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Biochar and its importance on nutrient dynamics in soil and plant
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Abstract

Biochar, an environmentally friendly soil conditioner, is produced using several thermochemical processes. It has unique
characteristics like high surface area, porosity, and surface charges. This paper reviews the fertilizer value of biochar, and
its effects on soil properties, and nutrient use efficiency of crops. Biochar serves as an important source of plant nutrients,
especially nitrogen in biochar produced from manures and wastes at low temperature (<400 °C). The phosphorus, potas-
sium, and other nutrient contents are higher in manure/waste biochars than those in crop residues and woody biochars. The
nutrient contents and pH of biochar are positively correlated with pyrolysis temperature, except for nitrogen content. Biochar
improves the nutrient retention capacity of soil, which depends on porosity and surface charge of biochar. Biochar increases
nitrogen retention in soil by reducing leaching and gaseous loss, and also increases phosphorus availability by decreasing
the leaching process in soil. However, for potassium and other nutrients, biochar shows inconsistent (positive and negative)
impacts on soil. After addition of biochar, porosity, aggregate stability, and amount of water held in soil increase and bulk
density decreases. Mostly, biochar increases soil pH and, thus, influences nutrient availability for plants. Biochar also alters
soil biological properties by increasing microbial populations, enzyme activity, soil respiration, and microbial biomass.
Finally, nutrient use efficiency and nutrient uptake improve with the application of biochar to soil. Thus, biochar can be a
potential nutrient reservoir for plants and a good amendment to improve soil properties.
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1 Introduction

< Nanthi Bolan
nanthi.bolan@newcastle.edu.au In recent decades, application of biochar to soil has drawn
attention from the scientific community. Research has
focused on its cost-effectiveness and environmentally
friendly features, such as enhancing carbon sequestration
and remediating contaminated soil. Biochar can influence
nutrients in soil in several ways: (1) as a source of nutri-
ents for plants and soil microorganisms (Li et al. 2017b);
(2) as a nutrient sink, thereby impacting the mobility and

bioavailability of nutrients (Gul and Whalen 2016); and (3)
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as a soil conditioner, thereby altering soil properties that
influence the reactions and cycling of nutrients in the soil
(Lusiba et al. 2017). As a source, biochar can supply nutri-
ents such as nitrogen (N), phosphorus (P), potassium (K),
and other trace elements inherently present in the original
feedstock used for biochar production (Purakayastha et al.
2019). While some nitrogen and sulfur in the feedstock
materials are lost through gaseous emission during pyroly-
sis (Al-Wabel et al. 2013; Leng et al. 2020), most nutrients
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are released during the weathering of biochar in soil, and
they become available for plant uptake (Zhao et al. 2018).
The nutrient content of biochar depends on the nature of the
feedstock materials and the pyrolytic conditions. Biochars
derived from manure- and biosolid-based feedstock materi-
als generally contain higher levels of N and P than those
derived from wood- and straw-based feedstock materials (El-
Naggar et al. 2019a; Purakayastha et al. 2019). While the
N content decreases with increasing pyrolytic temperature
through gaseous emission (Leng et al. 2020), the P and K
contents increase due to an increase in ash content (Christel
et al. 2016; Tomczyk et al. 2020; Wang et al. 2013). As a
nutrient sink, biochar can retain nutrients, thereby reduc-
ing their losses through leaching and gaseous emission. The
nutrient retention capacity of biochar depends on its porosity
and surface charge (cation and anion exchange capacity) (Yu
et al. 2018). Biochar application reduces the loss of N, P,
and K through leaching, and N through nitrous oxide emis-
sion (Beusch et al. 2019; Yao et al. 2012; Yuan et al. 2016).
However, the loss of N through ammonia emission depends
mainly on the pH of the biochar; biochar with a slightly
acidic or near-neutral pH reduces ammonia volatilization
from soil (Mandal et al. 2018, 2019).

Biochar application influences various soil properties
including pH, bulk density, cation exchange capacity, water
retention, and biological activity. These changes in soil prop-
erties are likely to impact nutrient reactions on soil parti-
cles and microbial transformation of nutrients (Mandal et al.
2018). Upon application to the soil, biochar improves soil
fertility and crop productivity by increasing the soil nutrient
contents and the mobility of nutrients. It enhances microbial
activity (Meier et al. 2019), improves aeration and water
retention (Kambo and Dutta 2015; Razzaghi et al. 2020),
buffers soil reactions (Laghari et al. 2016), reduces bulk den-
sity (Yan et al. 2019a), and maintains soil aggregate struc-
ture (Zhang et al. 2020). Moreover, biochar reduces nutrient
leaching and loss of nutrients by volatilization through alter-
ing the soil pH and by enhancing the ion exchange capacity
(DeLuca et al. 2015). Biochar can change the soil microbial
community composition (Ducey et al. 2013), and thus, it
impacts nutrient cycling and uptake by plants (Lehmann
et al. 2011). Biochar decreases nitrification in soil result-
ing in reduced nitrate leaching (Igalavithana et al. 2016).
Figure 1 shows a conceptual framework depicting various
impacts of biochar on soil and plants.

Many reviews have been published about the importance
of biochar for soil health, crop production, and problem
soils (Agegnehu et al. 2017; Al-Wabel et al. 2018; Dai et al.
2017; Ding et al. 2017, 2016; El-Naggar et al. 2019b; Juriga
and éimansk}’/ 2018; Laghari et al. 2016; Lone et al. 2015;
Muhammad et al. 2018; Munoz et al. 2016; Palansooriya
et al. 2019; Shaaban et al. 2018; Yu et al. 2019), soil carbon
sequestration (Sarfraz et al. 2019), availability of N, P, and
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K (Liu et al. 2019a), and decreasing drought and salinity
stress in plants (Ali et al. 2017). Reviews and meta-analyses
also have been published focussing on soil-N dynamics such
as available N (Nguyen et al. 2017b), leaching and gase-
ous emissions of N (Borchard et al. 2019; Cai and Akiyama
2017), and the overall soil-N cycle (Liu et al. 2018). How-
ever, there is no review concerning the ability of biochar to
retain multiple nutrients in soil through reducing gaseous
and leaching losses and, thus, enhance plant growth. This
paper focusses on: (1) effect of biochar on soil properties,
(2) biochar as a nutrient source, and (3) impact of biochar on
nutrient reactions in soil and uptake by plants.

2 Production and characteristics of biochar

The term char means output from disintegration of organic
and inorganic materials. Biochar and charcoal have been
synonymously used but can be differentiated by their use,
because charcoal is used for energy; whereas, biochar is con-
sidered for carbon sequestration and environmental appli-
cations. Biochar is also called as ‘pyrochar,” because it is
produced by the pyrolysis of biomass (Ralebitso-Senior and
Orr 2016). The typical definition of biochar, as stated by
the International Biochar Initiative (IBI), is ‘a solid mate-
rial obtained from the thermochemical conversion of bio-
mass in an oxygen-limited environment’ (IBI 2015). The
production and soil application of biochar are related to the
‘terra-preta’ (black earth) soils of Amazon region, which
are important because of their high productivity. After the
characterization of these soils, the scientific community rec-
ognized that biochar has properties similar to the ferra-preta
soils. Thereafter, much work was done related to biochar and
its application in the soil. Generally, biochar is produced
from a range of biomasses (e.g., manure, wood, crop, and
industrial residues) at temperatures less than 900 °C and
under oxygen-limited pyrolytic conditions (Zhang et al.
2019). However, recent studies have shown that biochar
can also be produced by other thermochemical processes,
e.g., hydrothermal carbonization, gasification, torrefaction,
and microwave-assisted pyrolysis (Kambo and Dutta 2015;
Vithanage et al. 2017; Yuan et al. 2017).

