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Abstract
Biochar, an environmentally friendly soil conditioner, is produced using several thermochemical processes. It has unique 
characteristics like high surface area, porosity, and surface charges. This paper reviews the fertilizer value of biochar, and 
its effects on soil properties, and nutrient use efficiency of crops. Biochar serves as an important source of plant nutrients, 
especially nitrogen in biochar produced from manures and wastes at low temperature (≤ 400 °C). The phosphorus, potas-
sium, and other nutrient contents are higher in manure/waste biochars than those in crop residues and woody biochars. The 
nutrient contents and pH of biochar are positively correlated with pyrolysis temperature, except for nitrogen content. Biochar 
improves the nutrient retention capacity of soil, which depends on porosity and surface charge of biochar. Biochar increases 
nitrogen retention in soil by reducing leaching and gaseous loss, and also increases phosphorus availability by decreasing 
the leaching process in soil. However, for potassium and other nutrients, biochar shows inconsistent (positive and negative) 
impacts on soil. After addition of biochar, porosity, aggregate stability, and amount of water held in soil increase and bulk 
density decreases. Mostly, biochar increases soil pH and, thus, influences nutrient availability for plants. Biochar also alters 
soil biological properties by increasing microbial populations, enzyme activity, soil respiration, and microbial biomass. 
Finally, nutrient use efficiency and nutrient uptake improve with the application of biochar to soil. Thus, biochar can be a 
potential nutrient reservoir for plants and a good amendment to improve soil properties.

Keywords Biochar · Nutrients · Manure · Soil properties · Nutrient use efficiency

1 Introduction

In recent decades, application of biochar to soil has drawn 
attention from the scientific community. Research has 
focused on its cost-effectiveness and environmentally 
friendly features, such as enhancing carbon sequestration 
and remediating contaminated soil. Biochar can influence 
nutrients in soil in several ways: (1) as a source of nutri-
ents for plants and soil microorganisms (Li et al. 2017b); 
(2) as a nutrient sink, thereby impacting the mobility and 
bioavailability of nutrients (Gul and Whalen 2016); and (3) 
as a soil conditioner, thereby altering soil properties that 
influence the reactions and cycling of nutrients in the soil 
(Lusiba et al. 2017). As a source, biochar can supply nutri-
ents such as nitrogen (N), phosphorus (P), potassium (K), 
and other trace elements inherently present in the original 
feedstock used for biochar production (Purakayastha et al. 
2019). While some nitrogen and sulfur in the feedstock 
materials are lost through gaseous emission during pyroly-
sis (Al-Wabel et al. 2013; Leng et al. 2020), most nutrients 
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are released during the weathering of biochar in soil, and 
they become available for plant uptake (Zhao et al. 2018). 
The nutrient content of biochar depends on the nature of the 
feedstock materials and the pyrolytic conditions. Biochars 
derived from manure- and biosolid-based feedstock materi-
als generally contain higher levels of N and P than those 
derived from wood- and straw-based feedstock materials (El-
Naggar et al. 2019a; Purakayastha et al. 2019). While the 
N content decreases with increasing pyrolytic temperature 
through gaseous emission (Leng et al. 2020), the P and K 
contents increase due to an increase in ash content (Christel 
et al. 2016; Tomczyk et al. 2020; Wang et al. 2013). As a 
nutrient sink, biochar can retain nutrients, thereby reduc-
ing their losses through leaching and gaseous emission. The 
nutrient retention capacity of biochar depends on its porosity 
and surface charge (cation and anion exchange capacity) (Yu 
et al. 2018). Biochar application reduces the loss of N, P, 
and K through leaching, and N through nitrous oxide emis-
sion (Beusch et al. 2019; Yao et al. 2012; Yuan et al. 2016). 
However, the loss of N through ammonia emission depends 
mainly on the pH of the biochar; biochar with a slightly 
acidic or near-neutral pH reduces ammonia volatilization 
from soil (Mandal et al. 2018, 2019).

Biochar application influences various soil properties 
including pH, bulk density, cation exchange capacity, water 
retention, and biological activity. These changes in soil prop-
erties are likely to impact nutrient reactions on soil parti-
cles and microbial transformation of nutrients (Mandal et al. 
2018). Upon application to the soil, biochar improves soil 
fertility and crop productivity by increasing the soil nutrient 
contents and the mobility of nutrients. It enhances microbial 
activity (Meier et al. 2019), improves aeration and water 
retention (Kambo and Dutta 2015; Razzaghi et al. 2020), 
buffers soil reactions (Laghari et al. 2016), reduces bulk den-
sity (Yan et al. 2019a), and maintains soil aggregate struc-
ture (Zhang et al. 2020). Moreover, biochar reduces nutrient 
leaching and loss of nutrients by volatilization through alter-
ing the soil pH and by enhancing the ion exchange capacity 
(DeLuca et al. 2015). Biochar can change the soil microbial 
community composition (Ducey et al. 2013), and thus, it 
impacts nutrient cycling and uptake by plants (Lehmann 
et al. 2011). Biochar decreases nitrification in soil result-
ing in reduced nitrate leaching (Igalavithana et al. 2016). 
Figure 1 shows a conceptual framework depicting various 
impacts of biochar on soil and plants.

Many reviews have been published about the importance 
of biochar for soil health, crop production, and problem 
soils (Agegnehu et al. 2017; Al-Wabel et al. 2018; Dai et al. 
2017; Ding et al. 2017, 2016; El-Naggar et al. 2019b; Juriga 
and Šimanský 2018; Laghari et al. 2016; Lone et al. 2015; 
Muhammad et al. 2018; Munoz et al. 2016; Palansooriya 
et al. 2019; Shaaban et al. 2018; Yu et al. 2019), soil carbon 
sequestration (Sarfraz et al. 2019), availability of N, P, and 

K (Liu et al. 2019a), and decreasing drought and salinity 
stress in plants (Ali et al. 2017). Reviews and meta-analyses 
also have been published focussing on soil-N dynamics such 
as available N (Nguyen et al. 2017b), leaching and gase-
ous emissions of N (Borchard et al. 2019; Cai and Akiyama 
2017), and the overall soil-N cycle (Liu et al. 2018). How-
ever, there is no review concerning the ability of biochar to 
retain multiple nutrients in soil through reducing gaseous 
and leaching losses and, thus, enhance plant growth. This 
paper focusses on: (1) effect of biochar on soil properties, 
(2) biochar as a nutrient source, and (3) impact of biochar on 
nutrient reactions in soil and uptake by plants.

2  Production and characteristics of biochar

The term char means output from disintegration of organic 
and inorganic materials. Biochar and charcoal have been 
synonymously used but can be differentiated by their use, 
because charcoal is used for energy; whereas, biochar is con-
sidered for carbon sequestration and environmental appli-
cations. Biochar is also called as ‘pyrochar,’ because it is 
produced by the pyrolysis of biomass (Ralebitso-Senior and 
Orr 2016). The typical definition of biochar, as stated by 
the International Biochar Initiative (IBI), is ‘a solid mate-
rial obtained from the thermochemical conversion of bio-
mass in an oxygen-limited environment’ (IBI 2015). The 
production and soil application of biochar are related to the 
‘terra-preta’ (black earth) soils of Amazon region, which 
are important because of their high productivity. After the 
characterization of these soils, the scientific community rec-
ognized that biochar has properties similar to the terra-preta 
soils. Thereafter, much work was done related to biochar and 
its application in the soil. Generally, biochar is produced 
from a range of biomasses (e.g., manure, wood, crop, and 
industrial residues) at temperatures less than 900 °C and 
under oxygen-limited pyrolytic conditions (Zhang et al. 
2019). However, recent studies have shown that biochar 
can also be produced by other thermochemical processes, 
e.g., hydrothermal carbonization, gasification, torrefaction, 
and microwave-assisted pyrolysis (Kambo and Dutta 2015; 
Vithanage et al. 2017; Yuan et al. 2017).

