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Abstract
At the end of 2019, the world witnessed the beginning of the COVID-19 pandemic. As an aggressive viral infection, the entire 
world remained attentive to new discoveries about the SARS-CoV-2 virus and its effects in the human body. The search for 
new antivirals capable of preventing and/or controlling the infection became one of the main goals of research during this 
time. New biocompounds from marine sources, especially microalgae and cyanobacteria, with pharmacological benefits, 
such as anticoagulant, anti-inflammatory and antiviral attracted particular interest. Polysaccharides (PS) and extracellular 
polymeric substances (EPS), especially those containing sulfated groups in their structure, have potential antiviral activity 
against several types of viruses including HIV-1, herpes simplex virus type 1, and SARS-CoV-2. We review the main char-
acteristics of PS and EPS with antiviral activity, the mechanisms of action, and the different extraction methodologies from 
microalgae and cyanobacteria biomass.

Keywords  Antiviral activity · Cyanobacteria polysaccharides · Extracellular polymeric substances (EPS) · Microalgae 
polysaccharides

Introduction

Viral infections are a significant threat to public health, 
particularly seasonal epidemics and occasional pandem-
ics. The most effective way to prevent infections is through 
vaccination [1]. However, for some viruses, such as human 
immunodeficiency virus (HIV), Zaire ebola virus, and den-
gue virus, vaccines are still not available [2]. The COVID-19 
outbreak and emerging variants of the SARS-CoV-2 virus 
also highlighted the high probability of the emergence or 
re-emergence of viral infections. A way of circumventing 
this problem is through the use of effective antiviral agents 
from natural sources. The sulfated polysaccharides (PS) 

from microalgae and cyanobacteria, for example, have been 
demonstrated as a promising option for the treatment of viral 
infections [3].

Certain organisms that inhabit aquatic environments 
have received increasing attention in the search for sources 
of natural products with biological activities. Microalgae 
and cyanobacteria are photosynthetic microorganisms that 
accumulate PS and extracellular polymeric substances (EPS) 
under different conditions. The structures of PS and EPS will 
typically depend on the species [4]; however, sulfated PS 
and EPS have gained particular prominence owing to their 
demonstrated antiviral activities. Since the 90s, when the 
first report of a sulfated PS produced by the planktonic fila-
mentous cyanobacterium Arthrospira platensis was shown 
to exhibit anti-HIV activity, many studies have focused on 
discovering new producers of these substances. Some stud-
ies have reported that PS and EPS could be used against 
enveloped RNA viruses, such HIV [5] and influenza [6], as 
well as the new coronavirus SARS-CoV-2, which belongs 
to this group [7].

Most studies with sulfated PS are derived from marine 
macroalgae (seaweeds), such as ulvans from green mac-
roalgae [8], carrageenans and agar from red macroalgae [9], 
and fucoidans and laminarians from brown macroalgae [10] 
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(Fig. 1). PS and EPS from microalgae and cyanobacteria are 
still poorly studied and considerably misunderstood. As pre-
vious studies have shown that PS and EPS have biological 
activities against retroviruses without toxic effects on host 
cells, they are considered to be a “new generation antiretro-
viral drugs” [11].

The aim of this review is to provide an overview of PS 
and EPS structures, their potentialities as antiviral com-
pounds against the novel coronavirus SARS-CoV-2 and 
other viruses, and the extraction techniques for their recov-
ery from biomass.

Polysaccharides (PS)

PS are composed of monomers of sugars and sugar deriva-
tives, such as uronic acids and amino sugars [13]. According 
to Donot et al. [14], PS can be divided in two categories: 
(1) cytosolic PS, which provide a carbon and energy source 
for the cell, and (2) cell wall PS including peptidoglycans, 
teichoic acids, and lipopolysaccharides. Therefore, carbo-
hydrate production serves two main purposes: to provide 

energy and nutrients, and to maintain the structure of the 
cell walls [15, 16].

Some cyanobacteria and microalgae PS contain sulfate 
esters. These sulfated PS have been extensively studied in 
their respective literature, with focus on their pharmaceuti-
cal properties, such as antiviral [17], anticoagulant [18], and 
antioxidant activities [19]. Sulfated PS are the most stud-
ied class of antiviral PS. Among these sulfated PS, spiru-
lan [18, 20] and nostoflan [20] can be highlighted, which 
are derived from the cyanobacteria A. platensis and Nostoc 
flagelliforme, respectively. The composition of these PS var-
ies according to species (Table 1). A. platensis was found 
to produce a water-soluble sulfated PS with xylose as the 
main component, followed by glucose, rhamnose, fucose, 
mannose, and galactose [19]. The red microalgae Dixon-
iella grisea and Porphyridium aerugineum were shown to 
produce sulfated PS composed of 6–8 monosaccharides, 
predominantly xylose, and had a sulfur content of 1.6% and 
0.8% respectively [21].

Although sulfated PS are found in nature, they can be 
also obtained by chemical modification with sulfonating 
agents, such as chlorosulfonic acid-pyridine, concentrated 
sulfuric acid, and sulfur trioxide pyridine [31]. The sulfation 

Fig. 1   Polysaccharide structures produced by marine macroalgae. a Ulvan; b Carragenan; c Fucoidan; d Laminarian. Reused with permission [12]
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modification has been demonstrated to enhance the antiviral 
activity. The sulfate may improve the water solubility of the 
PS and alter the chain conformation resulting in an alteration 
of biological activities [32, 33].