The characteristics of biochar are influenced by the
feedstock and heating conditions (Joseph and Taylor 2014;
Laghari et al. 2016; Li et al. 2017b; Ralebitso-Senior and
Orr 2016; Yuan et al. 2017). The physical and chemical
properties also depend on other factors such as heating rate,
kiln pressure, the composition of the atmosphere (N or CO,
atmosphere in the kiln), and the type of pre- or post-treat-
ment of biochar (Joseph and Taylor 2014). The important
properties of biochar are presented in Fig. 2. Based on the
ash composition and its properties, biochar can be divided
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Fig. 1 Conceptual framework for impact of biochar on soils and plants

into the following three main groups (Joseph and Taylor
2014).

i) Biochar produced from biomass with minimum ash con-
tent (<3-5%), such as wood, nut shells, bamboo, and
some seeds (e.g., apricots). These hard biochars have
large porosity, surface area (SA), and hold more water
than biochars in other groups.

ii) Biochar produced from biomasses containing medium
ash content between 5% and 13%, which include most
agricultural wastes, bark, and high-quality green waste
(i.e., with low contamination of plastics, soil, and met-
als).

iii) Biochar produced from biomasses with high ash con-
tents (> 13%), such as manures, sludges, wastepaper,
municipal waste, and rice husks.

The physical characteristics of biochar, especially the sur-
face area and pore size/volume/distribution, are controlled
by the pyrolytic conditions and the nature of feedstock.

Soil properties

Physical
Improve hydraulic characteristics;

aggregate - stability ' and soil ' structure;
increase porosity and reduce bulk' density
Chemical

Increase: pH and CEC; nutrient contents:
reduce heavy metals concentration
Biological

favour ' microbial . habitat;
microbial population and activity

increase

For example, under high-temperature pyrolytic conditions
(> 550 °C), biochar is characterized by having a large surface
area and a high aromaticity (Ralebitso-Senior and Orr 2016).
However, at pyrolysis under low temperatures (200—400 °C),
biochar is characterized by having more oxygen-containing
functional groups, such as -COOH, —OH, C=0, phenolic
—OH and —CHO groups, which stimulate nutrient exchange
and, thus, improves soil fertility (Mandal et al. 2020; Rale-
bitso-Senior and Orr 2016). The characteristics of biochar
are important for its uses. For example, biochar with a low
surface area is less suitable for soil health improvement than
that with a high surface area.

3 Effect of biochar on soil properties

The changes in soil properties resulting from biochar appli-
cation are likely to impact nutrient reactions and microbial
transformation of nutrients. Figure 3 summarizes these
processes.
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Fig.2 Properties of biochar.
Modified and reprinted with
permission from Igalavithana .
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Fig. 3 Influence of biochar on soil properties. Adapted from Lopez-
Capel et al. (2016)
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3.1 Physical properties

Owing to special characters (such as high surface area
and porosity), biochar application influences soil physical
properties (Fu et al. 2019; Greenberg et al. 2019; Hordk
et al. 2019; Oladele 2019; Zhang et al. 2020). The effect of
biochar on various soil physical properties that are likely
to impact nutrient interactions in soil are summarized in

@ Springer

Table 1. For example, in a 4-year field study, peanut-shell
biochar altered soil properties by increasing water-stable
aggregates (WSA) (Du et al. 2018), and rice straw biochar
increased aggregate stability from 1% to 17% (Peng et al.
2011). In addition, biochar rate is positively correlated with
WSA. For instance, Oladele (2019) reported that addition
of rice husk biochar increased WSA at various soil depths
over 3 years. The author found that with 3, 6, and 12 t ha™!
of biochar application, WSA increased by 10, 18, and 23%,
respectively, at the 0—10 cm depth, and by 16, 20, and 26%,
respectively, at the 10-20 cm soil depth compared to no
biochar application in the first year. After 3 years, WSA
increased by 22 and 24% at the 0—10 and 10-20 cm depths,
respectively. Moreover, the application of rice husk biochar
(10 t ha™!) increased soil porosity by decreasing bulk den-
sity and increased available water in a sandy clay loam soil
(Laghari et al. 2016). Li et al. (2018) said that maize straw
biochar reduced soil bulk density and improved soil porosity
in a semi-arid region. In a pot study, Prapagdee and Tawin-
teung (2017) concluded that cassava stem biochar increased
soil porosity, which was in line with Fu et al. (2019) who
found in a field trial that biochar dose was positively cor-
related with soil porosity. Li et al. (2018) conducted a study
on the impact of maize straw biochar on soil properties in
a tomato field in a semi-arid region of China. The authors
found that application of biochar at 10, 20, 40, and 60 t ha™!
increased the soil porosity from 42.5% to 48%, 50%, 55%,
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and 56%, respectively, and reduced the bulk density of a
sandy loam soil. The application of biochar reduces bulk
density of soil regardless of soil types, study environments,
biochar application rate, or production conditions (Table 1).

Addition of biochar has been shown to increase the abil-
ity of soil to hold water (Yadav et al. 2018). Razzaghi et al.
(2020) did a meta-analysis on the effect of biochar on soil
water retention and found that the ability of soil to hold
water increased, especially in coarse-textured soils; Peake
et al. (2014) reported that biochar had a positive impact on
the ability of loamy sand and sandy loam soils to hold water.
The ability of soil to hold water has increased with increas-
ing biochar application rates (Greenberg et al. 2019; Oladele
2019). Biochar reduced the tensile strength and cracks of
a surface soil (Mandal et al. 2020), and suppressed soil
shrinkage by increasing the ability of the soil to hold water;
thus, soil structure was improved (Fu et al. 2019). Nair et al.
(2017) observed that biochar improved soil water retention,
reduced bulk density, and stabilized soil organic matter.
Additionally, it was confirmed that there were hydrophilic
functional groups on the surface and pores of biochar with
a high affinity for water; biochar application was shown to
increase soil water retention more in a sandy soil than a
loamy soil or a clay soil (Mandal et al. 2020). Biochar also
showed a positive impact on surface area of soil (Anawar
et al. 2015), which varied with biochar types (Tomczyk
et al. 2020). For example, biochar (10%)-amended soil had
3 times higher surface area than untreatedd soil (Tomczyk
et al. 2019). Therefore, irrespective of soil types, experi-
mental conditions, biochar types, pyrolytic temperatures,
and application rates, biochar has positive impacts on soil
physical properties. Moreover, the above discussion shows
that the soil physical properties are interlinked and influence
each other.

3.2 Chemical properties

Biochar application has been shown to impact soil chemi-
cal properties such as pH, electrical conductivity (EC), and
cation exchange capacity (CEC). These soil chemical prop-
erties influence nutrient interactions in soil. The impacts of
biochar on selected chemical properties of soils are sum-
marized in Table 2. Soil pH can be altered by incorpora-
tion of biochar into soil, thereby contributing to alterations
in nutrient availability. The pH of biochar is an important
character for its use in agriculture as a soil conditioner. Bio-
char pH is dependent on the rate of the carbonization pro-
cess, pyrolytic temperature, and feedstock type (Weber and
Quicker 2018). Biochar also generates organic acids during
pyrolysis of biomasses that influence the pH of the final
product (Cheng et al. 2018). Biochars generally have a pH
range of 6.52-12.64 (Table 4), and the pH values positively
correlate with the pyrolytic temperature (Fig. 5). Biochar has
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an alkaline nature due to the presence of alkali and alkaline
metals in feedstocks that are not volatilized during pyrolysis
(Yang et al. 2018). Application of alkaline biochar tends to
increase the pH of acidic and neutral soils (Buss et al. 2016).
The alkalinity of biochar depends on three important factors:
(a) organic functional groups; (b) carbonate content, and (c)
inorganic alkali content (Lee et al. 2013). The concentration
of base cations in biochar is strongly correlated with biochar
alkalinity, which is not a simple function of biochar’s soluble
ash content (Fidel et al. 2017). Alkaline biochar can be used
as a liming material for neutralizing acid soils (Taskin et al.
2019). However, the soil liming potential of biochar is not
consistent across soil and biochar types. For example, appli-
cation of biochar (at 1% and 2% rate) generated from vari-
ous types of crop straws (pH value of biochar ranging from
7.69 to 10.26) in a three-month incubation study decreased
the pH of an acidic Ultisol (pH 4.31) over time (Laghari
et al. 2016). However, in a field study, application of a paddy
straw-derived biochar (biochar pH was 10.50) to a sandy soil
(soil pH 5.24) increased the pH of the soil by 4.5 units com-
pared to the control (El-Naggar et al. 2018b). Moreover, a
high dose (50 and 100 tha™!) of biochar (pH9.40) increased
the pH of an Alfisol and, consequently, reduced exchange-
able Al concentration in the soil (Tomczyk et al. 2020). Li
et al. (2018) observed that application of biochar (10, 20,
40, and 60 t ha™!) had no impact on soil pH in a semi-arid
region, which was consistent with the results reported by
Werner et al. (2018) who found that the pH of a sandy loam
soil was not changed with addition of biochar. Therefore,
biochar application to soil could either increase or decrease
soil pH based upon the original soil properties (e.g., pH,
texture) and biochar pH and alkalinity (Table 2).