The characteristics of biochar are influenced by the 
feedstock and heating conditions (Joseph and Taylor 2014; 
Laghari et al. 2016; Li et al. 2017b; Ralebitso-Senior and 
Orr 2016; Yuan et al. 2017). The physical and chemical 
properties also depend on other factors such as heating rate, 
kiln pressure, the composition of the atmosphere (N or  CO2 
atmosphere in the kiln), and the type of pre- or post-treat-
ment of biochar (Joseph and Taylor 2014). The important 
properties of biochar are presented in Fig. 2. Based on the 
ash composition and its properties, biochar can be divided 
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into the following three main groups (Joseph and Taylor 
2014).

i) Biochar produced from biomass with minimum ash con-
tent (< 3–5%), such as wood, nut shells, bamboo, and 
some seeds (e.g., apricots). These hard biochars have 
large porosity, surface area (SA), and hold more water 
than biochars in other groups.

ii) Biochar produced from biomasses containing medium 
ash content between 5% and 13%, which include most 
agricultural wastes, bark, and high-quality green waste 
(i.e., with low contamination of plastics, soil, and met-
als).

iii) Biochar produced from biomasses with high ash con-
tents (> 13%), such as manures, sludges, wastepaper, 
municipal waste, and rice husks.

The physical characteristics of biochar, especially the sur-
face area and pore size/volume/distribution, are controlled 
by the pyrolytic conditions and the nature of feedstock. 

For example, under high-temperature pyrolytic conditions 
(> 550 °C), biochar is characterized by having a large surface 
area and a high aromaticity (Ralebitso-Senior and Orr 2016). 
However, at pyrolysis under low temperatures (200–400 °C), 
biochar is characterized by having more oxygen-containing 
functional groups, such as –COOH, –OH, C=O, phenolic 
–OH and –CHO groups, which stimulate nutrient exchange 
and, thus, improves soil fertility (Mandal et al. 2020; Rale-
bitso-Senior and Orr 2016). The characteristics of biochar 
are important for its uses. For example, biochar with a low 
surface area is less suitable for soil health improvement than 
that with a high surface area.

3  Effect of biochar on soil properties

The changes in soil properties resulting from biochar appli-
cation are likely to impact nutrient reactions and microbial 
transformation of nutrients. Figure 3 summarizes these 
processes.

Fig. 1  Conceptual framework for impact of biochar on soils and plants
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3.1  Physical properties

Owing to special characters (such as high surface area 
and porosity), biochar application influences soil physical 
properties (Fu et al. 2019; Greenberg et al. 2019; Horák 
et al. 2019; Oladele 2019; Zhang et al. 2020). The effect of 
biochar on various soil physical properties that are likely 
to impact nutrient interactions in soil are summarized in 

Table 1. For example, in a 4-year field study, peanut-shell 
biochar altered soil properties by increasing water-stable 
aggregates (WSA) (Du et al. 2018), and rice straw biochar 
increased aggregate stability from 1% to 17% (Peng et al. 
2011). In addition, biochar rate is positively correlated with 
WSA. For instance, Oladele (2019) reported that addition 
of rice husk biochar increased WSA at various soil depths 
over 3 years. The author found that with 3, 6, and 12 t  ha−1 
of biochar application, WSA increased by 10, 18, and 23%, 
respectively, at the 0–10 cm depth, and by 16, 20, and 26%, 
respectively, at the 10–20 cm soil depth compared to no 
biochar application in the first year. After 3 years, WSA 
increased by 22 and 24% at the 0–10 and 10–20 cm depths, 
respectively. Moreover, the application of rice husk biochar 
(10 t  ha−1) increased soil porosity by decreasing bulk den-
sity and increased available water in a sandy clay loam soil 
(Laghari et al. 2016). Li et al. (2018) said that maize straw 
biochar reduced soil bulk density and improved soil porosity 
in a semi-arid region. In a pot study, Prapagdee and Tawin-
teung (2017) concluded that cassava stem biochar increased 
soil porosity, which was in line with Fu et al. (2019) who 
found in a field trial that biochar dose was positively cor-
related with soil porosity. Li et al. (2018) conducted a study 
on the impact of maize straw biochar on soil properties in 
a tomato field in a semi-arid region of China. The authors 
found that application of biochar at 10, 20, 40, and 60 t  ha−1 
increased the soil porosity from 42.5% to 48%, 50%, 55%, 

Fig. 2  Properties of biochar. 
Modified and reprinted with 
permission from Igalavithana 
et al. (2018) and Xu et al. 
(2017)

Fig. 3  Influence of biochar on soil properties. Adapted from Lopez-
Capel et al. (2016)
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and 56%, respectively, and reduced the bulk density of a 
sandy loam soil. The application of biochar reduces bulk 
density of soil regardless of soil types, study environments, 
biochar application rate, or production conditions (Table 1).

Addition of biochar has been shown to increase the abil-
ity of soil to hold water (Yadav et al. 2018). Razzaghi et al. 
(2020) did a meta-analysis on the effect of biochar on soil 
water retention and found that the ability of soil to hold 
water increased, especially in coarse-textured soils; Peake 
et al. (2014) reported that biochar had a positive impact on 
the ability of loamy sand and sandy loam soils to hold water. 
The ability of soil to hold water has increased with increas-
ing biochar application rates (Greenberg et al. 2019; Oladele 
2019). Biochar reduced the tensile strength and cracks of 
a surface soil (Mandal et al. 2020), and suppressed soil 
shrinkage by increasing the ability of the soil to hold water; 
thus, soil structure was improved (Fu et al. 2019). Nair et al. 
(2017) observed that biochar improved soil water retention, 
reduced bulk density, and stabilized soil organic matter. 
Additionally, it was confirmed that there were hydrophilic 
functional groups on the surface and pores of biochar with 
a high affinity for water; biochar application was shown to 
increase soil water retention more in a sandy soil than a 
loamy soil or a clay soil (Mandal et al. 2020). Biochar also 
showed a positive impact on surface area of soil (Anawar 
et al. 2015), which varied with biochar types (Tomczyk 
et al. 2020). For example, biochar (10%)-amended soil had 
3 times higher surface area than untreatedd soil (Tomczyk 
et al. 2019). Therefore, irrespective of soil types, experi-
mental conditions, biochar types, pyrolytic temperatures, 
and application rates, biochar has positive impacts on soil 
physical properties. Moreover, the above discussion shows 
that the soil physical properties are interlinked and influence 
each other.

3.2  Chemical properties

Biochar application has been shown to impact soil chemi-
cal properties such as pH, electrical conductivity (EC), and 
cation exchange capacity (CEC). These soil chemical prop-
erties influence nutrient interactions in soil. The impacts of 
biochar on selected chemical properties of soils are sum-
marized in Table 2. Soil pH can be altered by incorpora-
tion of biochar into soil, thereby contributing to alterations 
in nutrient availability. The pH of biochar is an important 
character for its use in agriculture as a soil conditioner. Bio-
char pH is dependent on the rate of the carbonization pro-
cess, pyrolytic temperature, and feedstock type (Weber and 
Quicker 2018). Biochar also generates organic acids during 
pyrolysis of biomasses that influence the pH of the final 
product (Cheng et al. 2018). Biochars generally have a pH 
range of 6.52–12.64 (Table 4), and the pH values positively 
correlate with the pyrolytic temperature (Fig. 5). Biochar has 

an alkaline nature due to the presence of alkali and alkaline 
metals in feedstocks that are not volatilized during pyrolysis 
(Yang et al. 2018). Application of alkaline biochar tends to 
increase the pH of acidic and neutral soils (Buss et al. 2016). 
The alkalinity of biochar depends on three important factors: 
(a) organic functional groups; (b) carbonate content, and (c) 
inorganic alkali content (Lee et al. 2013). The concentration 
of base cations in biochar is strongly correlated with biochar 
alkalinity, which is not a simple function of biochar’s soluble 
ash content (Fidel et al. 2017). Alkaline biochar can be used 
as a liming material for neutralizing acid soils (Taskin et al. 
2019). However, the soil liming potential of biochar is not 
consistent across soil and biochar types. For example, appli-
cation of biochar (at 1% and 2% rate) generated from vari-
ous types of crop straws (pH value of biochar ranging from 
7.69 to 10.26) in a three-month incubation study decreased 
the pH of an acidic Ultisol (pH 4.31) over time (Laghari 
et al. 2016). However, in a field study, application of a paddy 
straw-derived biochar (biochar pH was 10.50) to a sandy soil 
(soil pH 5.24) increased the pH of the soil by 4.5 units com-
pared to the control (El-Naggar et al. 2018b). Moreover, a 
high dose (50 and 100 t  ha−1) of biochar (pH 9.40) increased 
the pH of an Alfisol and, consequently, reduced exchange-
able Al concentration in the soil (Tomczyk et al. 2020). Li 
et al. (2018) observed that application of biochar (10, 20, 
40, and 60 t  ha−1) had no impact on soil pH in a semi-arid 
region, which was consistent with the results reported by 
Werner et al. (2018) who found that the pH of a sandy loam 
soil was not changed with addition of biochar. Therefore, 
biochar application to soil could either increase or decrease 
soil pH based upon the original soil properties (e.g., pH, 
texture) and biochar pH and alkalinity (Table 2). 