Some studies in literature have focused on the optimi-
zation of the culture conditions of microalgae and cyano-
bacteria to induce the production of sulfated PS. Sulfated 
PS can be accumulated in response to nutrient and physi-
cal stress, which cause an induction of metabolic pathways 
that produce the sulfated PS [34]. A study carried out with 
Arthospira platensis showed induction of sulfated PS as a 
response to nutrient stress, such as excess nitrogen and high 
salinity, and physical stress conditions, such as UV radia-
tion and aging. A yield of PS with the highest degree of 
sulfation (14.63%) [35] was observed by the authors, as a 
result of cells subjected to UV radiation treatment. The sul-
fation of PS produced by Porphyridium sp. was studied by 

incorporating radiosulfate (Na2
35SO4) or [35S]cysteine. The 

authors suggested that under conditions of sulfate starva-
tion, the microorganism can assimilate the sulfur-containing 
amino acid cysteine while incorporating sulfur from [35S]
cysteine into the cell wall PS [36]. A study carried out with 
Porphyridium cruentum demonstrated that sulfate (MgSO4) 
supplementation of the culture medium enhanced antiviral 
properties of PS against vesicular stomatitis virus (VSV) and 
herpes simplex virus type 1 (HSV-1) and suggested that it 
could be related to the higher degree of sulfation [37].

Extracellular polymeric substances (EPS)

EPS are secondary metabolic products that accumulate on 
the cell surface, providing protection against external stim-
uli. EPS are complex blends of carbohydrates, proteins, 

Table 1   The differences in PS and EPS composition between some microalgae and cyanobacteria

Gal galactose, Rha rhamnose, Xyl xylose, Man mannose, Glc glucosamina, Ara arabinose, Glu glucose, Fuc fucose

Microalgae/Cyanobacteria Composition (%) Proteins PS or EPS Culture conditions Reference

Dunaliella sp. RCC5 Gal (28%), Rha (21%), Xyl (17%). 
Man (13%), Gal (11%)

No EPS F/2 medium/30 days/16h-8h light-
dark/150µEm−2s−1

[22]

Chlorella zofingiensis 30412 Man (43.44), Gal (30.08), Glc 
(17.42), Glucuronic acid (1.72), 
Ara (0.85)

No EPS BG11 medium + 5.0 g glu-
cose/5 days/continuous light at 
40µEm−2s−1/25°C

[23]

Chlorella vulgaris UTEX 395 Gal (45.43), Glucosamine (28), Glc 
(7.31), Rha (4.79), Ara (2.30)

No EPS BG11 medium + 5.0 g glu-
cose/5 days/continuous light at 
40µEm−2s−1/25°C

[23]

Flintiella sanguinaria CCAP 
1371/1

Xyl (47%), Gal (21%), Rha (10%), 
Glu (6%), Ara (2%)

Yes EPS FS medium/16 − 8 light-
dark/150µEm−2s−1/24°C

[22]

Arthrospira platensis Compére 
1968/ 3786

Gal (14.9%), Xyl (14.3), Gal 
(13.5%), Glc (13.2%), Fuc 
(13.1%), Rha (3.7)

Yes EPS Zarrouk medium/25 days/continu-
ous light at 100µEm−2s−1/32°C

[24]

Nostoc insulare 54.79 Glu (43.1%), Ara (34%) Yes EPS 10% artifical water + 90% deminer-
alised water + phosphate, nitrate 
and trace elements/continuous 
light ate 30µEm−2s−1/27°C

[25]

Nostoc sp. FACHB 892 Glu (63), Gal (10.5), Xyl (9.1), Rha 
(6.5), Man (4.5)

Yes EPS BG-11 medium/continuous light at 
40-80µEm−2s−1/25°C

[26]

Dixoniella grisea UTEX 2320 Xyl (50%), Rha (19%), Glucuronic 
acid (7.4%)

No EPS Fresh water medium/150µEm−2s−1 [21]

Porphyridium purpureum CCAP 
1380

Gal (42), Xyl (30), Glc (25), Glu 
(2), Fuc (1)

No PS Modified artificial water/0-
2000µEm−2s−1/30 days/24°C

[27]

Porphyridium aerugineum SAG 
111.79

Xyl (30), Glc (22), Gal (19), Glu-
curonic acid (4.4).

No EPS Fresh water medium/µEm−2s−1 [21]

Synechocystis aquatilis VRUC 165 Glc (81.99), Fuc (3.79), Rha (2.84), 
Xyl (0.95)

No EPS Modified BG-11 medium/14:10h 
light-dark/18µEm−2s−1/18°C

[28]

Rhodella maculata CCAP 1388/2 Gal (45), Xyl (42), Glu (5), Rha 
(5), Ara (2), Glc (1)

No EPS F/2 medium/30 days/16h-8h light-
dark/150µEm−2s−1/24°C

[27]

Rhodella violacea LMGEIP 00 Xyl (47%), Rha (17%), Gal (6%), 
Glucuronic acid (7%), Glc (5%)

No EPS F/2 medium/30 days/16h-8h light-
dark/150µEm−2s−1/24°C

[29]

Spirulina sp. LEB-18 Glc (3.91), Fru (2.21), Gal (0.65), 
Glucuronic acid (11%)

Yes EPS Zarrouk medium/30 days/natural 
light

[30]
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lipids, nucleic acids, and humic substances [38]. These 
complex polymers have a molecular weight between 10 
KDa and 2 MDa. They are formed by branching amongst 
the monomers, as observed frequently with other com-
pounds [39].

