (2016) reported 
that a positive response of soil CO2 flux was observed in 
the soil without vegetation and the unfertilised soil treated 
with manure and crop residue biochars. An increase in CO2 
emission followed by stabilisation by poultry litter biochar 
was reported by Van Zwieten et al. (2013). The average sur-
face CO2 showed an opposite trend, and the highest value 
was observed at 3% (w/w) biochar amendment and the 
least in unamended (Fig. 7c). However, the control and 2% 
(w/w) values did not vary significantly. Spoil moisture con-
tent was highest in biochar amended mine spoil during the 
period of study (Fig. 4d). Luo and Gu (2016) reported that 
peanut hull biochar at 3% (w/w) application rate increased 
the cumulative CO2 emission due to the enhanced organic 

Fig. 6   Monthly variation in the control and biochar amended mine spoil ( 2% and 3%, w/w) for a CO2 flux, b cumulative CO2 flux, c surface 
CO2 and d moisture content
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carbon mineralisation caused by biochar addition. Similarly, 
Deng et al. (2020) reported that biochar addition increased 
carbon substrate for microbial activity which stimulated 
mineralisation and oxidation of biochar carbon and hence 
CO2 emission.

4 � Correlation of GMea, CO2 flux and coal 
mine spoil properties

Pearson’s correlation showed all the enzymatic activi-
ties and GMea were significantly correlated with organic 
carbon (Fig. 7). Many studies have reported a positive 
correlation between the soil enzymatic activities and 
organic matter contents (Khadem and Raiesi 2017). Soil 
enzymes catalyse a large number of important reactions 

such as decomposition of soil organic carbon. A positive 
correlation between extracellular enzymes such as DHA 
(r = 0.95), amylase (r = 0.75), invertase (r = 0.86) and cel-
lulase (r = 0.88) and organic carbon was observed.

Correlation analysis showed that enzymatic activities 
were positively correlated with biochar application and 
mine spoil organic carbon (Fig. 8a). A similar trend was 
also observed for CO2 flux (Fig. 8b). Biochar amendment 
and GMea and CO2 flux were related with R2 of 0.964 and 
0.81, respectively (p < 0.05). Similarly, GMea (R2 = 0.84, 
p < 0.05) and mine spoil organic carbon (R2 = 0.96, 
p < 0.05) also showed positive correlation by biochar 
amendment. The results indicate that biochar addition 
to mine spoil might generally increase the activities of 
enzymes associated with carbon mineralization.

Fig. 7   Pearson correlation coef-
ficients (r) between enzymatic 
activities of the soil and across 
biochar application rate (n = 5)

Fig. 8   Corelation of Gmea and a mine spoil CO2 flux and b organic carbon in control, 2 and 3% (w/w) biochar amendment
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5 � Implication of the study

The main objective of the current study was to test the 
feasibility of biochar application in a pit plantation 
method of mine reclamation. The pit size is generally 
45 cm × 45 cm × 30 cm and filled with OB/topsoil along with 
tree sapling (Maiti 2013). Pit plantation with fruit bearing/ 
timber trees saplings along with biochar will promote plant 
growth and immobilise potentially toxic metals (Ghosh and 
Maiti 2020a, b). Thus, from the current study it can be con-
cluded that biochar at 2% (w/w) application rate in a pit 
can ameliorate mine spoil properties for supporting plant 
growth.

Thus, from the findings of the present pilot scale study, 
it can be estimated that in 1 ha of mine degraded land, if 
the pits are at distance of 2.5 m, there will be a total of 
1600 pits (100/2.5 in each row × 100/2.5 in each column). 
The diagrammatic representation of a 1 ha mine spoil is 
shown in Fig.  9. Each pit has a volume of 47,006 cm3 
(45 cm × 45 cm × 30 cm) and the bulk density of the mine 
spoil is 1.2 g cm−3 (Table 1). Thus, 56 kg of mine spoil 
would be required in each pit and considering biochar appli-
cation at 2% (w/w), 1.12 kg of biochar would be required per 
pit. Thus, the estimated amount of biochar required for 1 ha 
mine spoil remediation would be 1792 kg or 1.7 t ha−1. This 
method of pit plantation would reduce biochar requirement 
many folds, as the conventional spreading method has been 
reported to use 5–60 t ha−1 biochar application for amend-
ment purpose (Ghosh and Maiti, 2020a, b).