Most biochars contain high amounts of soluble salts, 
and, hence, the EC of biochar is generally higher than most 
agricultural soils (Igalavithana et al. 2018). Availability of 
soluble nutrient ions such as  NO3

−,  K+, and  Ca2+ could be 
directly related to the soluble salt content and, hence, the 
EC of biochar when applied to soil. Excess salts or high 
EC in soil is harmful for plants, because of a decrease in 
osmotic potential. Therefore, the EC of the soil must be 
maintained low for desirable nutrient availability and plant 
growth. Nevertheless, the EC of soil was reported to increase 
with increasing application rates of biochar (Li et al. 2018). 
Prapagdee and Tawinteung (2017) found that the EC of soil 
increased when cassava stem-derived biochar was applied 
at a rate of 10% (w/w). In a sandy soil (EC = 0.07 dS  m−1), 
the EC was increased by 385, 100, and 71% with the addi-
tion of paddy straw, silver grass residue, and umbrella tree 
residue biochar (30 t  ha−1), respectively (El-Naggar et al. 
2018b). However, rice husk biochar (EC = 2.56 dS  m−1) had 
no impact on increasing the EC in the soil (Jatav et al. 2018).

The CEC of most biochars is higher than that of typi-
cal agricultural soils (Sohi et al. 2009, 2010). The CEC of 
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biochar is attributed to the generation of various functional 
groups, such as carboxyl and hydroxyl groups, during the 
pyrolysis of biomass (Tomczyk et al. 2020). Biochar CEC 
is governed by two important factors: (a) surface oxida-
tion, and (b) adsorption of highly oxidized organic matter 
onto the biochar surface (Tomczyk et al. 2020). Like pH, 
CEC of soil can also be altered by biochar application. For 
instance, in a short-term (11-day) incubation study using an 
Ultisol, the addition of rice straw-derived biochar at 2.4 t 
 ha−1 increased the CEC of soil (Peng et al. 2011). In another 
study, El-Naggar et al. (2018b) showed that the CEC of a 
sandy soil (CEC = 0.5 cmol  kg−1) increased by 3.00, 1.00, 
and 0.75 cmol  kg−1 with the application of biochars (at 30 
t  ha−1 rate) derived from paddy straw, silvergrass residue, 
and umbrella tree residue, respectively. However, in a sandy 
loam soil (initial CEC = 10 cmol  kg−1), the paddy straw bio-
char (at 30 t  ha−1 rate) increased the CEC by 1.0 cmol  kg−1 
only. In another study, biochar derived from wood was found 
to increase the CEC by as much as 190% in an Anthrosol 
(initial CEC = 2.81 cmol  kg−1) compared to the control treat-
ment (Tomczyk et al. 2020). Therefore, various types of bio-
chars produced from various feedstocks change the CEC 
of soils to a different extent (Table 2), and the CEC affects 
nutrient availability and water retention of soil (Yadav et al. 
2018). Moreover, biochar is known to increase the organic 
carbon content in soil (Table 2) and stimulate C sequestra-
tion by suppressing the long-term turnover of soil organic 

matter (Schofield et al. 2019). The increased organic carbon 
content, together with improved chemical properties due to 
biochar application, positively affects the nutrient status in 
soil.

3.3  Biological properties

Effects of biochar on various soil biological properties, such 
as soil respiration, microbial biomass carbon, microbial 
activity and functions, and soil enzymatic activity, are pre-
sented in Table 3. Owing to its porous system, biochar can 
be a favorable habitat for soil microorganisms including bac-
teria, mycorrhizal fungi, and actinomycetes (Compant et al. 
2010; Prapagdee and Tawinteung 2017). Du et al. (2018) 
found that peanut-shell biochar (1%) increased microbial 
populations, microbial biomass, and actinomycetes. How-
ever, Wang et al. (2020) reported that a high dose of biochar 
could show a negative impact and a low dose could have a 
positive impact on soil microbial communities. The authors 
suggested that such variation of biochar’s effects was due to 
the toxic effect (chemical stress) of biochar on soil micro-
organisms when applied at a high rate. However, in numer-
ous studies biochar application exhibited positive effects on 
soil microbial activities. For example, in a coastal wetland 
soil, biochar application boosted the soil microbial biomass 
C and resulted in a low metabolic quotient (Zheng et al. 
2018). Zheng et al. (2018) also found a shift of the bacterial 

Fig. 4  Nitrogen conversion pathways from feedstock-N to biochar-N through the pyrolytic process. Reprinted with permission from Leng et al. 
(2020)
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Table 3  Effect of biochar on soil biological properties

Biochar (rate) Temp. (°C) Soil type Study Biological properties or 
microbial response

References

Wheat straw (1%) 400 Fimi-Orthic Anthrosol
Ferralic Cambisol

Incubation Fresh biochar reduced 
ammonia-oxidizing 
archaea (AOA) but 
increased ammonia-
oxidizing bacteria (AOB) 
gene populations in acidic 
soil

Aged biochar increased 
AOA- and AOB- in both 
soils

Zhang et al. (2019c)

Peanut shell (2%) 400 Yellow–brown
Fluvo-aquic
Luo
Black

Incubation Increased bacterial diversity 
but decreased fungal 
diversity

Fusurium population 
reduced by biochar plus 
chemical fertilizers

Zhang et al. (2019b)

Rice straw 500 Sandy loam Field No effect on AOA but AOB 
abundance and diversity 
increased

Zhang et al. (2019a)

Rice straw 350 480 Clinosol Field Lactobacillales and Bac-
teroidales population 
increased

Yan et al. (2019a, b)

Corn straw (1.33%) 500 Sandy loam Pot Improved antagonistic per-
centage and antagonistic 
ability of Bacillus spp. and 
Pseudomonas spp.

Wang et al. (2019)

Straw of reed, smooth grass 
and rice

450 Clay Pot Increased microbial biomass 
decreased microbial activ-
ity and soil respiration

Tian et al. (2019)

Moso bamboo (20 and 40 
t/ha)

600 Ferrisol Field Reduced urease and acid 
phosphatase activities

Peng et al. (2019)

Chicken manure, oat hull, 
pine bark (3%)

300 500 600 Alfisol Increased basal respiration 
and dehydrogenase (DHA) 
activity and modified 
microbial communities

Meier et al. (2019)

Wheat straw (40 t/ha)
Rice straw (4 and 20 t/ha)

350–550
550–650

Anthrosol vertisol Incubation field Fresh biochar increased 
microbial biomass C 
(MBC)

Aged biochar decreased 
Gram-positive/Gram-
negative ratio

Increased the nifH (nitro-
genase iron protein) gene 
abundance and altered the 
community structure of 
soil diazotrophs

Liu et al. (2019b)
Liu et al. (2019a)

Corn straw (2.4, 6 and 12 
t/ha)

400 Inceptisol Field Improved growth of Gram-
positive bacteria and fungi

Increased MBC and influ-
enced the soil microbial 
community structure

Li et al. (2019)

Wheat stalk (1 and 5%) 650 Ge-Eutric Gleysols Strengthened network con-
nectivity among rhizos-
phere bacteria

Improved linkage between 
rhizosphere bacteria and 
soil C

Huang et al. (2019)
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community towards low C turnover bacterial taxa (e.g., 
Actinobacteria and Deltaproteobacteria), which stabilized 
soil aggregates. In another study over 90 days by growing 
tobacco plants with biochar application, Cheng et al. (2017) 
reported that, as the result of biochar application to soil with 
tobacco, the average populations of Sphingomonadaceae and 
Pseudomonadaceae bacteria were increased by 18 and 63%, 
respectively. In the same study, when tobacco plants were 
not grown, populations of the two bacterial groups in the 
soil were increased by 46 and 110%, respectively. Moreover, 
biochar was reported to increase microbial biomass N by 
12% (Liu et al. 2018). The effects of biochar on soil micro-
bial community structure and N-cycling bacteria depend on 
several factors, such as soil type, C/N ratio, nutrients, pH, 
and biochar addition rates (Abujabhah et al. 2018). Biochar 
application increased biological N fixation by 63% (Lu et al. 
2018). Schofield et al. (2019) tested horticultural green 
waste biochar to retain N in a sandy loam soil. They found 
that biochar increased the microbial activity by 73, 84, 214% 
when applied at rates of 2, 5 and 10%, respectively.