EPS can be subdivided into bound EPS and soluble 
EPS. Bound EPS are closely with cells, being sheaths and 
capsular polymers. Soluble EPS are weakly bound with 
cells or are dissolved into the cytoplasm and secreted into 
the extracellular medium [40]. EPS can surround the cell 
by forming a highly hydrated exopolysaccharide layer, 
which acts as a barrier against desiccation [41]. The func-
tion of EPS is related to protection against nutrient stress 
and predation; however, other functions have also been 
described in the literature. These functions include antibi-
otic resistance, exo-enzymatic degradation, and mechani-
cal strength [28]. In scenarios of nutrient scarcity, the 
abundance of organic carbon in EPS establishes their 
value as a rich source. According to Flemming & Wing-
ender [42], EPS present the following functions: adhe-
sion (initial steps in the colonization of abiotic and biotic 
surfaces), protective barrier (resistance and tolerance to 
antimicrobial agents), sorptive agent (sorption of xenobi-
otics and heavy metals), retention of water (important in 
the tolerance of desiccation), redox-active (electron donor 
or acceptor), and nutritive source (source of carbon, nitro-
gen, and phosphorus).

EPS from cyanobacteria often possess five or six sugar 
monosaccharides, while the EPS of other prokaryotes usu-
ally have less than four monosaccharides [43]. The major-
ity monosaccharides are glucose, xylose, and galactose; 
however, as observed in Table 1, rhamnose, fructose, and 
arabinose can also be found. In cyanobacteria, EPS possess 
a complex nature owing to the presence of uronic acids, 
pyruvic acid, O-methyl, O-acetyl, and sulfate groups [39]. 
Owing to this complex nature, cyanobacterial EPS are not 
characterized as well as those of other microorganisms [44]. 
EPS also possess sulfate groups, which are known to confer 
some characteristics to EPS, such as antiviral activity. Other 
components such as Ca2+ and Mg2+ were also found in EPS. 
These are involved in multiple crosslinkages between sugar 
molecules, comprising unique PS chains and resulting in 
high consistency and stability of EPS [45].

EPS from the cyanobacterium Synechocystis sp. VRUC 
165 presented a high uronic content (16.20 mol %), exhib-
ited a hydrophilic nature, and promoted the formation of 
ionic bonds with charged molecules [46, 47]. EPS from the 
microalgae Chlamydomonas reinhardtii were characterized 
in terms of their chemical composition, revealing the pres-
ence of galacturonic acid, ribose, arabinose, xylose, glucose, 
galactose, and rhamnose sugars. Furthermore, functional 
groups such as pyruvate and uronic acid were also detected 
[48].

The chemical composition can also vary according to the 
genus. EPS isolated from microalgae Dunaliella tertiolecta 
was characterized as linear (1,4)-α-D-glucan and its struc-
ture resembled that of amylose. EPS demonstrated that only 
glucose units and PS were the major component of EPS. 
Conversely, protein was present only as an impurity [49]. 
EPS from the cyanobacterium Nostoc calcicola RDU-3 
revealed a composition of glucose, galactose, rhamnose, 
xylose, and ribose monosaccharides [43]. Nine different 
monosaccharides were found in EPS produced by Cyan-
othece sp. CCY 0110: mannose, glucose, galactose, xylose, 
arabinose, rhamnose, and fucose, as well as the acidic hex-
oses, galacturonic and glucuronic acids [50].

Some authors have described how the monosaccharide 
composition has the potential to influence the EPS function. 
It is known that rhamnose and fucose confer hydrophobic 
properties to PS [51]. In Phaeodactylum tricornutum, the 
secreted fractions of mannose, glucose, and galactose con-
stituted the biofilm mucilage, suggesting involvement in cell 
adhesion [52]. Many functional groups, such as proteins, car-
bohydrates, and nucleic acids, can complex with the heavy 
metals. Charged groups, such as carboxyl and hydroxyl, and 
negatively-charged components, such as glucuronic and 
galacturonic acids, in the EPS composition could be ben-
eficial for heavy metal adsorption by aiding in to the forma-
tion of organo-metal complexes [40, 53]. EPS produced by 
Nostoc muscorum was demonstrated to efficiently sequester 
cadmium [Cd(II)] from aqueous solutions [54], while Colica 
et al. [55] observed that EPS produced by Cyanothece sp. 
CE4 removed chromium [Cr(VI)] in wastewater.

Biosynthesis mechanisms

PS and EPS biosynthesis in microalgae and cyanobacteria 
have not been thoroughly investigated yet; therefore, the infor-
mation available is limited. According to Markou et al. [15], 
carbohydrate biosynthesis in microalgae and cyanobacteria 
occurs during the Calvin Cycle, via the usage of NADPH 
and ATP and intervention of ribulose (1,5-biphosphate car-
boxylase oxygenase/RuBisCo). PS sulfation was found to take 
place in the Golgi apparatus of microalgae [56].

A hypothetical pathway EPS biosynthesis in cyanobacte-
ria was proposed by Pereira et al. [44] (Fig. 2). Based on the 
Wzy-dependent mechanism, the pathway occurs in four steps: 
(I) the activation and conversion of monosaccharides in sugar 
nucleotides, via the cytoplasm, by glycosyltransferases; (II) 
the assembly of the repeating units by sequential addition of 
sugars onto a lipid carrier (referred to as undecaprenyl diphos-
phate); (III) the polymerization of repeating units, situated at 
the periplasmic face of the plasma membrane (via Wzy and 
Wzc proteins); and (IV) the extracellular export across plas-
matic membrane by a junctional pore complex (JPC).
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Very little is known about the biosynthesis machinery 
for sulfated EPS. A study performed by Maeda et al. [57] 
with Synechocystis sp. PCC 6803 identified a set of genes 
responsible for the sulfated EPS (synechan) biosynthesis 
and a possible pathway. The authors identified two genes 
for sulfotransferases (xssA, xssE), followed by eight glyco-
syltransferase genes (xssB, xssC, xssG, xssI, xssM, xssN, 
xssO, xssP). EPS polymerization follows the Wzy pathway 

(Fig. 3). Despite the pathway presenting similarities to the 
one previously described by Pereira et al. [44], the pres-
ence of sulfotransferases indicated the biosynthesis of sul-
fated EPS. Sulfotransferases transfer a sulfo group from the 
sulfo donor, 3′-phosphoadenosine 5′-phosphosulfate, to the 
hydroxyl (single bond -OH) and amino (single bond -NH2) 
positioning of the saccharide residues, which are present 
in PS [58].