Most biochars contain high amounts of soluble salts,
and, hence, the EC of biochar is generally higher than most
agricultural soils (Igalavithana et al. 2018). Availability of
soluble nutrient ions such as NO;~, K*, and Ca®* could be
directly related to the soluble salt content and, hence, the
EC of biochar when applied to soil. Excess salts or high
EC in soil is harmful for plants, because of a decrease in
osmotic potential. Therefore, the EC of the soil must be
maintained low for desirable nutrient availability and plant
growth. Nevertheless, the EC of soil was reported to increase
with increasing application rates of biochar (Li et al. 2018).
Prapagdee and Tawinteung (2017) found that the EC of soil
increased when cassava stem-derived biochar was applied
at a rate of 10% (w/w). In a sandy soil (EC=0.07 dS m),
the EC was increased by 385, 100, and 71% with the addi-
tion of paddy straw, silver grass residue, and umbrella tree
residue biochar (30 t ha™!), respectively (El-Naggar et al.
2018b). However, rice husk biochar (EC =2.56 dS m™') had
no impact on increasing the EC in the soil (Jatav et al. 2018).

The CEC of most biochars is higher than that of typi-
cal agricultural soils (Sohi et al. 2009, 2010). The CEC of
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(2020)

biochar is attributed to the generation of various functional
groups, such as carboxyl and hydroxyl groups, during the
pyrolysis of biomass (Tomczyk et al. 2020). Biochar CEC
is governed by two important factors: (a) surface oxida-
tion, and (b) adsorption of highly oxidized organic matter
onto the biochar surface (Tomczyk et al. 2020). Like pH,
CEC of soil can also be altered by biochar application. For
instance, in a short-term (11-day) incubation study using an
Ultisol, the addition of rice straw-derived biochar at 2.4 t
ha™! increased the CEC of soil (Peng et al. 2011). In another
study, El-Naggar et al. (2018b) showed that the CEC of a
sandy soil (CEC=0.5 cmol kg™!) increased by 3.00, 1.00,
and 0.75 cmol kg~! with the application of biochars (at 30
t ha~! rate) derived from paddy straw, silvergrass residue,
and umbrella tree residue, respectively. However, in a sandy
loam soil (initial CEC = 10 cmol kg™), the paddy straw bio-
char (at 30 t ha™! rate) increased the CEC by 1.0 cmol kg™!
only. In another study, biochar derived from wood was found
to increase the CEC by as much as 190% in an Anthrosol
(initial CEC =2.81 cmol kg™") compared to the control treat-
ment (Tomczyk et al. 2020). Therefore, various types of bio-
chars produced from various feedstocks change the CEC
of soils to a different extent (Table 2), and the CEC affects
nutrient availability and water retention of soil (Yadav et al.
2018). Moreover, biochar is known to increase the organic
carbon content in soil (Table 2) and stimulate C sequestra-
tion by suppressing the long-term turnover of soil organic
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matter (Schofield et al. 2019). The increased organic carbon
content, together with improved chemical properties due to
biochar application, positively affects the nutrient status in
soil.

3.3 Biological properties

Effects of biochar on various soil biological properties, such
as soil respiration, microbial biomass carbon, microbial
activity and functions, and soil enzymatic activity, are pre-
sented in Table 3. Owing to its porous system, biochar can
be a favorable habitat for soil microorganisms including bac-
teria, mycorrhizal fungi, and actinomycetes (Compant et al.
2010; Prapagdee and Tawinteung 2017). Du et al. (2018)
found that peanut-shell biochar (1%) increased microbial
populations, microbial biomass, and actinomycetes. How-
ever, Wang et al. (2020) reported that a high dose of biochar
could show a negative impact and a low dose could have a
positive impact on soil microbial communities. The authors
suggested that such variation of biochar’s effects was due to
the toxic effect (chemical stress) of biochar on soil micro-
organisms when applied at a high rate. However, in numer-
ous studies biochar application exhibited positive effects on
soil microbial activities. For example, in a coastal wetland
soil, biochar application boosted the soil microbial biomass
C and resulted in a low metabolic quotient (Zheng et al.
2018). Zheng et al. (2018) also found a shift of the bacterial
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Table 3 Effect of biochar on soil biological properties

Biochar (rate)

Temp. (°C)  Soil type

Study

Biological properties or
microbial response

References

Wheat straw (1%)

Peanut shell (2%)

Rice straw

Rice straw

Corn straw (1.33%)

Straw of reed, smooth grass
and rice

Moso bamboo (20 and 40
t/ha)

Chicken manure, oat hull,
pine bark (3%)

Wheat straw (40 t/ha)
Rice straw (4 and 20 t/ha)

Corn straw (2.4, 6 and 12
t/ha)

Wheat stalk (1 and 5%)

400 Fimi-Orthic Anthrosol

Ferralic Cambisol

400 Yellow—brown
Fluvo-aquic
Luo

Black

500 Sandy loam

350480 Clinosol

500 Sandy loam

450 Clay

600 Ferrisol

300 500 600 Alfisol

350-550 Anthrosol vertisol
550-650

400 Inceptisol

650 Ge-Eutric Gleysols

Incubation

Incubation

Field

Field

Pot

Pot

Field

Incubation field

Field

Fresh biochar reduced
ammonia-oxidizing
archaea (AOA) but
increased ammonia-
oxidizing bacteria (AOB)
gene populations in acidic
soil

Aged biochar increased
AOA- and AOB- in both
soils

Increased bacterial diversity
but decreased fungal
diversity

Fusurium population
reduced by biochar plus
chemical fertilizers

No effect on AOA but AOB
abundance and diversity
increased

Lactobacillales and Bac-
teroidales population
increased

Improved antagonistic per-
centage and antagonistic
ability of Bacillus spp. and
Pseudomonas spp.