Biochar showed positive impacts on soil enzymatic activ-
ities (Mierzwa-Hersztek et al. 2016; Ouyang et al. 2014). 
For instance, addition of biochar (5 and 10 t  ha−1) in an 
Inceptisol increased the dehydrogenase and urease activity 
by 19 and 44%, respectively (Ameloot et al. 2013; Mierzwa-
Hersztek et al. 2016). Similarly, a greenhouse study con-
cluded that biochar improved soil enzymatic properties with 
the application rate up to 6% (Yadav et al. 2018). Biochar 
also increased P-solubilizing bacterial populations such as 
Burkholderia–Paraburkholderia, Planctomyces, Sphingo-
monas, and Singulisphaera, which contributed to improving 
P availability in a forest soil (mountain acidic red loam soil) 
(Zhou et al. 2020). However, Haefele et al. (2011) found a 
negative effect on earthworm populations with the addition 
of rice residue biochar (41.3 Mg ha−1). Similarly, Weyers 
and Spokas (2011) observed a negative effect (short term) or 
no effect (long term) of poultry litter biochar on earthworm 
activity in soil, which was attributed to a rapid pH change or 
high ammonia concentration in the soil due to the addition of 
the biochar (Liesch 2010). Earthworms are highly sensitive 
to soil pH and ammonia concentration (Saleh et al. 1970).

4  Biochar as a source of nutrients

Biochar can be a nutrient source for crop plants. The nutri-
ent content of biochar depends mainly on the nature of the 
feedstock materials and the pyrolytic conditions (pyrolytic 
temperature, residence time, gaseous environment) (El-
Naggar et al. 2019a). Feedstock materials containing high 
nutrient contents result in nutrient-enriched biochars. For 
example, manure and sewage sludge produce nutrient-rich 
biochars (Table 4).

4.1  Primary nutrients

4.1.1  Nitrogen

Nitrogen is one of the most limiting nutrients in soils for 
plant growth and productivity due to high crop demand for 
it and the chances of losses by leaching, runoff, and vola-
tilization (Nguyen et al. 2017b). A continuous application 
of N in available forms is essential for many agricultural 
soils to maintain production in cropping seasons (Fageria 
and Baligar 2005). Biochar can be a potential source of N 
for plants. In addition to organic forms of N (e.g., hydrolyz-
able-N, water-soluble-N, and non-hydrolyzable-N), biochar 
also contains inorganic N forms such as  NH4

+-N,  NO3
−-N, 

and  N2O-N (Liu et al. 2019a). Although N content is low 
in most biomasses, the N content is mostly increased after 
pyrolysis due to reducing the mass (mainly the moisture) 
of the biomass. In the case of N, there could be some losses 
also during the pyrolysis of biomass due to gaseous emis-
sions of the element. Hence not all forms of N present 
in the feedstock can be found in the biochar. For exam-
ple, some amino acids, such as arginine containing amide 
groups, are mostly converted to ammonia or other gaseous 
forms of N during biomass pyrolysis, and, consequently, 
they are lost (Leng et al. 2020). Nitrogen conversion path-
ways from feedstock-N to biochar-N through the process 
of pyrolysis are presented in Fig. 4. The existence of metal 
elements in feedstock can influence the conversion of 
N-containing compounds and, thus, the amount and forms 
of N species in final biochar products (Xiao et al. 2018). 

Table 3  (continued)

Biochar (rate) Temp. (°C) Soil type Study Biological properties or 
microbial response

References

Bamboo biomass (5, 10 20 
t/ha)

350–400 Field Reduced the Proteobacterial 
community in soils

Herrmann et al. (2019)

Sewage sludge (15 t/ha) 300 500 Red-Yellow Latosol Field Increased mycorrhizal colo-
nization in corn plant

de Figueiredo et al. (2019)

Conifer wood chips (5 and 
10%)

280 Cambisol Incubation Decreased DHA, 
β-glucosidase and phos-
phatase activities

Cordovil et al. (2019)
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Table 4 shows that the N content of biochar can be of a 
wide range (0.24–6.8%). Although, most biochars have low 
N content (below 1.5%) (Table 4), the N content is high in 
a few biochars such as those derived from sewage sludge 
(6.8%), poultry litter (5.85%), grass waste (4.9%). Also, 
Chang et al. (2015) reported high N content (14.12%) in 
biochar produced from microalgae. Biochar produced from 
sewage sludge (at 350 °C) had more N (3.17%) than that 
produced from sugarcane and eucalyptus wastes (1.4 and 
0.4%, respectively) (Figueredo et al. 2017). Furthermore, N 

content of biochar decreases with an increase in the pyro-
lytic temperature (Fig. 5), due to conversion of parts of 
amino acids into pyridine-N and pyrrolic-N (Leng et al. 
2020). Ultimately, the loss of  NH4

+-N as  NH3 occurs 
through volatilization during pyrolysis (El-Naggar et al. 
2019a). For instance, N contents of chicken manure biochar 
were found to be 2.79, 2.45, and 1.81% when the material 
was produced at 250, 350 and 550 °C, respectively (Xiao 
et al. 2018). Similarly, N content of maize-straw biochar 
decreased from 1.25% (300 °C) to 1.20% (500 °C) (Song 

Fig. 5  Impact of feedstock and pyrolytic temperature on chemical properties of biochar (data obtained from Table 1)
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et al. 2018), and that of elephant-grass biochar decreased 
from 3.87% (400 °C) to 2.15% (600 °C) (Ferreira et al. 
2018), due to a rise of the pyrolytic temperature. Acidi-
fied biochar (pre-pyrolysis) decreased the total N content, 
which was attributed to volatilization loss of N during 
pyrolysis (Sahin et al. 2017). However, salt-impregnated 
(chicken manure with  CaCl2 and  FeCl3·6H2O) biochar 
slightly increased the total and available  NH4

+-N contents 
when pyrolyzed at a low temperature (250 °C), but at 350 
and 550 °C, the  NH4

+-N content decreased (Xiao et al. 
2018). Xiao et al. (2018) found 0.48, 0.30, and 0.17 g kg−1 
available  NH4

+-N (KCl extractable) in chicken manure bio-
char following pre-pyrolysis impregnation of the biomass 
with  CaCl2,  MgCl2.6H2O, and  FeCl3.6H2O mineral salts, 
respectively. Chang et al. (2015) found that N content in 
a Chlorella-based algal residue biochar increased from 
10.23% to 14.12% when the residence time of pyrolysis was 
increased from 20 min to 60 min at 500 °C. However, the 
effect of rising pyrolytic temperature ranging from 300 °C 
to 700 °C on the N content of algal biochar was not consist-
ent (Chang et al. 2015). The N-containing components of 
biochar can be present on the biochar surfaces and/or inside 
the pores as nitrates, ammonium salts, or heterocyclic 
compounds (Grierson et al. 2011). These N components 
of algal biochar were much higher than other common bio-
chars such as manure and biosolid/sewage sludge-derived 
biochars. Among the inorganic forms of N,  NO3

–-N and 
 N2O-N were increased at a high temperature (800 °C) for 
pyrolysis,  NH4

+-N and  NO3
–-N were decreased drastically 

at 300 °C, and all inorganic N remained stable at 600 °C 
(Zhu et al. 2016). Therefore, when producing N-enriched 
biochar, special care should be taken to decide the pyrolytic 
temperature and feedstock type.