Fig. 2   Mechanism of extracel-
lular polymeric substance (EPS) 
biosynthesis in cyanobacteria. 
Glycosyltransferases transfer 
the nucleotide sugars to a lipid 
carrier and are assembled at the 
interface between the cytoplasm 
and plasmatic membrane. The 
protein Wzx flips the sugar units 
across the membrane and subse-
quently the protein Wzy assem-
bles the polyssacharide. The 
new polymer is translocated by 
Wzc and Wzb proteins. Finally, 
the polymer is translocated 
across the outer membrane 
through the lipoprotein Wza. 
Created with BioRender.com

Fig. 3   Mechanism of sul-
phated extracellular polymeric 
substance (EPS) biosynthesis 
in Synechocystis sp. PCC 6803. 
XssB, XssC, XssG, XssI, XssH, 
XssN, XssD, and XssP represent 
glycosyltransferases. The 
polysaccharide polymerization 
is represented by XssH (Wzy 
flippase), XssF (Wzy polymer-
ase), and XssK (polysaccharide 
co-polymerase, PCP). XssT 
represents the OPX gene, an 
outer-membrane export. Created 
with BioRender.com
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Antiviral properties of PS and EPS

In recent years, the emergence of distinguished viral infec-
tions has significantly increased. Respiratory diseases 
caused by viral pathogens, including the influenza virus, 
respiratory syncytial virus (RSV), coronavirus, adenovi-
rus, and rhinovirus, are the leading cause of 80% of all 
acute morbidities [59]. Although antiviral agents and vac-
cines are available to cure or protect humans from virus 
infections, viral isolates could either be drug-resistant or 
not neutralized by existing vaccines; therefore, new anti-
viral compounds are urgently needed [17].

The antiviral properties of PS and EPS depend on the 
molecular weight, sugar residue composition, sulfation 
level, distribution of sulfate groups along the PS backbone, 
and protein moieties, as the antiviral activity is the result 
of complex interactions of many structural features [47]. 
A high molecular weight (~ 500 kDa) typically presents 
greater antiviral activity, as a larger chain is more likely to 
recognize and interact with numerous copies of the viral 
attachment protein(s) and crosslink virions [60]. In some 
cases, low-molecular-weight-sulfated carbohydrates can 

also possess strong antiviral activities, particularly when 
the sulfate content is high [61]. Salih et al.[9] observed 
that the chemical structure of PS can have an impact on the 
degree of their antiviral activity. While sulfated PS with a 
higher degree of sulfation were seen to be more bioactive 
as antiviral agents than those with lower degrees, the non-
sulfated PS were effectively inactive.

For a better understanding of the antiviral mechanisms of 
PS and EPS, it is important to know about the viral life cycle 
(Fig. 4). The basic stages are as follows: (1) viral adsorption, 
(2) viral penetration, (3) reverse transcription, (4) integration, 
(5) transcription (6) translation, (7) assembly, (8) budding, 
and (9) release [32]. Several studies have indicated some anti-
viral mechanisms that could be useful against some diseases, 
such as the inhibition of the viral protein synthesis, reverse 
transcriptase (RT) and RNase H [62].

Drug development focuses on two strategies: targeting 
the infectivity of the virus and modulating the host defense 
system [63]. PS and EPS compounds could have antiviral 
action through different mechanisms: direct virus neutrali-
zation; inhibition of virus adsorption, blocking the positive 
charge on the cell surface through the negative charge of the 

Fig. 4   Viral life cycle showing binding, membrane fusion, translation/replication, and virion release. Created with BioRender.com
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sulfate group, while interfering with the adsorption process 
of the virus on the cell; sulfated PS have strong polyanionic 
properties and can interact with the surface of virus by the 
negative charge and, consequently, prevent the virus infec-
tion, inhibition of invasion of the cell by the virus; inhibition 
of the viral replication; activation of the immune system, 
which can be an indirect form of promoting an antiviral 
effect whereas some EPS and PS can enhance the host's 
immune system, which can accelerate the process of virus 
elimination [31, 64].

PS from Porphyridium spp. could potentially block several 
steps of the life cycle of HSV-1, indicative of an irreversible 
or very strong binding between HSV-1 particles and the PS. 
Furthermore, the results demonstrated weak inhibition of viral 
infection in PS-pretreated cell cultures, indicating that only 
PS molecules, which interact very closely with the cell mem-
branes viral receptors, can interfere and block virus adsorption 
and penetration into the host cells [65].

As a recent example of a respiratory disease, COVID-19 
was first identified in 2019 in China. In 2020, the virus was 
considered to have incited a pandemic. The newly discovered 
coronavirus was distinguished as SARS-CoV-2 [66]. SARS-
CoV-2 is an enveloped spherical virus that belongs to the 
Coronaviridae family. The virus is composed of spike (S), 
envelope, nucleocapsid, and membrane proteins [67] (Fig. 5). 
Coronaviruses are enveloped positive-stranded RNA viruses 
that replicate in the cytoplasm of host cells. SARS-CoV-2 uses 
the cellular entry receptor, angiotensin-converting enzyme 2 
(ACE2) (found in the lower respiratory tract of humans), to 
engage in the fusion of the envelope with the host cell mem-
brane, mediated by S proteins [64, 68].