Increased microbial biomass
decreased microbial activ-
ity and soil respiration

Reduced urease and acid
phosphatase activities

Increased basal respiration
and dehydrogenase (DHA)
activity and modified
microbial communities

Fresh biochar increased
microbial biomass C
(MBC)

Aged biochar decreased
Gram-positive/Gram-
negative ratio

Increased the nifH (nitro-
genase iron protein) gene
abundance and altered the
community structure of
soil diazotrophs

Improved growth of Gram-
positive bacteria and fungi

Increased MBC and influ-
enced the soil microbial
community structure

Strengthened network con-
nectivity among rhizos-
phere bacteria

Improved linkage between
rhizosphere bacteria and
soil C

Zhang et al. (2019c¢)

Zhang et al. (2019b)

Zhang et al. (2019a)

Yan et al. (2019a, b)

Wang et al. (2019)

Tian et al. (2019)

Peng et al. (2019)

Meier et al. (2019)

Liu et al. (2019b)
Liu et al. (2019a)

Li et al. (2019)

Huang et al. (2019)
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Table 3 (continued)

Biochar (rate) Temp. (°C)  Soil type Study Biological properties or References
microbial response
Bamboo biomass (5, 1020  350-400 Field Reduced the Proteobacterial Herrmann et al. (2019)
t/ha) community in soils
Sewage sludge (15 t/ha) 300 500 Red-Yellow Latosol Field Increased mycorrhizal colo-  de Figueiredo et al. (2019)
nization in corn plant
Conifer wood chips (5 and 280 Cambisol Incubation Decreased DHA, Cordovil et al. (2019)

10%)

B-glucosidase and phos-
phatase activities

community towards low C turnover bacterial taxa (e.g.,
Actinobacteria and Deltaproteobacteria), which stabilized
soil aggregates. In another study over 90 days by growing
tobacco plants with biochar application, Cheng et al. (2017)
reported that, as the result of biochar application to soil with
tobacco, the average populations of Sphingomonadaceae and
Pseudomonadaceae bacteria were increased by 18 and 63%,
respectively. In the same study, when tobacco plants were
not grown, populations of the two bacterial groups in the
soil were increased by 46 and 110%, respectively. Moreover,
biochar was reported to increase microbial biomass N by
12% (Liu et al. 2018). The effects of biochar on soil micro-
bial community structure and N-cycling bacteria depend on
several factors, such as soil type, C/N ratio, nutrients, pH,
and biochar addition rates (Abujabhah et al. 2018). Biochar
application increased biological N fixation by 63% (Lu et al.
2018). Schofield et al. (2019) tested horticultural green
waste biochar to retain N in a sandy loam soil. They found
that biochar increased the microbial activity by 73, 84, 214%
when applied at rates of 2, 5 and 10%, respectively.
Biochar showed positive impacts on soil enzymatic activ-
ities (Mierzwa-Hersztek et al. 2016; Ouyang et al. 2014).
For instance, addition of biochar (5 and 10 t ha™!) in an
Inceptisol increased the dehydrogenase and urease activity
by 19 and 44%, respectively (Ameloot et al. 2013; Mierzwa-
Hersztek et al. 2016). Similarly, a greenhouse study con-
cluded that biochar improved soil enzymatic properties with
the application rate up to 6% (Yadav et al. 2018). Biochar
also increased P-solubilizing bacterial populations such as
Burkholderia—Paraburkholderia, Planctomyces, Sphingo-
monas, and Singulisphaera, which contributed to improving
P availability in a forest soil (mountain acidic red loam soil)
(Zhou et al. 2020). However, Haefele et al. (2011) found a
negative effect on earthworm populations with the addition
of rice residue biochar (41.3 Mg ha™!). Similarly, Weyers
and Spokas (2011) observed a negative effect (short term) or
no effect (long term) of poultry litter biochar on earthworm
activity in soil, which was attributed to a rapid pH change or
high ammonia concentration in the soil due to the addition of
the biochar (Liesch 2010). Earthworms are highly sensitive
to soil pH and ammonia concentration (Saleh et al. 1970).

@ Springer

4 Biochar as a source of nutrients

Biochar can be a nutrient source for crop plants. The nutri-
ent content of biochar depends mainly on the nature of the
feedstock materials and the pyrolytic conditions (pyrolytic
temperature, residence time, gaseous environment) (EI-
Naggar et al. 2019a). Feedstock materials containing high
nutrient contents result in nutrient-enriched biochars. For
example, manure and sewage sludge produce nutrient-rich
biochars (Table 4).

4.1 Primary nutrients
4.1.1 Nitrogen

Nitrogen is one of the most limiting nutrients in soils for
plant growth and productivity due to high crop demand for
it and the chances of losses by leaching, runoff, and vola-
tilization (Nguyen et al. 2017b). A continuous application
of N in available forms is essential for many agricultural
soils to maintain production in cropping seasons (Fageria
and Baligar 2005). Biochar can be a potential source of N
for plants. In addition to organic forms of N (e.g., hydrolyz-
able-N, water-soluble-N, and non-hydrolyzable-N), biochar
also contains inorganic N forms such as NH4+—N ,NO;™-N,
and N,O-N (Liu et al. 2019a). Although N content is low
in most biomasses, the N content is mostly increased after
pyrolysis due to reducing the mass (mainly the moisture)
of the biomass. In the case of N, there could be some losses
also during the pyrolysis of biomass due to gaseous emis-
sions of the element. Hence not all forms of N present
in the feedstock can be found in the biochar. For exam-
ple, some amino acids, such as arginine containing amide
groups, are mostly converted to ammonia or other gaseous
forms of N during biomass pyrolysis, and, consequently,
they are lost (Leng et al. 2020). Nitrogen conversion path-
ways from feedstock-N to biochar-N through the process
of pyrolysis are presented in Fig. 4. The existence of metal
elements in feedstock can influence the conversion of
N-containing compounds and, thus, the amount and forms
of N species in final biochar products (Xiao et al. 2018).
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Table 4 shows that the N content of biochar can be of a  content of biochar decreases with an increase in the pyro-
wide range (0.24-6.8%). Although, most biochars have low  lytic temperature (Fig. 5), due to conversion of parts of
N content (below 1.5%) (Table 4), the N content is highin ~ amino acids into pyridine-N and pyrrolic-N (Leng et al.
a few biochars such as those derived from sewage sludge ~ 2020). Ultimately, the loss of NH,*-N as NH; occurs
(6.8%), poultry litter (5.85%), grass waste (4.9%). Also,  through volatilization during pyrolysis (El-Naggar et al.
Chang et al. (2015) reported high N content (14.12%) in 2019a). For instance, N contents of chicken manure biochar
biochar produced from microalgae. Biochar produced from  were found to be 2.79, 2.45, and 1.81% when the material
sewage sludge (at 350 °C) had more N (3.17%) than that  was produced at 250, 350 and 550 °C, respectively (Xiao
produced from sugarcane and eucalyptus wastes (1.4 and et al. 2018). Similarly, N content of maize-straw biochar
0.4%, respectively) (Figueredo et al. 2017). Furthermore, N decreased from 1.25% (300 °C) to 1.20% (500 °C) (Song
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Fig.5 Impact of feedstock and pyrolytic temperature on chemical properties of biochar (data obtained from Table 1)
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et al. 2018), and that of elephant-grass biochar decreased
from 3.87% (400 °C) to 2.15% (600 °C) (Ferreira et al.
2018), due to a rise of the pyrolytic temperature. Acidi-
fied biochar (pre-pyrolysis) decreased the total N content,
which was attributed to volatilization loss of N during
pyrolysis (Sahin et al. 2017). However, salt-impregnated
(chicken manure with CaCl, and FeCl;-6H,0) biochar
slightly increased the total and available NH,*-N contents
when pyrolyzed at a low temperature (250 °C), but at 350
and 550 °C, the NH,"-N content decreased (Xiao et al.
2018). Xiao et al. (2018) found 0.48, 0.30, and 0.17 g kg‘l
available N H4+-N (KCl extractable) in chicken manure bio-
char following pre-pyrolysis impregnation of the biomass
with CaCl,, MgCl,.6H,0, and FeCl;.6H,0 mineral salts,
respectively. Chang et al. (2015) found that N content in
a Chlorella-based algal residue biochar increased from
10.23% to 14.12% when the residence time of pyrolysis was
increased from 20 min to 60 min at 500 °C. However, the
effect of rising pyrolytic temperature ranging from 300 °C
to 700 °C on the N content of algal biochar was not consist-
ent (Chang et al. 2015). The N-containing components of
biochar can be present on the biochar surfaces and/or inside
the pores as nitrates, ammonium salts, or heterocyclic
compounds (Grierson et al. 2011). These N components
of algal biochar were much higher than other common bio-
chars such as manure and biosolid/sewage sludge-derived
biochars. Among the inorganic forms of N, NO;™-N and
N,O-N were increased at a high temperature (800 °C) for
pyrolysis, NH,"-N and NO;-N were decreased drastically
at 300 °C, and all inorganic N remained stable at 600 °C
(Zhu et al. 2016). Therefore, when producing N-enriched
biochar, special care should be taken to decide the pyrolytic
temperature and feedstock type.