4.1.2  Phosphorus

Like the N content in different biochars, the P content var-
ies over a wide range (0.005–5.9%) (Table 4). While the 
N content decreases with pyrolytic temperature, the P con-
tent is positively correlated with the pyrolytic temperature 
(Fig. 5). The increased P content in biochar with increasing 
pyrolytic temperature can be attributed to the ‘concentration 
effect’ resulting from decreased biochar yield with increas-
ing temperature. For example, Xiao et al. (2018) produced 
biochar from chicken manure at 250, 350, and 550 °C and 
found corresponding P contents of 1.91, 2.15 and 2.96%, 
respectively (Table 4). Moreover, the P content also depends 
on the type of biomass. For instance, P contents in biochar 
derived from swine solid (5.9%) (Cantrell et  al. 2012), 
chicken manure (2.96%) (Xiao et al. 2018), and poultry lit-
ter (2.57%) (Brantley et al. 2016) were greater than those 
derived from rice husks (0.15%) (Bu et al. 2017) and apple 
branches (0.18%) (Li and Shangguan 2018). Thus, feedstock 

selection is an important aspect for producing P-enriched 
biochar. In addition, the P content of chicken manure biochar 
increased from 1.91% to 2.96% by increasing the pyrolytic 
temperature from 250 °C to 550 °C (Table 4). Biochar with 
a high ash content contained a high P content (Laghari et al. 
(2016). In a review on the mineral contents of biochar, Xu 
et al. (2017) stated that biochar from sewage sludge and 
poultry litter had higher P contents than biochar from crop 
residues, animal manures, and woody biochar. They also 
found that available P (i.e., Olsen-P) in biochar increased 
from 280 to 676 mg kg−1 when the pyrolytic temperature 
increased from 300 °C to 600 °C. Li et al. (2020) found that 
Olsen-P increased in both pristine and P-laden biochar by 
43 and 15%, respectively, when the pyrolytic temperature 
increased from 350 °C to 600 °C. The authors also observed 
that the amount of Olsen-P increased in  KH2PO4-treated bio-
char with increase in temperature. In addition, Xiao et al. 
(2018) found that water-extractable P was negatively cor-
related with the pyrolytic temperature for both pristine and 
modified biochars, while the Olsen-P was positively corre-
lated with increasing temperature. The authors also observed 
that the Olsen-P decreased when a pre-treatment of chicken 
manure was conducted with different types of salts, because 
of the formation of insoluble phosphate compounds such as 
(CaMg)3(PO4)2 and  Fe4(PO4)2O. Zhang et al. (2019d) found 
that Olsen-P and water soluble-P contents were 775.45 
and 495.21 mg kg−1, respectively, in an acidified biochar 
(700 °C) derived from maize straw.

4.1.3  Potassium

The K content in biochar also varies both with the feedstock 
type and temperature of pyrolysis (Table 4). For example, 
poultry litter, chicken manure, rice straw, and bamboo bio-
char contained more K than biochars made from rice husks, 
corn stalks, and apple branches. As in the case of P, K con-
tent of biochar also increases with increasing pyrolytic tem-
perature (Fig. 5), which can be attributed to the ‘concen-
tration effect’. Xiao et al. (2018) found that the K content 
in chicken manure biochar was increased from 4.16% to 
5.93% when the pyrolytic temperature was increased from 
250 °C to 550 °C (Table 4). Poultry litter-derived biochar 
contained 3.88% and 5.88% K at pyrolytic temperatures 
of 400 °C and 600 °C, respectively (Subedi et al. 2016). 
Similarly, Vaughn et al. (2018) produced biosolid biochar 
at 300, 400, 500, 700, and 900 °C, and the K contents were 
3.89, 3.98, 4.06, 4.02, 8.12, and 9.83%, respectively. Karim 
et al. (2017) evaluated the K-enrichment of banana peduncle 
biochar produced in the presence of different gases (Ar and 
 O2) and plasma with processing times of 3, 5, 7, and 9 min. 
They found that plasma processing for up to 7 min enriched 
the biochar with K in both Ar and  O2 environments. For 
instance, due to Ar gas loading for  seven min, K increased 
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from 8.6% to 28.6% for available K, from 3.5% to 11.2% 
for water-soluble-K, and from 5.1% to 14.7% for exchange-
able K. Amin (2016) reported that soluble-K content was 
6.05 g kg−1 in corn cob biochar, and Nguyen et al. (2020) 
found 8.50 g kg−1 exchangeable K in rice husk biochar.

4.2  Secondary nutrients

As shown in Table 4, contents of secondary nutrients includ-
ing S, Ca, and Mg are high in animal manure biochar, as 
reported by Xiao et al. (2018) and Brantley et al. (2016). The 
Ca contents of animal manure biochar ranged from 0.40% 
to 6.15% and that of industrial and municipal waste-derived 
biochar ranged from 0.37% to 6.57% (Table 4). Biochar 
derived from crop residues had concentrations of Ca rang-
ing from 0.20% to 1.57% and that of woody biochar was in 
the range of 0.05–2.42% (Table 4). However, biochar pro-
duced from apple branches had a higher Ca content (2.42%) 
(Li and Shangguan 2018) than other feedstocks such as bar-
ley straw (0.20%) (Jatav et al. 2018), sugar maple sawdust 
(0.50%) (Noyce et al. 2017), and acacia (0.27%) (Arif et al. 
2016). The Mg contents of biochar produced at 250–750 °C 
from various types of biomasses (e.g., animal manure, 
woody biomass, crop residue) ranged from 0.001% to 3.78% 
(Table 4). Most of the animal-manure-derived biochars and 
grass waste biochar contained higher Mg contents than 
crop-residue biochar and woody biochar (Table 4). Gener-
ally, the S content was the lowest (0.001–0.32%) in biochar 
produced from woody biomass followed by waste-derived 
biochar (0.005–0.63%) and crop residue-derived biochar 
(0.07–0.32%) (Table 4). Animal manure biochar contained 
more S (0.02–1.36%) than orchard-pruning-biomass-derived 
biochar (0.005%) (Table 4). The effects of pyrolytic tempera-
ture on the S content of biochars are inconsistent (Table 4), 
because high temperatures can either increase S content by 
the incorporation of S into complex structures or decrease 
S content due to volatilization loss (Al-Wabel et al. 2013).

4.3  Trace elements

Biochar also contains a significant amount of trace element 
nutrients (micronutrients) such as Fe, Cu, B, Zn, Mn, and 
Mo. Most of the published literature reports only Fe, Zn, and 
Cu contents of biochar; few of them mention Mn content; 
and only few report Mo and B contents (Table 4). Table 4 
shows that Fe content in biochar of animal manure was 
higher (311–7480 mg kg−1) than biochar from crop residues 
and woody materials. The Fe content in biochars produced 
from waste materials was in the range of 0.009–380 mg kg−1 
(Table 4). Like Fe, animal manure biochar contained more 
Zn (131–4981 mg kg−1) and Cu (99–2446 mg kg−1) than 
waste- and crop-residue-derived biochars (Table 4). The 
contents of the micronutrient elements depend on the 

feedstock type and biochar production temperature. How-
ever, the effect of these factors is not consistent for micro-
nutrient contents of biochar products, which can be attrib-
uted mainly to the low micronutrient contents in feedstock 
materials. For instance, eucalyptus green waste biochar 
produced at 650–750 °C had 7000 mg kg−1 Fe (Abujabhah 
et al. 2016); whereas, willow wood waste biochar produced 
at 550 °C had only 0.05 mg kg−1 Fe (Agegnehu et al. 2016a). 
Several other studies (Brantley et al. 2016; Chen et al. 2018; 
Li and Shangguan 2018; Miranda et al. 2017; Noyce et al. 
2017) also reported that biochar contains a low but signifi-
cant amount of micronutrients.

5  Effect of biochar on nutrient reactions 
in soil and uptake by plants

As a sink, biochar can retain nutrients, thereby reducing 
their losses through leaching and gaseous emission. Biochar 
application influences various soil properties including pH, 
bulk density, CEC, water retention, and biological activity 
(Sect. 3), which in turn affect nutrient retention of soils.