Many drugs have been investigated in the treatment of 
COVID-19. A review provided by Kelleni [69] exhibits a 
contrast between the expectations and real-world results 
of four repurposed COVID-19 drugs: tocilizumab (TCZ), 
remdesivir, favipiravir, and dexamethasone. The author rec-
ommends considering TCZ and dexamethasone for selected 
severe-critical cases of COVID-19 but recognizes that subse-
quent clinical testing will be required. The use of TCZ was 
studied in 65 patients, of which 32 were treated with TCZ; 
during the 28-day follow-up, 69% of TCZ-treated patients 
experienced a clinical improvement, compared to 61% of 
patients receiving standard treatment. However, the rate of 
infection and pulmonary thrombosis proved to be similar 
between the two groups [70]. Limited evidence on the ben-
eficial effects regarding mortality exist for remdesivir, and 
little or no effect on the duration of liberation from invasive 
mechanical ventilation was observed in a study with 7142 
participants over 28 days. The authors concluded that there 
was insufficient data available to examine the effect of rem-
desivir in patients with SARS-CoV-2 [71]. The use of favi-
piravir in moderate COVID-19 patients presented a higher 
clinical recovery rate on day 7, and it was reported to be 
more effective in reducing the incidence of fever. However, 
according to the authors, side effects on hematopoietic tis-
sues must be considered, as well as more clinically valid evi-
dence in confirming the positive value of this antiviral agent 
[72]. Ahmed [73] showed that dexamethasone decreased 
the mortality risk from 40–28% in ventilated patients, and 
from 25–20% for patients on oxygen therapy, over a 28-day 
period. Dexamethasone use did not cause any significant 
side effects but was ineffective in mild cases. However, 
according to The Oxford RECOVERY Trial, the data about 
potential adverse effects, However, according to The Oxford 
RECOVERY Trial, the data about potential adverse effects 
and overall efficacy 290 in patients with comorbidities were 
insufficient[74].

The drugs chloroquine (CQ) and hydroxychloroquine 
(HCQ) were investigated by various research groups as a 
treatment for COVID-19 [64, 75, 76]. It was observed that 
CQ was effective in the control of SARS-CoV-2 infection 
in vitro, interfering with both entry and post-entry phases of 
the SARS-CoV-2 infection in Vero E6 cells. The drug was 
able to synergistically modulate immune activity in conjunc-
tion with improving its antiviral activity [77, 78]. Another 
in vitro study suggested that HCQ could block the entry and 
post-entry stages of SARS-CoV-2 [79].

Despite these in vitro studies having demonstrated prom-
ising results, controversy regarding the efficacy and safety 
of these treatments arose. A study evaluating the efficacy of 
HCQ in the treatment of hospitalized patients with COVID-
19 demonstrated a significant and positive response in the 
primary endpoints (transfers to the intensive care unit, need 
for mechanical ventilation, and in-hospital death) [80]. A 

Fig. 5   SARS-CoV-2 structure with spike protein (S), nucleocapsid 
(N), membrane, and RNA. Created with BioRender.com
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clinical trial conducted in several hospitals throughout China 
to test the efficacy and safety of CQ or HCQ in the treat-
ment of COVID-19-associated pneumonia showed that CQ 
inhibited the exacerbation of pneumonia, improved lung-
image findings, and no severe adverse reactions were noted 
[75]. However, according to a review published by Chen 
et al. [77], no significant differences in clinical symptoms, 
inflammatory biomarkers, length of hospital stay, and overall 
mortality were observed between the HCQ/CQ group and 
the control group. Furthermore, high-dose CQ was asso-
ciated with the incidence of gastrointestinal disorders and 
cardiovascular lethality.

Another review found that treatment with HCQ was associ-
ated with increased mortality in patients with COVID-19 from 
all currently available randomized clinical trial evidence [81].

Until now, the drugs that were tested against SARS-
CoV-2 do not clearly show evidence of safety and efficacy; 
some of which potentially have serious side effects. As such, 
natural sources of bioactive molecules, such as the PS and 
EPS of microalgae and cyanobacteria, have arisen as an 
interesting option in the search for antiviral compounds. The 
sulfated PS extracted from Arthospira platensis were tested 
against pseudotyped viruses of MERS-, and SARS-CoV-2. 
The authors believe that these components could possibly 
bind to the S protein while playing a role in the inhibition of 
coronavirus entry [82]. Yim and colleagues [83] suggested 
that sulfated PS could bind to the SARS-CoV-2 S protein, 
inhibiting virus entry into the human cell. Owing to the pol-
yanionic nature, PS and EPS can interact with the positively 
charged regions of S protein.

As demonstrated in this review, some factors can affect 
the antiviral activity of PS and EPS. Molecular weight, and 
total PS and fucose content were identified as important fac-
tors in the inhibitory effect induced by PS on SARS-CoV-2, 
such that PS with a high molecular weight, and total carbo-
hydrate and fucose content had the potential to promote the 
blockage of virus entry into the cell [83].

Calcium‑spirulan (Ca‑SP)

Spirulan in its ionic form (calcium or sodium) is a sulfated 
PS. This compound was isolated and characterized in 1996 
from the cyanobacterium, A. platensis [84]. It consists of 
saccharide constituents, xylose, glucuronic acid, and galac-
turonic acid, as well as disaccharide repeating units, O-hex-
uronosyl-rhamnose and O-rhamnosyl-3-O-methylrhamnose. 
Sulfated constituents were found in the calcium-spirulan 
(Ca-SP) structure through X-ray and Fourier-transform 
infrared (FTIR) spectroscopy [85]. These results suggested 
that Ca-SP is a sulfated PS chelating calcium ions, and 
mainly composed of rhamnose and fructose. Majdoub et al. 
[18] extracted a Spirulan-like compound of 199 kDa from S. 
platensis. The sulfate content was 20% weight/dry weight. 