4.1.2 Phosphorus

Like the N content in different biochars, the P content var-
ies over a wide range (0.005-5.9%) (Table 4). While the
N content decreases with pyrolytic temperature, the P con-
tent is positively correlated with the pyrolytic temperature
(Fig. 5). The increased P content in biochar with increasing
pyrolytic temperature can be attributed to the ‘concentration
effect’ resulting from decreased biochar yield with increas-
ing temperature. For example, Xiao et al. (2018) produced
biochar from chicken manure at 250, 350, and 550 °C and
found corresponding P contents of 1.91, 2.15 and 2.96%,
respectively (Table 4). Moreover, the P content also depends
on the type of biomass. For instance, P contents in biochar
derived from swine solid (5.9%) (Cantrell et al. 2012),
chicken manure (2.96%) (Xiao et al. 2018), and poultry lit-
ter (2.57%) (Brantley et al. 2016) were greater than those
derived from rice husks (0.15%) (Bu et al. 2017) and apple
branches (0.18%) (Li and Shangguan 2018). Thus, feedstock

@ Springer

selection is an important aspect for producing P-enriched
biochar. In addition, the P content of chicken manure biochar
increased from 1.91% to 2.96% by increasing the pyrolytic
temperature from 250 °C to 550 °C (Table 4). Biochar with
a high ash content contained a high P content (Laghari et al.
(2016). In a review on the mineral contents of biochar, Xu
et al. (2017) stated that biochar from sewage sludge and
poultry litter had higher P contents than biochar from crop
residues, animal manures, and woody biochar. They also
found that available P (i.e., Olsen-P) in biochar increased
from 280 to 676 mg kg~! when the pyrolytic temperature
increased from 300 °C to 600 °C. Li et al. (2020) found that
Olsen-P increased in both pristine and P-laden biochar by
43 and 15%, respectively, when the pyrolytic temperature
increased from 350 °C to 600 °C. The authors also observed
that the amount of Olsen-P increased in KH,PO,-treated bio-
char with increase in temperature. In addition, Xiao et al.
(2018) found that water-extractable P was negatively cor-
related with the pyrolytic temperature for both pristine and
modified biochars, while the Olsen-P was positively corre-
lated with increasing temperature. The authors also observed
that the Olsen-P decreased when a pre-treatment of chicken
manure was conducted with different types of salts, because
of the formation of insoluble phosphate compounds such as
(CaMg),(PO,), and Fe,(PO,),0. Zhang et al. (2019d) found
that Olsen-P and water soluble-P contents were 775.45
and 495.21 mg kg™!, respectively, in an acidified biochar
(700 °C) derived from maize straw.

4.1.3 Potassium

The K content in biochar also varies both with the feedstock
type and temperature of pyrolysis (Table 4). For example,
poultry litter, chicken manure, rice straw, and bamboo bio-
char contained more K than biochars made from rice husks,
corn stalks, and apple branches. As in the case of P, K con-
tent of biochar also increases with increasing pyrolytic tem-
perature (Fig. 5), which can be attributed to the ‘concen-
tration effect’. Xiao et al. (2018) found that the K content
in chicken manure biochar was increased from 4.16% to
5.93% when the pyrolytic temperature was increased from
250 °C to 550 °C (Table 4). Poultry litter-derived biochar
contained 3.88% and 5.88% K at pyrolytic temperatures
of 400 °C and 600 °C, respectively (Subedi et al. 2016).
Similarly, Vaughn et al. (2018) produced biosolid biochar
at 300, 400, 500, 700, and 900 °C, and the K contents were
3.89,3.98, 4.06, 4.02, 8.12, and 9.83%, respectively. Karim
et al. (2017) evaluated the K-enrichment of banana peduncle
biochar produced in the presence of different gases (Ar and
0O,) and plasma with processing times of 3, 5, 7, and 9 min.
They found that plasma processing for up to 7 min enriched
the biochar with K in both Ar and O, environments. For
instance, due to Ar gas loading for seven min, K increased
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from 8.6% to 28.6% for available K, from 3.5% to 11.2%
for water-soluble-K, and from 5.1% to 14.7% for exchange-
able K. Amin (2016) reported that soluble-K content was
6.05 g kg~! in corn cob biochar, and Nguyen et al. (2020)
found 8.50 g kg™! exchangeable K in rice husk biochar.

4.2 Secondary nutrients

As shown in Table 4, contents of secondary nutrients includ-
ing S, Ca, and Mg are high in animal manure biochar, as
reported by Xiao et al. (2018) and Brantley et al. (2016). The
Ca contents of animal manure biochar ranged from 0.40%
to 6.15% and that of industrial and municipal waste-derived
biochar ranged from 0.37% to 6.57% (Table 4). Biochar
derived from crop residues had concentrations of Ca rang-
ing from 0.20% to 1.57% and that of woody biochar was in
the range of 0.05-2.42% (Table 4). However, biochar pro-
duced from apple branches had a higher Ca content (2.42%)
(Li and Shangguan 2018) than other feedstocks such as bar-
ley straw (0.20%) (Jatav et al. 2018), sugar maple sawdust
(0.50%) (Noyce et al. 2017), and acacia (0.27%) (Arif et al.
2016). The Mg contents of biochar produced at 250-750 °C
from various types of biomasses (e.g., animal manure,
woody biomass, crop residue) ranged from 0.001% to 3.78%
(Table 4). Most of the animal-manure-derived biochars and
grass waste biochar contained higher Mg contents than
crop-residue biochar and woody biochar (Table 4). Gener-
ally, the S content was the lowest (0.001-0.32%) in biochar
produced from woody biomass followed by waste-derived
biochar (0.005-0.63%) and crop residue-derived biochar
(0.07-0.32%) (Table 4). Animal manure biochar contained
more S (0.02-1.36%) than orchard-pruning-biomass-derived
biochar (0.005%) (Table 4). The effects of pyrolytic tempera-
ture on the S content of biochars are inconsistent (Table 4),
because high temperatures can either increase S content by
the incorporation of S into complex structures or decrease
S content due to volatilization loss (Al-Wabel et al. 2013).

4.3 Trace elements

Biochar also contains a significant amount of trace element
nutrients (micronutrients) such as Fe, Cu, B, Zn, Mn, and
Mo. Most of the published literature reports only Fe, Zn, and
Cu contents of biochar; few of them mention Mn content;
and only few report Mo and B contents (Table 4). Table 4
shows that Fe content in biochar of animal manure was
higher (311-7480 mg kg™") than biochar from crop residues
and woody materials. The Fe content in biochars produced
from waste materials was in the range of 0.009-380 mg kg™
(Table 4). Like Fe, animal manure biochar contained more
Zn (131-4981 mg kg™!) and Cu (99-2446 mg kg™') than
waste- and crop-residue-derived biochars (Table 4). The
contents of the micronutrient elements depend on the

feedstock type and biochar production temperature. How-
ever, the effect of these factors is not consistent for micro-
nutrient contents of biochar products, which can be attrib-
uted mainly to the low micronutrient contents in feedstock
materials. For instance, eucalyptus green waste biochar
produced at 650-750 °C had 7000 mg kg~' Fe (Abujabhah
et al. 2016); whereas, willow wood waste biochar produced
at 550 °C had only 0.05 mg kg~! Fe (Agegnehu et al. 2016a).
Several other studies (Brantley et al. 2016; Chen et al. 2018;
Li and Shangguan 2018; Miranda et al. 2017; Noyce et al.
2017) also reported that biochar contains a low but signifi-
cant amount of micronutrients.