In a mining area, before the eco-restoration practices 
start, the extracted overburden materials are often left for 
1–2 years. During this period, the invasive weeds like Lan-
tana grow abundantly in these areas which cause problems 

due to allelopathy. These weeds can be uprooted during the 
dry tropical months before monsoon, sun-dried and con-
verted to biochar by charcoal-pit production method which 
is labour extensive. The estimated unit cost (CE, USD t−1) 
for biochar production and application can be calculated by 
Eq. 2 (Dickinson et al. 2015; Ghosh and Maiti 2020a, b):

where, UA = unit labour input for feedstock harvest and bio-
char production (d t−1); UB = unit labour input for biochar 
transport (d t−1); UC = unit labour input for biochar applica-
tion to plantation pit (d t−1); Ci = labour cost (USD d−1).

Based on the above equation, the cost estimations have 
been shown in Table 4. The cost of biochar application is 
120 USD t ha−1 by pit plantation method.

For upliftment of livelihood of stakeholders and 
employment generation, plantation of timber and fruit 
bearing trees having economical significance are often 
suggested. Also, plantation of native species will promote 
species richness and will promote better growth (Maiti 
and Ghosh 2020). Fruit bearing trees such as Psidium 
guajava (Guava), Mangifera indica (Mango), Artocarpus 
heterophyllus (Jackfruit), Syzygium cumini (Black plum) 
and Citrus spp. can provide economic benefits in the long 
run. Apart from those multipurpose trees such as Albizia 
lebbeck (Siris), Tectona grandis (Teak), Dalbergia sissoo 
(Shisham) and Gmelina arborea, Beechwood has high 

(4)C
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=
(
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A
+ U

B
+ U

C

)

× C
i
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Fig. 9   A schematic diagram showing the pit plantation layout for 1 h 
land. The pits are at a distance of 2.5 m and each pit has a dimension 
of 45  cm × 45  cm × 30  cm, with volume of 47,006 cm3 and biochar 
1.7 t ha−1 (the diagram is not on scale and the number of pits is not 
exact in number)

Table 4   Cost of biochar production and application for 2% (w/w) bio-
char application, plantation pit preparation and plantation with fruit 
and timber bearing trees (area 1 ha; conversion 1 USD = Indian ₹ 75)

*Total cost at 3% (w/w) amended by biochar will be 950 USD t ha−1

# 1 USD = Indian ₹ 75

Sr No. Expenses INR USD

1 Unit labour input for feedstock harvest and 
biochar production (d t−1) (@ 6 h/d, each 
labour collects 50 kg feedstock) UA = 20 
d t−1

Unit labour input for biochar transport (d t−1) 
(Biochar produced in charcoal pits in the 
field itself) UB = 0 d t−1

Unit labour input for pit digging and applica-
tion in a plantation pit (d t−1) UC = 30 d t−1

labour cost (INR d−1) Ci = 180
Sub- total cost of biochar production and 

application by Eq. 4 (@1 t ha−1) Ci

9000 120

2 Timber saplings @₹35 and fruit bearing tree 
@₹25 for 1600 plantation pits (considering 
50% timber and 50% fruit tree saplings)

Total cost of sapling (ha−1)

48,000 640

Total cost t ha−1 57,000 760
Total cost at 2% (w/w) application (1.7 t 

ha−1)*
63,300 844#
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economic significance. Thus, the cost of fruit bearing tree 
sapling 50% (@₹25) and timber saplings 50% (@₹35) will 
cost 640 USD ha−1 (Table 4). Therefore, the total cost 
of biochar production, preparation of plantation pit and 
plantation will cost 844 USD ha−1.

6 � Conclusions

Lantana biochar significantly improved GMea up to 2% 
(w/w) application rate. At 3% (w/w) mine spoil physio-
chemical properties such as organic carbon (65%), WHC 
(19%), CEC (54%), BD (25%) were improved signifi-
cantly compared to the unamended mine spoil. In gen-
eral, DHA and invertase activity were increased up to 3% 
biochar amendment while amylase and cellulase activities 
increased up to 2% amendment and eventually decreased 
beyond this level. Decreases in mine spoil CO2 flux by 42% 
and 47% by 2 and 3% biochar amendment respectively, 
compared to the control were observed. Thus, Lantana 
biochar effectively remediates the physio–chemical and 
biological aspects of degraded and can be easily applied 
during ecological restoration by pit plantation method. The 
application rate with this method will be 1.7 t ha−1, which 
is lower than the reported rates of application. The cost of 
biochar preparation, application and plantation in this pit 
plantation technique at 2% is estimated to be 844 USD t 
ha−1. If fruit orchards and timber bearing plants are used 
for plantation in mine spoil, it will provide livelihood to 
stakeholders.
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