Lee et al. [85] also showed that replacing calcium ions with 
sodium and potassium ions maintained the antiviral activity.

Hayashi et al. [86] described the antiviral activity of Ca-SP. 
In this study, the authors demonstrated that this PS inhibited 
the replication of several enveloped viruses including HSV-1, 
human cytomegalovirus, measles virus, mumps virus, influ-
enza A virus, and HIV-1. The authors also demonstrated that 
Ca-SP had a high selectivity index for all enveloped viruses. 
In fact, Ca-SP could inhibit virus replication by inhibition 
of virus binding to the host cell, and the subsequent virus-
cell fusion step [86]. However, it was inactive against non-
enveloped viruses. Mechanistic analysis later indicated that 
Ca-SP blocks the attachment and penetration of HSV-1 into 
mammalian epithelial cells with a potency that proved to be 
comparable to the antiviral drug acyclovir [87].

Nostoflan

Nostoflan is an acidic PS without sulfate residues. It was 
isolated for the first time in China from the cyanobacterium 
Nostoc flagelliforme. Nostoflan is mainly composed of glu-
cose, xylose, and galactose (approximately 2:1:1), with 
trace amounts of mannose and arabinose [20]. Other kinds 
of water-soluble PS were extracted from Nostoc sphaeroides 
Kütz, which were composed of mannose, glucose, xylose, 
galactose, and glucuronic acid, and possessed an average 
molecular weight of 1.31×105g/mol [85].

Nostoflan was demonstrated to have antiviral activity, but 
only towards enveloped viruses that bind to the carbohy-
drate receptor of cells, thus acting as inhibitor of virus-cell 
interaction [20, 88]. In another study, nostoflan was shown 
to exert an inhibitory effect on the binding process of HSV-
1, but not on the virus penetration process, which occurs 
immediately after virus binding [89].

Other EPS and PS

The sulfated PS, p-KG03, produced by the microalgae Gyro-
dinium impudium, is a galactose homopolysaccharide con-
jugated to uronic acid. Its antiviral activity against influenza 
A was tested and discovered to be directly associated to its 
interaction with viral particles [17].

EPS extracted from A. platensis showed the presence of 
sulfated PS, in addition to a small group of other uncharac-
terized PS and possibly protein components. The antiviral 
activity of the EPS against koi herpesvirus was tested at 
a concentration greater than 18 µg.mL−1, wherein it sup-
pressed the viral replication in common carp brain (CCB) 
cells, even after 22 days post-infection [90]. Radonic et al. 
[91] demonstrated how the antiviral activities of sulfur-
containing anionic EPS from A. platensis, named TK V3, 
and from Porphyridium purpureum, against the enveloped 
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vaccinia virus and ectromelia virus ultimately decreased the 
multiplicity of infection.

PS and EPS extraction

An important step for obtaining intracellular PS and EPS is 
the extraction of these compounds. They are derived from 
the cells and different methodologies have been described 
in the literature, in addition to various purification method-
ologies. Conventional extraction processes of these com-
pounds are often conducted from dry biomass with organic 
or aqueous solvents [92]. These methods are associated with 
several limitations though, such as long extraction times, 
usage of large amounts of solvents, and the co-extraction of 
undesirable components, resulting in increased downstream 
processing costs [93]. Extraction and purification techniques 
that are effective and economically favorable must be con-
sidered [94]. To obtain a product without salts and proteins, 
chromatographic techniques [95], tangential microfiltration, 
and dialysis [96] have been tested.

The cell wall disruption is the primary step for the recov-
ery of PS and may be the most critical step. Cell lysis meth-
ods are divided into non-mechanical (chemical and enzy-
matic hydrolysis) and mechanical methods, such as hot water 
extraction (HWE), high-speed homogenization, sonication, 
pulsed electric field, and high-pressure homogenization 
(HPH) [97] (Table 2). The optimization of these methodolo-
gies is considered an important step to PS extraction because 
high temperature and long extraction times can damage 
the structure of the macromolecules, as well as alter their 
pharmacological activity [97]. However, the use of physical 
methods can cause reduction of polymer size. In the pres-
ence of residual amounts of proteins, and when submitted 
to temperatures over 100°C, undesirable toxic molecules 
are formed. Examples of this include such combinations 
between free radicals and carbohydrate derivatives [98]. In 
chemical methods, when the acid hydrolysis is controlled, 
oligomers of varied molecular weight are produced [99]. The 
disadvantage of chemical methods are the strong acids or 
bases and elevated temperatures, leading to PS degradation.

To obtain PS from A. platensis, different extraction meth-
odologies have been tested. The cell wall of A. platensis 
is composed mainly of murein, and the trichome is further 
enveloped by a thin mucilaginous sheath, and thus, these 
structures could become barriers for the water extraction 
methodologies. According to the authors, it is necessary 
to use a combination of HWE and HPH [103]. In another 
study, 7 cycles in a HPH system were deemed necessary for 
complete cell disruption of A. platensis. However, proteins 
were found to be extracted almost entirely from the cells, 
concomitantly with PS, and thus, a purification step was 
necessary to quantify and characterize the PS [97].

EPS extraction is commonly carried out by chemical 
methods using EDTA, NaOH, and organic solvents that are 
mixed with the biomass. Some authors have reported the 
use of formaldehyde and glutaraldehyde as fixative agents to 
protect the microalgae during the extraction process. These 
agents react with hydroxyl, amino groups, and carbonyl 
of the outer cellular layers of membrane, preventing cell 
lysis [39, 104]. The use of NaOH in the extraction process 
neutralizes acid groups on the surface of EPS, reduces the 
repulsion force of EPS while increasing the solubility of 
EPS in water [105]. Recovering EPS from the culture media 
generally requires alcohols, such as methanol, ethanol, or 
isopropanol. This method allows the selective concentra-
tion of EPS, but presents a disadvantage: microalgae and 
cyanobacteria, generally are cultivated in culture media with 
salts and these can co-precipitate with EPS [106]. There-
fore, to increase the purification of EPS, an additional step 
is required.