5 Effect of biochar on nutrient reactions
in soil and uptake by plants

As a sink, biochar can retain nutrients, thereby reducing
their losses through leaching and gaseous emission. Biochar
application influences various soil properties including pH,
bulk density, CEC, water retention, and biological activity
(Sect. 3), which in turn affect nutrient retention of soils.

5.1 Nutrient retention

Biochar can contribute in improving nutrient retention
capacity of soil due to its large surface area, porosity, and
presence of both nonpolar and polar surface sites (Ahmad
et al. 2014; Hussain et al. 2017; Mukherjee et al. 2011; Yu
et al. 2018). The polar sites are likely to increase the soil
CEC (Mukherjee et al. 2011). For example, biochar with a
high CEC retains more nutrients in soil by reducing nutrient
loss through leaching (Tomczyk et al. 2020). Application of
biochar also enhances nutrient retention by increasing the
soil pH and soil organic matter (Mendez et al. 2012). Nutri-
ent retention and release depend on soil pH (Fig. 6). For
instance, Gao et al. (2016) reported that addition of biochar
increased NO5 -N and NH,-N retention in soil by 33 and
53%, respectively. Sorrenti et al. (2016) also observed a sim-
ilar effect of biochar application on soil N. Liu et al. (2017b)
proposed three important mechanisms for N retention after
biochar application in soil: (1) adsorption of NH,*-N due to
the high CEC of biochar, (2) reduced leaching of NO;™-N
due to increased ability of the soil to hold water, and (3)
increased microbial immobilization of N in soil by the sup-
ply of labile C. Schofield et al. (2019) suggested that high
cation and anion exchange capacities of biochar and its
ability to retain ions and molecules within the pores further
contribute to biochar’s enhanced nutrient retention capacity.
Hence, biochar produced at high temperature might have a
high ability to retain NO;™-N without its leaching to ground
water. Sometimes biochar has reduced nutrient retention due
to quick decomposition of biochar C (e.g., by 51% within
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16 months of application) (Beusch et al. 2019). The impacts
of various types of biochar and nutrient availability changes
in different soils are summarized in Table 5.

Owing to porous structure and NH,*-N adsorption abil-
ity, biochar can play a vital role in slowing down N release
from the soil. This statement was supported by Zhang et al.
(2017) who reported that the pore space of biochar can facil-
itate water and nutrient transfer at initial stage of biochar
application. The hydrophobic nature of biochar can hinder
water transport and thus limit N diffusion (Dong et al. 2020).
Moreover, NO;™-N adsorption capacity of biochar also influ-
ence N release in soil (Hagemann et al. 2017). In recent
years, several studies reported that biochar can be used as a
slow-release fertilizer. For example, Shi et al. (2020) con-
ducted a pot study and found that biochar-urea composite
release N slowly than conventional urea fertilizer and thus
it was more effective in NH,*-N retention. This agreement
was supported by Sashidhar et al. (2020) who also reported
that biochar-based slow-release fertilizer (BSRF) releases N
slowly by 69.8% over a period of 30 days. Similarly, Hu et al.
(2019) and Liu et al. (2019d) reported that 59.32% N was
released after 84 days and 69.8% N released within 28 days
of BSRF application, respectively.

Biochar plays a role for N availability in soil due to two
main mechanisms: biotic (fixation, mineralization, immo-
bilization, denitrification, plant uptake) and abiotic (sorp-
tion, volatilization, leaching) (Clough et al. 2013; Nguyen
et al. 2017b). The increase of N availability in soil from
biochar application is, therefore, beneficial for plant growth
(Esfandbod et al. 2017; Igalavithana et al. 2016). In addition,
negative and neutral impacts of biochar on soil-N availabil-
ity have been reported (Mukherjee and Lal 2014; Nguyen
et al. 2017b). For example, addition of rice husk biochar

Fig.6 pH-dependent associa-
tion and dissociation of nutri-
ents from biochar. Reprinted
with permission from Sashidhar

reduced the available N content by 21% (sole biochar) and
15% (biochar + fertilizer) compared to a control soil (Areno-
sol), which was due to immobilization of N (Werner et al.
2018). Liu et al. (2018) did a meta-analysis and concluded
that biochar application decreased NH,*-N and NO;-N
contents in soil by 6 and 12%, respectively. Therefore, the
effects of biochar application on N availability in soil are not
consistent as the N availability is governed by rate and type
of biochar as well as the soil type (Table 5). For example,
under field conditions, the addition of biochar (10 Mg ha™!)
plus organic and chemical fertilizers increased N availability
in a silty clay loam soil (Arif et al. 2017). In addition, modi-
fied biochar (calcium alginate impregnated) also increased
the nutrient (N and K) retention in soil, as reported by Wang
et al. (2018). Moreover, combined application of biochar and
farm yard manure (FYM) improved the nutrient (N and P)
retention in soil (Arif et al. 2017).

Biochar can be a reserve stock for P in soils (Dai et al.
2016; Zhang et al. 2016). For instance, with the incorpora-
tion of sugar maple and red pine biochar, available P was
found to be three times higher in a sand than in sandy loam
and silty sand soils (Noyce et al. 2017). Several studies
showed that soil amended with biochar increases P bio-
availability and plant growth (Arif et al. 2017; Beheshti
et al. 2017; Biederman et al. 2017; Brantley et al. 2016;
Efthymiou et al. 2018; Houben et al. 2017). The changes
of P availability in soil, as impacted by biochar application,
are presented in the Table 5. Like N, the availability of P is
changed with the addition of biochar and it depends on the
biochar and soil. The majority of the studies report that the
availability of P is increased with the application of bio-
char. However, some researchers showed decreased avail-
ability of P after biochar addition (Table 5). Modified or

et al. (2020)
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fortified biochars increase the P retention capacity of soil.
For instance, Wu et al. (2019a) studied the mechanism of
inorganic P adsorption under field conditions in saline-alka-
line soil. The authors found that MgO-biochar showed 1.46
times more phosphate adsorption than pristine biochar due
to electrostatic attraction, precipitation, and exchangeable
anions. Thus, modified biochar increased the availability of
P in soil. Several studies (Atkinson et al. 2010; Glaser et al.
2002; Major et al. 2010) reported that application of alkaline
biochar to acidic soils increased K content in soils. This
is in agreement with DeLuca et al. (2015) and Lehmann
et al. (2003) who reported that the bioavailability of K was
increased with addition of biochar. Usually the availability
of K in soil is increased with the addition of biochar irre-
spective of the study, although some negative impacts of
biochar on the availability of K in soil have been reported
(Table 5). The addition of biochar (10 t ha™") increased the
Mg content in a loamy sand soil (Lusiba et al. 2017).

The impacts of biochar on nutrient retention in soil are
mostly positive. For instance, biochar increased Ca and Mg
availability in soil and, thus, boosted crop yield (Hussain
et al. 2017) which was previously supported by Abujabhah
et al. (2016) who found that woody biochar had a significant
impact on exchangeable Ca, Mg, and Na in black clay loam,
red loam, and brown sandy loam soils. Moreover, the Ca
availability increased in soil even at a low rate of biochar
application (1.25%); however, no change in S availability
was observed (Eykelbosh et al. 2014). The availability of Ca,
Mg, and S increased or decreased due to incorporation of
biochar in soil, as shown in Table 5. A few studies (Lu et al.
2014; Zhang et al. 2013) state that biochar alters the bio-
availability of trace elements in soils (Beesley et al. 2011).
For example, woody biochar improved the availability of
micronutrients (B and Mo) (Hussain et al. 2017); whereas,
the addition of mixed hardwood-derived biochar did not
influence the Cu and Zn content (Cai and Chang 2016). The
Fe and Al contents were decreased by biochar addition in
sandy soils, but biochar had no impact in silt or clay soils
(El-Naggar et al. 2018c). However, addition of hardwood-
derived biochar increased Fe and Mn availability, but it had
no effect on Zn and Cu availability (Ippolito et al. 2014).
Noyce et al. (2017) showed a positive effect of biochar on
Mn and Na contents in sand, sandy loam, and silty sand
soils. The availability of micronutrients is influenced by
the application of biochar to soil (Table 5), and feedstock
and type of soil are important in determining micronutrient
availability.