5.1  Nutrient retention

Biochar can contribute in improving nutrient retention 
capacity of soil due to its large surface area, porosity, and 
presence of both nonpolar and polar surface sites (Ahmad 
et al. 2014; Hussain et al. 2017; Mukherjee et al. 2011; Yu 
et al. 2018). The polar sites are likely to increase the soil 
CEC (Mukherjee et al. 2011). For example, biochar with a 
high CEC retains more nutrients in soil by reducing nutrient 
loss through leaching (Tomczyk et al. 2020). Application of 
biochar also enhances nutrient retention by increasing the 
soil pH and soil organic matter (Mendez et al. 2012). Nutri-
ent retention and release depend on soil pH (Fig. 6). For 
instance, Gao et al. (2016) reported that addition of biochar 
increased  NO3

–-N and  NH4
+-N retention in soil by 33 and 

53%, respectively. Sorrenti et al. (2016) also observed a sim-
ilar effect of biochar application on soil N. Liu et al. (2017b) 
proposed three important mechanisms for N retention after 
biochar application in soil: (1) adsorption of  NH4

+-N due to 
the high CEC of biochar, (2) reduced leaching of  NO3

–-N 
due to increased ability of the soil to hold water, and (3) 
increased microbial immobilization of N in soil by the sup-
ply of labile C. Schofield et al. (2019) suggested that high 
cation and anion exchange capacities of biochar and its 
ability to retain ions and molecules within the pores further 
contribute to biochar’s enhanced nutrient retention capacity. 
Hence, biochar produced at high temperature might have a 
high ability to retain  NO3

–-N without its leaching to ground 
water. Sometimes biochar has reduced nutrient retention due 
to quick decomposition of biochar C (e.g., by 51% within 
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16 months of application) (Beusch et al. 2019). The impacts 
of various types of biochar and nutrient availability changes 
in different soils are summarized in Table 5.

Owing to porous structure and  NH4
+-N adsorption abil-

ity, biochar can play a vital role in slowing down N release 
from the soil. This statement was supported by Zhang et al. 
(2017) who reported that the pore space of biochar can facil-
itate water and nutrient transfer at initial stage of biochar 
application. The hydrophobic nature of biochar can hinder 
water transport and thus limit N diffusion (Dong et al. 2020). 
Moreover,  NO3

–-N adsorption capacity of biochar also influ-
ence N release in soil (Hagemann et al. 2017). In recent 
years, several studies reported that biochar can be used as a 
slow-release fertilizer. For example, Shi et al. (2020) con-
ducted a pot study and found that biochar-urea composite 
release N slowly than conventional urea fertilizer and thus 
it was more effective in  NH4

+-N retention. This agreement 
was supported by Sashidhar et al. (2020) who also reported 
that biochar-based slow-release fertilizer (BSRF) releases N 
slowly by 69.8% over a period of 30 days. Similarly, Hu et al. 
(2019) and Liu et al. (2019d) reported that 59.32% N was 
released after 84 days and 69.8% N released within 28 days 
of BSRF application, respectively.

Biochar plays a role for N availability in soil due to two 
main mechanisms: biotic (fixation, mineralization, immo-
bilization, denitrification, plant uptake) and abiotic (sorp-
tion, volatilization, leaching) (Clough et al. 2013; Nguyen 
et al. 2017b). The increase of N availability in soil from 
biochar application is, therefore, beneficial for plant growth 
(Esfandbod et al. 2017; Igalavithana et al. 2016). In addition, 
negative and neutral impacts of biochar on soil-N availabil-
ity have been reported (Mukherjee and Lal 2014; Nguyen 
et al. 2017b). For example, addition of rice husk biochar 

reduced the available N content by 21% (sole biochar) and 
15% (biochar + fertilizer) compared to a control soil (Areno-
sol), which was due to immobilization of N (Werner et al. 
2018). Liu et al. (2018) did a meta-analysis and concluded 
that biochar application decreased  NH4

+-N and  NO3
–-N 

contents in soil by 6 and 12%, respectively. Therefore, the 
effects of biochar application on N availability in soil are not 
consistent as the N availability is governed by rate and type 
of biochar as well as the soil type (Table 5). For example, 
under field conditions, the addition of biochar (10 Mg ha−1) 
plus organic and chemical fertilizers increased N availability 
in a silty clay loam soil (Arif et al. 2017). In addition, modi-
fied biochar (calcium alginate impregnated) also increased 
the nutrient (N and K) retention in soil, as reported by Wang 
et al. (2018). Moreover, combined application of biochar and 
farm yard manure (FYM) improved the nutrient (N and P) 
retention in soil (Arif et al. 2017).

Biochar can be a reserve stock for P in soils (Dai et al. 
2016; Zhang et al. 2016). For instance, with the incorpora-
tion of sugar maple and red pine biochar, available P was 
found to be three times higher in a sand than in sandy loam 
and silty sand soils (Noyce et al. 2017). Several studies 
showed that soil amended with biochar increases P bio-
availability and plant growth (Arif et al. 2017; Beheshti 
et al. 2017; Biederman et al. 2017; Brantley et al. 2016; 
Efthymiou et al. 2018; Houben et al. 2017). The changes 
of P availability in soil, as impacted by biochar application, 
are presented in the Table 5. Like N, the availability of P is 
changed with the addition of biochar and it depends on the 
biochar and soil. The majority of the studies report that the 
availability of P is increased with the application of bio-
char. However, some researchers showed decreased avail-
ability of P after biochar addition (Table 5). Modified or 

Fig. 6  pH-dependent associa-
tion and dissociation of nutri-
ents from biochar. Reprinted 
with permission from Sashidhar 
et al. (2020)
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fortified biochars increase the P retention capacity of soil. 
For instance, Wu et al. (2019a) studied the mechanism of 
inorganic P adsorption under field conditions in saline-alka-
line soil. The authors found that MgO-biochar showed 1.46 
times more phosphate adsorption than pristine biochar due 
to electrostatic attraction, precipitation, and exchangeable 
anions. Thus, modified biochar increased the availability of 
P in soil. Several studies (Atkinson et al. 2010; Glaser et al. 
2002; Major et al. 2010) reported that application of alkaline 
biochar to acidic soils increased K content in soils. This 
is in agreement with DeLuca et al. (2015) and Lehmann 
et al. (2003) who reported that the bioavailability of K was 
increased with addition of biochar. Usually the availability 
of K in soil is increased with the addition of biochar irre-
spective of the study, although some negative impacts of 
biochar on the availability of K in soil have been reported 
(Table 5). The addition of biochar (10 t  ha−1) increased the 
Mg content in a loamy sand soil (Lusiba et al. 2017).

The impacts of biochar on nutrient retention in soil are 
mostly positive. For instance, biochar increased Ca and Mg 
availability in soil and, thus, boosted crop yield (Hussain 
et al. 2017) which was previously supported by Abujabhah 
et al. (2016) who found that woody biochar had a significant 
impact on exchangeable Ca, Mg, and Na in black clay loam, 
red loam, and brown sandy loam soils. Moreover, the Ca 
availability increased in soil even at a low rate of biochar 
application (1.25%); however, no change in S availability 
was observed (Eykelbosh et al. 2014). The availability of Ca, 
Mg, and S increased or decreased due to incorporation of 
biochar in soil, as shown in Table 5. A few studies (Lu et al. 
2014; Zhang et al. 2013) state that biochar alters the bio-
availability of trace elements in soils (Beesley et al. 2011). 
For example, woody biochar improved the availability of 
micronutrients (B and Mo) (Hussain et al. 2017); whereas, 
the addition of mixed hardwood-derived biochar did not 
influence the Cu and Zn content (Cai and Chang 2016). The 
Fe and Al contents were decreased by biochar addition in 
sandy soils, but biochar had no impact in silt or clay soils 
(El-Naggar et al. 2018c). However, addition of hardwood-
derived biochar increased Fe and Mn availability, but it had 
no effect on Zn and Cu availability (Ippolito et al. 2014). 
Noyce et al. (2017) showed a positive effect of biochar on 
Mn and Na contents in sand, sandy loam, and silty sand 
soils. The availability of micronutrients is influenced by 
the application of biochar to soil (Table 5), and feedstock 
and type of soil are important in determining micronutrient 
availability.