The choice of the best methodology for cell disruption 
and product recovery needs to preserve the structure as well 
maintaining its bioactivity. For example, PS of high molecu-
lar weight and long main chain usually have a compacted 
structure with high viscosity and low solubility. Treatment 
with ultrasound can cause a breakage of glycosidic linkages, 
along with weakening of the microstructural network. Con-
sequently, this would result in decreasing the viscosity and 
increasing the solubility. The destruction of inter and intra-
molecular bonds result in more hydrophilic groups exposed 
to water molecules [107, 108]. PS that exhibit a high solubil-
ity can easily penetrate multiple cell membrane barriers and 
have greater bioactivity [32].

The HPH methodology has been used as an alternative to 
diminish the volume of organic solvent, make cell disruption 
more effective, and subsequently, increase the yield of the 
product. In the literature, HPH is mainly intended for lipids 
[109] and proteins [93]. Its application for the recovery of 
water-soluble PS is relatively new. Therefore, the effects on 
PS structure are still poorly documented [97].

HWE can also be used, although, it is known that the 
degradation of bioactive compounds may occur when cells 
are subjected to higher temperatures. The antiviral activity 
of PS, when extracted in cold and hot water, from Spirulina, 
was tested against HSV-2 and VSV. The authors reported 
that PS could inhibit the cell entry of HSV-2. However, 
HWE of Arthospira did not inhibit VSV entry. This could 
be explained by the degradation of the bioactive com-
pounds. Furthermore, the authors tested different extracts 
of S. maxima. They found that the highest antiviral activity 
was observed with that extracted in methanol–water (3:1), 
indicating that the antiviral activity could be owing to polar 
compounds [110]. The HWE of A. platensis was reported 
to inhibit HIV-1 replication in two T-cell lines, which could 
be the result of PS binding to the CD4 receptor. This would 



	 Brazilian Journal of Microbiology

Ta
bl

e 
2  

M
ec

ha
ni

ca
l a

nd
 n

on
-m

ec
ha

ni
ca

l m
et

ho
ds

 u
se

d 
in

 E
PS

 a
nd

 P
S 

ex
tra

ct
io

n.

Ex
tra

ct
io

n 
m

et
ho

ds
M

et
ho

ds
A

dv
an

ta
ge

s
D

is
ad

va
nt

ag
es

Re
fe

re
nc

e

M
ic

ro
w

av
e-

as
si

ste
d 

ex
tra

ct
io

n 
(M

A
E)

M
ic

ro
w

av
es

 th
at

 in
du

ce
 th

e 
vi

br
at

io
n 

of
 

w
at

er
 m

ol
ec

ul
es

 w
ith

in
 c

el
ls

 th
at

 c
au

se
s 

th
e 

te
m

pe
ra

tu
re

 o
f t

he
 in

tra
ce

llu
la

r l
iq

-
ui

ds
 to

 ri
se

. T
he

 e
ne

rg
y 

br
ea

ks
 h

yd
ro

ge
n 

bo
nd

s a
nd

 th
e 

m
ig

ra
tio

n 
of

 d
is

so
lv

ed
 

io
ns

.

Lo
w

 a
m

ou
nt

s o
f s

ol
ve

nt
s;

 lo
w

 e
xt

ra
ct

io
n 

tim
e;

 c
os

t-e
ffe

ct
iv

e
En

er
gy

 in
pu

t-a
ss

ist
ed

 e
xt

ra
ct

io
n 

m
et

ho
d;

 
re

qu
ire

s a
n 

ad
di

tio
na

l s
ep

ar
at

io
n 

pr
oc

es
s

[1
00

]

U
ltr

as
ou

nd
-a

ss
ist

ed
 e

xt
ra

ct
io

n 
(U

A
E)

R
ap

id
 so

un
d 

w
av

e 
co

m
pr

es
si

on
 a

nd
 

de
co

m
pr

es
si

on
, c

yc
le

s t
ha

t g
en

er
at

e 
th

e 
m

ai
n 

ph
en

om
en

on
 th

at
 o

cc
ur

s d
ur

in
g 

ex
po

su
re

 to
 th

is
 p

re
tre

at
m

en
t m

et
ho

d,
 

w
hi

ch
 is

 is
 c

av
ita

tio
n.

Lo
w

 a
m

ou
nt

s o
f s

ol
ve

nt
s;

 in
cr

ea
se

d 
pr

od
-

uc
ts

 y
ie

ld
s;

 c
os

t e
ffe

ct
iv

e.
En

er
gy

 in
pu

t-a
ss

ist
ed

 e
xt

ra
ct

io
n 

m
et

ho
d

[1
01

]

H
ig

h-
pr

es
su

re
 h

om
og

en
iz

at
io

n 
(H

PH
)

C
el

l b
io

su
sp

en
si

on
 is

 fo
rc

ed
 b

y 
hi

gh
 p

re
s-

su
re

 (5
0–

30
0 

M
Pa

) t
hr

ou
gh

 a
 m

ic
ro

-
m

et
ric

 d
is

ru
pt

io
n 

ch
am

be
r, 

su
bj

ec
te

d 
to

 e
xt

re
m

el
y 

in
te

ns
e 

flu
id

-m
ec

ha
ni

ca
l 

str
es

se
s (

sh
ea

r, 
el

on
ga

tio
n,

 tu
rb

ul
en

ce
, 

an
d 

ca
vi

ta
tio

n)
, w

hi
ch

 c
au

se
 th

e 
ph

ys
ic

al
 

di
sr

up
tio

n 
of

 th
e 

ce
ll 

w
al

l a
nd

 m
em

-
br

an
es

.