5.2 Nutrient leaching
5.2.1 Nitrogen

Nitrate leaching is a major reason for loss of N from soils
and causes groundwater pollution (Cheng et al. 2018). Sur-
face properties of biochar facilitate the adsorption of ions
in the soil solution. Electrostatic and capillary forces on
the surface of biochar reduce nutrient leaching from soils.
For instance, the application of Brazilian pepperwood bio-
char reduced NO;™ leaching by 34% through adsorption
(Yao et al. 2012). Soil amended with biochar can adsorb
NO;™ through its anion exchange sites, thereby reducing
N losses and increasing NO;™ retention. Moreover, woody
biochar application can decrease nutrient leaching through
increasing water retention, as reported by Lehmann et al.
(2003). Biochar has the capacity to retain inorganic N ions
and, therefore, it reduces N leaching and runoff in soils
(Steiner et al. 2008). Figure 7 shows that the application of
biochar reduced NO;™ leaching by 26%. Cao et al. (2019)
showed that biochar derived from apple branches reduced
leaching of NO;™-N by 9.9-68.7% and nitrogen-oxide flux
by 6.3-19.2%. Application of mixed hardwood biochar
decreased N leaching by 11% in Midwestern agricultural
soils (Laird et al. 2010), 72% in sub-alkaline soils of an
apple orchard (Ventura et al. 2013), and 46% in a tropical
Arenosol (Beusch et al. 2019). Cheng et al. (2018) con-
ducted an incubation study and found that NO;™-N leach-
ing was decreased, but NH,*-N leaching was increased, in
biochar-amended soil due to reducing the CEC in biochar
with increasing temperature.

5.2.2 Phosphorus

Excessive application of P fertilizers has resulted in the
leaching of P from agricultural fields to aquatic systems
(Karunanithi et al. 2015; Loganathan et al. 2014). Biochar
has proven to alter P availability in soils by reducing P leach-
ing through sorption/adsorption. In a column study, biochar
produced from Brazilian pepperwood at 600 °C reduced
the total amount of phosphate by about 20.6% in biochar-
amended soil (Yao et al. 2012). Doydora et al. (2011) found
that the application of peanut hull biochar increased the
amount of phosphate in the soil solution by 39%. The pos-
sible mechanisms suggested for the influence of biochar on
P availability are change in soil pH and subsequent influ-
ence on the interaction of P with other cations and enhanced
retention through anion exchange and P precipitation (Atkin-
son et al. 2010). In natural environments, P is strongly
adsorbed onto the surface of Fe(Ill)-(hydr)oxides in soils
(Jaisi et al. 2010). Cui et al. (2011) showed that addition
of biochars reduced the amount (30-40%) of P sorbed onto
ferrihydrite (the most effective Fe-oxide for P adsorption),
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Fig. 7 Conceptual framework of the biochar-mediated N cycle. Modified and reprinted with permission from Liu et al. (2018)

which likely improved in P availability in soil. The biochars
magnetized with Fe’>*/Fe’* enhanced phosphate sorption,
compared to non-magnetic char (Chen et al. 2011). Leach-
ing of P is reduced by absorbing it on the surface of biochar
(Biederman and Harpole 2013). Biochar with a large surface
area has high adsorption capacity for the ionic forms of P.
So, biochar can reduce ortho-P leaching from nutrient-rich
soil and influences P availability (Gul and Whalen 2016;
Hussain et al. 2017).

5.2.3 Other nutrients

Leaching of nutrients depends on soil type, physico-chemi-
cal properties of the biochar, and the pyrolytic temperature
(Cheng et al. 2018; Yuan et al. 2016). For example, sew-
age sludge biochar produced at 500 and 700 °C reduced the
leaching loss of K in a Typic Plinthudult soil more than that
of biochar produced at 300 °C (Yuan et al. 2016). Biochar
can increase leaching of K in crop fields for the short term

@ Springer

(Angst et al. 2014; Guo et al. 2013), which results in ground
water pollution. For example, application of wood biochar
in an acidic and low fertile soil resulted in leaching of K,
Ca, and Mg to the 60 cm depth, but concentrations gradu-
ally decreased to the 120 cm depth (Major et al. 2012). This
might be related to variation in nutrient uptake by plants at
different depths. Addition of biochar resulted in increased K
leaching by 65% below the A1 horizon (Hardie et al. 2015),
which was attributed to a high amount of soluble-K in the
biochar. Biochar-induced leaching loss of Ca decreased with
increasing temperature of biochar production (Cheng et al.
2018). Thus, leaching of nutrients in biochar amended soil
depends on several factors, including biochar type and rate
of application, soil type, and depth of soil. Long-term field
studies are needed to investigate the effect of biochar on
nutrient leaching.
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5.3 Gaseous emission

Nitrogen in soil is lost through leaching and gaseous emis-
sion of ammonia (NH;) and nitrous oxide (N,O). Inorganic-
N is reduced in soil mainly through NH; volatilization (Liu
et al. 2017b). More than 85% NH,*-N is lost from soil due to
gaseous emission (Esfandbod et al. 2017). It is necessary to
reduce the loss of N from soil for plant growth and develop-
ment. The physical and chemical characteristics of biochar
influence their effectiveness in controlling NH; volatiliza-
tion. Biochar addition to a highly alkaline soil decreased
soil pH thereby reducing NH; volatilization (Mandal et al.
2016). The NH; adsorbed by biochar can, subsequently,
become available for plants (Taghizadeh-Toosi et al. 2012).
Biochar addition has often been shown to decrease total N,O
emission from soils treated with N sources such as manure,
urea, and compost (Bruun et al. 2011; Singh et al. 2010;
Spokas et al. 2009). Denitrification is the biological process
leading to increased N,O emission from soil. A decrease in
denitrification is likely to occur due to adsorption of inor-
ganic N (NH,*, NO;") to biochar surfaces, thus reducing the
substrate for denitrification (Taghizadeh-Toosi et al. 2012).
Complete denitrification leading to N, emission due to bio-
char addition was explained by enhanced anaerobic condi-
tions (Taghizadeh-Toosi et al. 2012), presence of labile C in
biochar, elevated soil pH, and enhanced microbial activity
(Anderson et al. 2011). Lehmann et al. (2006) hypothesized
that biochar could reduce N,O emissions by inducing micro-
bial immobilization of mineral N in the soil. According to
Lu et al. (2018) and Nguyen et al. (2016) biochar inhibited
denitrification and thus decreased NO and N,O emission by
32%. However, biochar could temporarily increase volatili-
zation of N by 19% as NH;, which will be ultimately depos-
ited into the soil (Fig. 7). However, Cayuela et al. (2014) car-
ried out a meta-analysis and showed about a 54% reduction
in N,O emissions with biochar application. Biochar reduced
the cumulative N,O emissions, the N,O-N emission fac-
tor, and the yield-scaled N,O emissions by 5-39, 16-67,
and 14-53%, respectively (Li et al. 2017a). The addition of
biochar reduced N,O emissions by 15% from acidic soil in a
vegetable field (Wang et al. 2015). In a study by Fungo et al.
(2019), addition of biochar reduced cumulative emissions of
NH; and N,O by 47% and 22%, respectively, over 3 years,
which indicated that biochar has a residual effect on gaseous
emissions of N.

5.4 Uptake and assimilation of nutrients
5.4.1 Nitrogen
The impact of biochar on nutrient concentration, uptake,

and crop growth and development are presented in Table 6.
Biochar application to soil influences N uptake in plants.