5.2  Nutrient leaching

5.2.1  Nitrogen

Nitrate leaching is a major reason for loss of N from soils 
and causes groundwater pollution (Cheng et al. 2018). Sur-
face properties of biochar facilitate the adsorption of ions 
in the soil solution. Electrostatic and capillary forces on 
the surface of biochar reduce nutrient leaching from soils. 
For instance, the application of Brazilian pepperwood bio-
char reduced  NO3

– leaching by 34% through adsorption 
(Yao et al. 2012). Soil amended with biochar can adsorb 
 NO3

– through its anion exchange sites, thereby reducing 
N losses and increasing  NO3

– retention. Moreover, woody 
biochar application can decrease nutrient leaching through 
increasing water retention, as reported by Lehmann et al. 
(2003). Biochar has the capacity to retain inorganic N ions 
and, therefore, it reduces N leaching and runoff in soils 
(Steiner et al. 2008). Figure 7 shows that the application of 
biochar reduced  NO3

– leaching by 26%. Cao et al. (2019) 
showed that biochar derived from apple branches reduced 
leaching of  NO3

–-N by 9.9–68.7% and nitrogen-oxide flux 
by 6.3–19.2%. Application of mixed hardwood biochar 
decreased N leaching by 11% in Midwestern agricultural 
soils (Laird et al. 2010), 72% in sub-alkaline soils of an 
apple orchard (Ventura et al. 2013), and 46% in a tropical 
Arenosol (Beusch et al. 2019). Cheng et al. (2018) con-
ducted an incubation study and found that  NO3

–-N leach-
ing was decreased, but  NH4

+-N leaching was increased, in 
biochar-amended soil due to reducing the CEC in biochar 
with increasing temperature.

5.2.2  Phosphorus

Excessive application of P fertilizers has resulted in the 
leaching of P from agricultural fields to aquatic systems 
(Karunanithi et al. 2015; Loganathan et al. 2014). Biochar 
has proven to alter P availability in soils by reducing P leach-
ing through sorption/adsorption. In a column study, biochar 
produced from Brazilian pepperwood at 600 °C reduced 
the total amount of phosphate by about 20.6% in biochar-
amended soil (Yao et al. 2012). Doydora et al. (2011) found 
that the application of peanut hull biochar increased the 
amount of phosphate in the soil solution by 39%. The pos-
sible mechanisms suggested for the influence of biochar on 
P availability are change in soil pH and subsequent influ-
ence on the interaction of P with other cations and enhanced 
retention through anion exchange and P precipitation (Atkin-
son et  al. 2010). In natural environments, P is strongly 
adsorbed onto the surface of Fe(III)-(hydr)oxides in soils 
(Jaisi et al. 2010). Cui et al. (2011) showed that addition 
of biochars reduced the amount (30–40%) of P sorbed onto 
ferrihydrite (the most effective Fe-oxide for P adsorption), 
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which likely improved in P availability in soil. The biochars 
magnetized with  Fe3+/Fe2+ enhanced phosphate sorption, 
compared to non-magnetic char (Chen et al. 2011). Leach-
ing of P is reduced by absorbing it on the surface of biochar 
(Biederman and Harpole 2013). Biochar with a large surface 
area has high adsorption capacity for the ionic forms of P. 
So, biochar can reduce ortho-P leaching from nutrient-rich 
soil and influences P availability (Gul and Whalen 2016; 
Hussain et al. 2017).

5.2.3  Other nutrients

Leaching of nutrients depends on soil type, physico-chemi-
cal properties of the biochar, and the pyrolytic temperature 
(Cheng et al. 2018; Yuan et al. 2016). For example, sew-
age sludge biochar produced at 500 and 700 °C reduced the 
leaching loss of K in a Typic Plinthudult soil more than that 
of biochar produced at 300 °C (Yuan et al. 2016). Biochar 
can increase leaching of K in crop fields for the short term 

(Angst et al. 2014; Guo et al. 2013), which results in ground 
water pollution. For example, application of wood biochar 
in an acidic and low fertile soil resulted in leaching of K, 
Ca, and Mg to the 60 cm depth, but concentrations gradu-
ally decreased to the 120 cm depth (Major et al. 2012). This 
might be related to variation in nutrient uptake by plants at 
different depths. Addition of biochar resulted in increased K 
leaching by 65% below the A1 horizon (Hardie et al. 2015), 
which was attributed to a high amount of soluble-K in the 
biochar. Biochar-induced leaching loss of Ca decreased with 
increasing temperature of biochar production (Cheng et al. 
2018). Thus, leaching of nutrients in biochar amended soil 
depends on several factors, including biochar type and rate 
of application, soil type, and depth of soil. Long-term field 
studies are needed to investigate the effect of biochar on 
nutrient leaching.

Fig. 7  Conceptual framework of the biochar-mediated N cycle. Modified and reprinted with permission from Liu et al. (2018)
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5.3  Gaseous emission

Nitrogen in soil is lost through leaching and gaseous emis-
sion of ammonia  (NH3) and nitrous oxide  (N2O). Inorganic-
N is reduced in soil mainly through  NH3 volatilization (Liu 
et al. 2017b). More than 85%  NH4

+-N is lost from soil due to 
gaseous emission (Esfandbod et al. 2017). It is necessary to 
reduce the loss of N from soil for plant growth and develop-
ment. The physical and chemical characteristics of biochar 
influence their effectiveness in controlling  NH3 volatiliza-
tion. Biochar addition to a highly alkaline soil decreased 
soil pH thereby reducing  NH3 volatilization (Mandal et al. 
2016). The  NH3 adsorbed by biochar can, subsequently, 
become available for plants (Taghizadeh-Toosi et al. 2012). 
Biochar addition has often been shown to decrease total  N2O 
emission from soils treated with N sources such as manure, 
urea, and compost (Bruun et al. 2011; Singh et al. 2010; 
Spokas et al. 2009). Denitrification is the biological process 
leading to increased  N2O emission from soil. A decrease in 
denitrification is likely to occur due to adsorption of inor-
ganic N  (NH4

+,  NO3
–) to biochar surfaces, thus reducing the 

substrate for denitrification (Taghizadeh-Toosi et al. 2012). 
Complete denitrification leading to  N2 emission due to bio-
char addition was explained by enhanced anaerobic condi-
tions (Taghizadeh-Toosi et al. 2012), presence of labile C in 
biochar, elevated soil pH, and enhanced microbial activity 
(Anderson et al. 2011). Lehmann et al. (2006) hypothesized 
that biochar could reduce  N2O emissions by inducing micro-
bial immobilization of mineral N in the soil. According to 
Lu et al. (2018) and Nguyen et al. (2016) biochar inhibited 
denitrification and thus decreased NO and  N2O emission by 
32%. However, biochar could temporarily increase volatili-
zation of N by 19% as  NH3, which will be ultimately depos-
ited into the soil (Fig. 7). However, Cayuela et al. (2014) car-
ried out a meta-analysis and showed about a 54% reduction 
in  N2O emissions with biochar application. Biochar reduced 
the cumulative  N2O emissions, the  N2O–N emission fac-
tor, and the yield-scaled  N2O emissions by 5–39, 16–67, 
and 14–53%, respectively (Li et al. 2017a). The addition of 
biochar reduced  N2O emissions by 15% from acidic soil in a 
vegetable field (Wang et al. 2015). In a study by Fungo et al. 
(2019), addition of biochar reduced cumulative emissions of 
 NH3 and  N2O by 47% and 22%, respectively, over 3 years, 
which indicated that biochar has a residual effect on gaseous 
emissions of N.

5.4  Uptake and assimilation of nutrients

5.4.1  Nitrogen

The impact of biochar on nutrient concentration, uptake, 
and crop growth and development are presented in Table 6. 
Biochar application to soil influences N uptake in plants. 