Lo
w

 h
ea

t f
or

m
at

io
n 

an
d 

ea
sy

 sc
al

e-
up

 
an

d 
be

in
g 

co
ns

id
er

ed
 th

e 
m

os
t f

ea
si

bl
e 

m
et

ho
d 

fo
r t

he
 in

du
str

ia
l s

ca
le

 c
el

l 
di

sr
up

tio
n

C
au

se
s t

he
 n

on
-s

el
ec

tiv
e 

re
le

as
e 

of
 in

tra
-

ce
llu

la
r c

om
po

un
ds

[9
3]

Pu
ls

e 
el

et
ric

 fi
el

d 
(P

EF
)

Pr
om

ot
es

 c
ha

ng
es

 in
 th

e 
ch

ar
ge

 d
ist

ri-
bu

tio
n 

al
on

g 
th

e 
pl

as
m

a 
m

em
br

an
e,

 
pr

om
ot

in
g 

th
e 

de
st

ab
ili

za
tio

n 
of

 th
e 

ce
ll 

str
uc

tu
re

 a
nd

 g
en

er
at

in
g 

el
ec

tro
pe

rm
ea

-
bi

liz
at

io
n 

eff
ec

ts
.

Si
nc

e 
it 

is
 u

su
al

ly
 p

er
fo

rm
ed

 a
t a

m
bi

en
t 

te
m

pe
ra

tu
re

s a
nd

 d
oe

s n
ot

 in
tro

du
ce

 
ad

di
tio

na
l i

m
pu

rit
ie

s i
nt

o 
th

e 
pr

oc
es

s;
 

ca
n 

be
 p

er
fo

rm
ed

 in
 b

at
ch

 a
nd

 c
on

tin
u-

ou
s m

od
e 

an
d 

it 
is

 sc
al

ab
le

D
ep

en
de

nc
e 

on
 m

ed
iu

m
 c

om
po

si
tio

n 
(c

on
du

ct
iv

ity
) H

ig
h 

co
st 

of
 th

e 
eq

ui
p-

m
en

t

[1
02

]

En
zy

m
e-

as
si

ste
d 

ex
tra

ct
io

n 
(E

A
E)

D
is

ru
pt

io
n 

of
 c

el
l b

y 
hy

dr
ol

ys
in

g 
it 

us
in

g 
en

zy
m

e 
as

 a
 c

at
al

ys
t u

nd
er

 o
pt

im
um

 
ex

pe
rim

en
ta

l c
on

di
tio

ns
.

H
ig

h 
se

le
ct

iv
ity

, s
pe

ci
fic

ity
 a

nd
 a

bi
lit

y 
of

 e
nz

ym
es

 to
 d

eg
ra

de
 c

el
l w

al
ls

 a
nd

 
m

em
br

an
es

.

Li
ttl

e 
co

m
m

er
ci

al
 p

op
ul

ar
ity

N
ad

ar
 e

t a
l. 

(2
01

8)
.



Brazilian Journal of Microbiology	

disrupt CD4 and the glycoprotein gp120 interactions, which 
are crucial for viral infection [111].

Prospects

PS and EPS produced by microalgae and cyanobacteria have 
strong antiviral effects against diverse virus strains in vitro 
[17, 90, 103]. However, a relatively low number of clinical 
trials have been carried out to evaluate the antiviral activities 
of PS and EPS in humans. PS and EPS have been associ-
ated with serious side effects, such as antithrombin activity, 
restricting their clinical application as antiviral agents [20]. 
The administration of PS with a clotting agent, like thrombin, 
could be an option. Baba et al.[112] showed that it is possible 
to reduce the antithrombin activity without the sulfated PS 
losing its antiviral activity. The antiviral and antithrombin 
activity of sulfated PS may be influenced differently by the 
number, distribution, and spatial configuration of the sulfate 
groups, and thus, further studies are required. Development 
of antiviral therapeutic agents from microalgae and cyano-
bacteria must fulfill the criteria regarding safety, biocompat-
ibility, and efficiency [12].

According to Huleihel et al. [65], PS are complex mol-
ecules with high molecular weight, and they are unable 
to pass through the different barriers of the body, or even 
through cell membranes. Owing to the absence of enzymes 
capable of degrading and digesting these molecules, they 
have the potential to accumulate in the body, potentially 
causing cytotoxic effects. Finally, their mechanism of action 
has not been elucidated, which causes more concerns about 
their use in humans. Low-molecular-weight anionic com-
pounds are generally seen to possess better bioavailability 
than high-molecular-weight compounds [61]. According to 
Yamaoka et al. [113], the molecular weight or size is one of 
the most important factors affecting their biological fate in 
the body. These investigations could possibly assist in estab-
lishing the use of PS as a natural antiviral [114].

Conclusions

PS and EPS, derived from microalgae and cyanobacteria, 
especially when sulfated, exhibit good inhibitory effects on 
a great variety of viruses. Most of the studies on the antiviral 
effects of marine PS have been performed in vitro or in vivo 
(in mouse model systems). The limited number of clinical 
trials may create difficulty in the approval process of PS and 
EPS as pharmaceutical drugs. Furthermore, extraction and 
purification methodologies and conditions must be improved 
to increase PS and EPS yields whilst also being green and 
low cost. Cyanobacteria and microalgae PS and EPS have 
significant potential to be utilized for the development of 

new antiviral drugs against several viruses, including SARS-
CoV-2. The development of effective drugs and vaccines 
against future coronavirus infections and other highly path-
ogenic viruses will be essential to reduce the devastating 
impacts on human life and global healthcare systems.
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