@ Springer

For example, Amin and Eissa (2017) studied the impact of
biochar on N and P use efficiency of zucchini plants (Cucur-
bita pepo) grown in a calcareous soil. They found that the
fruit N content increased by 39.23% over the control with
the lowest (6.3 g/pot) biochar rate, whereas, with increasing
the rate of biochar addition by 12.6 and 25.5 g pot™}, the N
content decreased by 7.45% and 13.73%, respectively, which
was attributed to ‘dilution’ effect caused by increased yield.
However, Werner et al. (2018) showed that sole biochar and
biochar with NPK fertilizer decreased N concentration in
plants by 20 and 15%, respectively, which they attributed
to immobilization of N in soil. In the USA, Sistani et al.
(2019) investigated the effect of hardwood biochar on corn
yield and greenhouse gas emission under field conditions
in silt loam soil. They found higher N concentration in bio-
mass in the first year of the study, which was a dry period;
whereas in the second and third years, which had favorable
moisture conditions, N concentration was lower than in the
control treatment. Application of biochar has been shown
to increase N uptake by 11% (Fig. 7). However, a few stud-
ies (Akoto-Danso et al. 2018; Kang et al. 2018) stated the
negative impacts of biochar on N concentration and uptake
by plants. Results are variable. Mandal et al. (2016) reported
that biochar increased N uptake by 76.11% over the con-
trol soil; while, Nguyen et al. (2016) found no impact on N
uptake with the addition of rice husk biochar up to 30 t ha™".

5.4.2 Phosphorus

Plants take up P as monovalent or divalent anions
(H,PO,~ or HPO,>"), but the availability of these ions may
be below the required level for plant growth if they are phys-
ically and chemically bonded in soils (Noyce et al. 2017).
Addition of biochar increased the P concentration of lettuce
leaves (Biederman and Harpole 2013; Gunes et al. 2014).
Other studies support this observation (Arif et al. 2017,
Shepherd et al. 2017; Werner et al. 2018). Residual bio-
char plus microbial inoculation with and without P-fertilizer
increased by 20-52% the P content of maize (Rafique et al.
2020). The impact of biochar on P uptake is mostly posi-
tive and few studies show a negative impact (Table 6). For
instance, incorporation of various types of biochars (empty
fruit bunch, sewage sludge, and chicken litter) at differ-
ent levels (5-40 t ha™') increased P uptake by 23-2096%
(Table 6). Biochar plus chemical fertilizer increased P and
K uptake more than biochar alone (Sistani et al. 2019). How-
ever, biochar has been shown to reduce P uptake by plants
(Kang et al. 2018; Liu et al. 2017a) and thus decrease crop
yield, which might be due to the phytotoxic effects of wood
biochar (Liu et al. 2017a). Table 6 gives information on P
uptake with different biochars.
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5.4.3 Potassium

Biochar addition plus N-fertilizer was positively corre-
lated with K content in sunflower plants, and the treatments
improved plant growth and development (Pfister and Saha
2017). Fazal and Bano (2016) did an experiment under
axenic conditions in a growth chamber to evaluate the role
of biochar, Pseudomonas sp., and chemical fertilizer on
uptake of K by maize. They observed that K content was
increased in maize by 46, 47, and 3% with addition of only
biochar, biochar + Pseudomonas sp., and biochar + chemical
fertilizers, respectively. Biochar can be used as an effective
K-fertilizer in terms of its economic, environmental, and
slow-release properties (Oh et al. 2014). The concentration
of K in plants grown in soil with biochar application has
increased up to 112.27% (Table 6). Addition of biochar at
10% increased K in stems, leaves, nut shells, and roots (Pra-
pagdee and Tawinteung 2017). Mycorrhizal inoculation in
biochar amended soil increased K content by 11-20% and K
uptake by 69% (Rafique et al. 2020). Most studies report that
the uptake of K is stimulated due to the addition of biochar
(Table 6). However, a few negative impacts of K uptake are
presented in the Table 6.

5.4.4 Other nutrients

Addition of poultry manure biochar decreased Ca and Mg
concentrations in lettuce (Gunes et al. 2014). But, biochar
(1%) increased Ca and Mg concentration in chicory (Cicho-
rium intybus). Concentration of Ca, Mg, and S increased
after 50 t ha™! biochar addition (Noyce et al. 2017). Applica-
tion of woody biochar increased the uptake of micronutrients
(iron, copper, zinc and manganese) in soil (Gao et al. 2016).
Table 6 shows concentrations of Ca, Mg, and micronutrients
after biochar addition.

5.5 Nutrient use efficiency

The nutrient use efficiency can be defined as yield or bio-
mass per unit input (fertilizer, nutrient content) (Reich
et al. 2014; Sarkar and Baishya 2017). It depends upon the
soil, plant, and environment (Reich et al. 2014). Biochar
can contribute to nutrient use efficiency in plants, both
directly through increased nutrient uptake and indirectly by
decreasing the loss of nutrients through leaching and gas-
eous emissions. Several studies (Cao et al. 2019; Coelho
et al. 2018; Li et al. 2017a; Nguyen et al. 2017a; Yu et al.
2017, 2018) report that application of biochar increases N
uptake, thereby increasing N use efficiency (NUE) in crops.
Addition of wood biochar (10 t ha™!) in an alkaline soil
improved P use efficiency (PUE) of both wheat and maize
(Arif et al. 2017). Zhang et al. (2020) reported that biochar
increased NUE (20-53%) and PUE (38-230%), compared to

N fertilization, in a rice-wheat rotation during a 6-year field
experiment. Application of woody biochar (20%) increased
NUE of green bean crops (Prapagdee and Tawinteung 2017).
Indirectly, biochar increased NUE by reducing leaching of
nutrients (Cheng et al. 2018), decreasing gas emissions (Li
et al. 2017a), and increasing soil organic carbon (Arif et al.
2017). Addition of biochar (up to 20 t ha™!) increased NUE
and PUE by 90 and 191%, respectively (Table 6). Applica-
tion of several types of biochars (coffee waste, Dalbergia
sissoo, acacia prunings, maize stalk, chicken litter, mixed
wood, and cuttings of acacia) at different levels (2-30 t
ha™!) increased the NUE (65-90%) and PUE (44-150%)
(Table 6). Nonetheless, application of mixed (70% Norway
spruce + 30% European beech) biochar in field crops reduced
NUE by 6.09-8.01%, (Table 6) which was due to the pres-
ence of polyaromatic hydrocarbons (PAHs) in biochar that
reduced the N availability for plants (Haider et al. 2017).
Usually, biochar improves NUE in plants (Li et al. 2017a).

6 Conclusion and future research
recommendations

Biochar can be an important source of plant nutrients
and can supply macro-nutrients, secondary nutrients, and
micronutrients to plants. Biochar has unique physical and
chemical properties that influence nutrient interactions in
soil by altering soil properties including pH and CEC. The
availability of nutrients in soil with biochar mainly depends
on the feedstock type of the biochar, pyrolytic conditions,
rate of biochar addition to soil, and the type of soil. Animal
manures and waste-derived biochars have higher N, P, and
K contents than crop residues and woody biochars. Moreo-
ver, manure and waste (municipal and industrial) derived
biochars contain more micronutrients than crop residues and
woody biochars. Availability of most nutrients are positively
correlated with the pyrolytic temperature, except N and S,
and that is because of volatilization loss. The effect of bio-
char on Ca, Mg, and micronutrient (Zn, Cu, Fe, Mn) uptake
show inconsistent results. Biochar can retain P, K, and other
nutrients in soil by decreasing their leaching loss. Biochar
usually improves nutrient use efficiency in plants.

The following are recommendations for future research:

e Long-term field studies are needed rather than pot or col-
umn studies to understand the impact of biochar in soil.

e The feedstock selection and application rate should be
studied in relation to availability of nutrients.

e Methods to increase the N content of biochar should be
considered, for example by adjusting the pyrolytic condi-
tions, because N is reduced by increasing the pyrolysis
temperature.

@ Springer
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e The availability of P as a result of different pyrolytic tem-
peratures needs to be studied.

e Studies are needed to understand the interaction of bio-
char and microbes and how they affect nutrient transfor-
mation.
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