For example, Amin and Eissa (2017) studied the impact of 
biochar on N and P use efficiency of zucchini plants (Cucur-
bita pepo) grown in a calcareous soil. They found that the 
fruit N content increased by 39.23% over the control with 
the lowest (6.3 g/pot) biochar rate, whereas, with increasing 
the rate of biochar addition by 12.6 and 25.5 g pot–1, the N 
content decreased by 7.45% and 13.73%, respectively, which 
was attributed to ‘dilution’ effect caused by increased yield. 
However, Werner et al. (2018) showed that sole biochar and 
biochar with NPK fertilizer decreased N concentration in 
plants by 20 and 15%, respectively, which they attributed 
to immobilization of N in soil. In the USA, Sistani et al. 
(2019) investigated the effect of hardwood biochar on corn 
yield and greenhouse gas emission under field conditions 
in silt loam soil. They found higher N concentration in bio-
mass in the first year of the study, which was a dry period; 
whereas in the second and third years, which had favorable 
moisture conditions, N concentration was lower than in the 
control treatment. Application of biochar has been shown 
to increase N uptake by 11% (Fig. 7). However, a few stud-
ies (Akoto-Danso et al. 2018; Kang et al. 2018) stated the 
negative impacts of biochar on N concentration and uptake 
by plants. Results are variable. Mandal et al. (2016) reported 
that biochar increased N uptake by 76.11% over the con-
trol soil; while, Nguyen et al. (2016) found no impact on N 
uptake with the addition of rice husk biochar up to 30 t  ha−1.

5.4.2  Phosphorus

Plants take up P as monovalent or divalent anions 
 (H2PO4

− or  HPO4
2–), but the availability of these ions may 

be below the required level for plant growth if they are phys-
ically and chemically bonded in soils (Noyce et al. 2017). 
Addition of biochar increased the P concentration of lettuce 
leaves (Biederman and Harpole 2013; Gunes et al. 2014). 
Other studies support this observation (Arif et al. 2017; 
Shepherd et al. 2017; Werner et al. 2018). Residual bio-
char plus microbial inoculation with and without P-fertilizer 
increased by 20–52% the P content of maize (Rafique et al. 
2020). The impact of biochar on P uptake is mostly posi-
tive and few studies show a negative impact (Table 6). For 
instance, incorporation of various types of biochars (empty 
fruit bunch, sewage sludge, and chicken litter) at differ-
ent levels (5–40 t  ha−1) increased P uptake by 23–2096% 
(Table 6). Biochar plus chemical fertilizer increased P and 
K uptake more than biochar alone (Sistani et al. 2019). How-
ever, biochar has been shown to reduce P uptake by plants 
(Kang et al. 2018; Liu et al. 2017a) and thus decrease crop 
yield, which might be due to the phytotoxic effects of wood 
biochar (Liu et al. 2017a). Table 6 gives information on P 
uptake with different biochars.
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5.4.3  Potassium

Biochar addition plus N-fertilizer was positively corre-
lated with K content in sunflower plants, and the treatments 
improved plant growth and development (Pfister and Saha 
2017). Fazal and Bano (2016) did an experiment under 
axenic conditions in a growth chamber to evaluate the role 
of biochar, Pseudomonas sp., and chemical fertilizer on 
uptake of K by maize. They observed that K content was 
increased in maize by 46, 47, and 3% with addition of only 
biochar, biochar + Pseudomonas sp., and biochar + chemical 
fertilizers, respectively. Biochar can be used as an effective 
K-fertilizer in terms of its economic, environmental, and 
slow-release properties (Oh et al. 2014). The concentration 
of K in plants grown in soil with biochar application has 
increased up to 112.27% (Table 6). Addition of biochar at 
10% increased K in stems, leaves, nut shells, and roots (Pra-
pagdee and Tawinteung 2017). Mycorrhizal inoculation in 
biochar amended soil increased K content by 11–20% and K 
uptake by 69% (Rafique et al. 2020). Most studies report that 
the uptake of K is stimulated due to the addition of biochar 
(Table 6). However, a few negative impacts of K uptake are 
presented in the Table 6.

5.4.4  Other nutrients

Addition of poultry manure biochar decreased Ca and Mg 
concentrations in lettuce (Gunes et al. 2014). But, biochar 
(1%) increased Ca and Mg concentration in chicory (Cicho-
rium intybus). Concentration of Ca, Mg, and S increased 
after 50 t  ha−1 biochar addition (Noyce et al. 2017). Applica-
tion of woody biochar increased the uptake of micronutrients 
(iron, copper, zinc and manganese) in soil (Gao et al. 2016). 
Table 6 shows concentrations of Ca, Mg, and micronutrients 
after biochar addition.

5.5  Nutrient use efficiency

The nutrient use efficiency can be defined as yield or bio-
mass per unit input (fertilizer, nutrient content) (Reich 
et al. 2014; Sarkar and Baishya 2017). It depends upon the 
soil, plant, and environment (Reich et al. 2014). Biochar 
can contribute to nutrient use efficiency in plants, both 
directly through increased nutrient uptake and indirectly by 
decreasing the loss of nutrients through leaching and gas-
eous emissions. Several studies (Cao et al. 2019; Coelho 
et al. 2018; Li et al. 2017a; Nguyen et al. 2017a; Yu et al. 
2017, 2018) report that application of biochar increases N 
uptake, thereby increasing N use efficiency (NUE) in crops. 
Addition of wood biochar (10 t  ha−1) in an alkaline soil 
improved P use efficiency (PUE) of both wheat and maize 
(Arif et al. 2017). Zhang et al. (2020) reported that biochar 
increased NUE (20–53%) and PUE (38–230%), compared to 

N fertilization, in a rice–wheat rotation during a 6-year field 
experiment. Application of woody biochar (20%) increased 
NUE of green bean crops (Prapagdee and Tawinteung 2017). 
Indirectly, biochar increased NUE by reducing leaching of 
nutrients (Cheng et al. 2018), decreasing gas emissions (Li 
et al. 2017a), and increasing soil organic carbon (Arif et al. 
2017). Addition of biochar (up to 20 t  ha–1) increased NUE 
and PUE by 90 and 191%, respectively (Table 6). Applica-
tion of several types of biochars (coffee waste, Dalbergia 
sissoo, acacia prunings, maize stalk, chicken litter, mixed 
wood, and cuttings of acacia) at different levels (2–30 t 
 ha–1) increased the NUE (65–90%) and PUE (44–150%) 
(Table 6). Nonetheless, application of mixed (70% Norway 
spruce + 30% European beech) biochar in field crops reduced 
NUE by 6.09–8.01%, (Table 6) which was due to the pres-
ence of polyaromatic hydrocarbons (PAHs) in biochar that 
reduced the N availability for plants (Haider et al. 2017). 
Usually, biochar improves NUE in plants (Li et al. 2017a).

6  Conclusion and future research 
recommendations

Biochar can be an important source of plant nutrients 
and can supply macro-nutrients, secondary nutrients, and 
micronutrients to plants. Biochar has unique physical and 
chemical properties that influence nutrient interactions in 
soil by altering soil properties including pH and CEC. The 
availability of nutrients in soil with biochar mainly depends 
on the feedstock type of the biochar, pyrolytic conditions, 
rate of biochar addition to soil, and the type of soil. Animal 
manures and waste-derived biochars have higher N, P, and 
K contents than crop residues and woody biochars. Moreo-
ver, manure and waste (municipal and industrial) derived 
biochars contain more micronutrients than crop residues and 
woody biochars. Availability of most nutrients are positively 
correlated with the pyrolytic temperature, except N and S, 
and that is because of volatilization loss. The effect of bio-
char on Ca, Mg, and micronutrient (Zn, Cu, Fe, Mn) uptake 
show inconsistent results. Biochar can retain P, K, and other 
nutrients in soil by decreasing their leaching loss. Biochar 
usually improves nutrient use efficiency in plants.

The following are recommendations for future research:

• Long-term field studies are needed rather than pot or col-
umn studies to understand the impact of biochar in soil.

• The feedstock selection and application rate should be 
studied in relation to availability of nutrients.

• Methods to increase the N content of biochar should be 
considered, for example by adjusting the pyrolytic condi-
tions, because N is reduced by increasing the pyrolysis 
temperature.
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• The availability of P as a result of different pyrolytic tem-
peratures needs to be studied.

• Studies are needed to understand the interaction of bio-
char and microbes and how they affect nutrient transfor-
mation.
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